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ON SMALL SETS OF DISTRIBUTION FUNCTIONS

OF RATIO BLOCK SEQUENCES

David Krčmarský — Ladislav Mǐśık — Zuzana Václav́ıková

Dedicated to the memory of Professor Pierre Liardet

ABSTRACT. There are various methods how to describe and characterize distri-
bution of elements of sets of positive integers. One of the most interesting is that
using the set of all distribution functions of the corresponding ratio block sequence
introduced in [Strauch, O.—Tóth, J. T.: Publ. Math. Debrecen 58 (2001), no. 4,

751–778]. In the present paper we give some sufficient conditions under which this
set is small in a metric sense. As a corollary we obtain a new characterization
of the case of asymptotic distribution.

Communicated by Oto Strauch.

1. Introduction

Basic definitions and properties

• From now on X = {x1 < x2 < · · · } denotes an increasing sequence of positive
integers and x ∈ [0, 1).

• For every positive integer n put

Xn =

(
x1

xn
,
x2

xn
, · · · xn

xn

)
,

the nth term of the ratio block sequence (Xn)
∞
n=1.

• Denote by F (Xn, x) the step distribution function

F (Xn, x) =
#{i ≤ n; xi

xn
< x}

n
,

for x ∈ [0, 1) and for x = 1 we define F (Xn, 1) = 1.
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• Directly from the definition we obtain (see [ST])

F (Xm, x) =
n

m
F

(
Xn, x

xm

xn

)
(1)

for each m ≤ n for every x ∈ [0, 1).

• For any positive t denote by X(t) the counting function

X(t) = #{n ∈ N;xn < t}.
The lower asymptotic density d and the upper asymptotic density d of X =
{x1 < x2 < . . . } ⊂ N are defined as

d(X) = lim inf
t→∞

X(t)

t
= lim inf

n→∞
n

xn
,

d(X) = lim sup
t→∞

X(t)

t
= lim sup

n→∞
n

xn
.

In the case when d(X) = d(X) we speak about asymptotic density of X and
denote this common value by d(X).

• A non-decreasing function

g : [0, 1] → [0, 1], g(0) = 0, g(1) = 1

is called distribution function (abbreviating d.f.). We shall identify any two d.f.
coinciding at common points of continuity. We will denote the set of all distri-
bution functions by D. Let us note that D endowed with the metric

�(g1, g2) =

√√√√√
1∫

0

(
g1(x)− g2(x)

)2
dx

is a compact topological space [W].

• A d.f. g(x) is a d.f. of the sequence of blocks (Xn)
∞
n=1 if there exists an in-

creasing sequence n1 < n2 < · · · of positive integers such that

lim
k→∞

F (Xnk
, x) = g(x) a.e. on [0, 1].

This is equivalent to the weak convergence, i.e., the preceding limit holding
for every point x ∈ [0, 1] of continuity of g(x), and it is also equivalent to the
convergence with respect to the L2 metric in D.

• Denote by G(Xn) the set of all d.f.s of a ratio block sequence (Xn). For a sin-
gleton G(Xn) = {g(x)}, the d.f. g(x) is also called asymptotic d.f. (abbreviating
a.d.f.) of (Xn).
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• It is evident that every G(Xn) is nonempty, by compactness of D, and closed,
as a set of all limit points of a sequence in metric space. One of the most chal-
lenging open problem of theory of sets of distribution functions of ratio block
sequences is that of characterization of all possible sets G(Xn), see [SN]. It can
be formulated as: given a nonempty closed subset H of D, decide if there exists
a set X ⊂ N such that G(Xn) = H. The simplest case, when G(Xn) is a sin-
gleton was characterized in [ST]. It was shown that the only possible singletons
are of the form G(Xn) = {xλ}, where λ ∈ [0, 1] (here x0 means the distribution
function identically equal to 1 for all x ∈ (0, 1]). In addition, the case λ = 0
was completely characterized. The remaining cases for λ ∈ (0, 1] were character-
ized in [FT], where it is shown that for 0 < λ ≤ 1 the equality G(Xn) = {xλ}
happens if and only if

lim
n→∞

xkn

xn
= k

1
λ holds for every k = 1, 2, . . .

For more information in the topic see [SP], [ST] and [GS].

• In this paper, we will show that if there exists a function f ∈ G(Xn) and a se-
quence of indices (nk) such that f = limk→∞ F (Xnk

, x) and (nk) is large in some
sense, then the set G(Xn), as a subset of the metric space (D, �), has a small
diameter.

As corollaries of the general theorem we give several sufficient conditions un-
der which the setG(Xn) is a singleton. We will show that if there exists a function
f ∈ G(Xn) such that the set of indices nk with f = limk→∞ F (Xnk

, x) is suffi-
ciently large then necessarily G(Xn) = {f}. Usually the term “sufficiently large
set” is related to asymptotic density. We will also use another kind of density,
the so called gap density introduced in the paper [GV]. It is defined by

λ(X) = lim sup
n→∞

xn+1

xn
, where X = {x1 < x2, . . .} ⊂ N.

2. Results

The following simple lemma plays the key role in our investigation.

����� 1� Let m < n be positive integers. Then

F (Xn, x) ≥ m

n
F (Xm, x) (2)

for every x ∈ [0, 1].
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P r o o f. Let m < n be positive integers and x ∈ (0, 1). Using the obvious inclu-
sion {

i ≤ m;
xi

xm
< x

}
⊂

{
i ≤ n;

xi

xn
< x

}

calculate

F (Xn, x) =
#{i ≤ n; xi

xn
< x}

n
≥ #{i ≤ m; xi

xm
< x}

m

m

n
=

m

n
F (Xm, x).

�

Recall that the diameter of a set A, a subset of a metric space (X, �), is
defined by

diam A = sup
{
�(a, a′) | a, a′ ∈ A

}
.

Now we are prepared to formulate our general theorem.

����	�� 1� Let X ⊂ N, f ∈ G(Xn) and let J = {j1 < j2 < . . .} ⊂ N

be such that

lim
j∈J

F (Xj , x) = f(x) and λ(J) < ∞.

Then

diamG(Xn) ≤
(
λ(J)− 1

)
√√√√√

1∫
0

f2(x) dx. (3)

P r o o f. Put λ = λ(J) and let g be any function belonging to G(Xn). A simple
compactness argument yields that there exist:

• numbers α and β such that 0 < 1
λ
≤ α ≤ β ≤ 1,

• a subsequence (uk) of the sequence (jn) and

• a sequence of positive integers (vk) with uk < vk < uk+1 for all k ∈ N

suh that

lim
k→∞

uk

uk+1
= α, lim

k→∞
uk

vk
= β and lim

k→∞
F (Xvk

, x) = g(x). (4)

Two applications of Lemma 1, the first one with m = uk, n = vk and the next
one with m = vk, n = uk+1, yield

F (Xvk
, x) ≥ uk

vk
F (Xuk

, x) and F (Xuk+1
, x) ≥ vk

uk+1
F (Xvk

, x),

hence
uk

vk
F (Xuk

, x) ≤ F (Xvk
, x) ≤ uk+1

vk
F (Xuk+1

, x) for all x ∈ [0, 1]. (5)
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Taking a limit in (5), by use of (4) we get

βf(x) ≤ g(x) ≤ β

α
f(x) for all x ∈ [0, 1]. (6)

Consequently,

diam G(Xn) = sup
{
�(g1, g2) | g1, g2 ∈ G(Xn)

} ≤ �

(
βf(x),

β

α
f(x)

)

=

√√√√√
1∫

0

(
β

α
f(x)− βf(x)

)2
dx

=

√√√√√
(
β

α
− β

)2 1∫
0

f2(x) dx ≤ (λ− 1)

√√√√√
1∫

0

f2(x) dx ,

where the last inequality follows from the fact that the function
(
t
α − t

)2
attains

its maximum
(
1
α − 1

)2 ≤ (λ− 1)2 in the interval t ∈ [α, 1] at point t = 1.

�

It is evident, that the preceding theorem is valuable if either λ(J) is not too

much greater than 1, or when the integral
∫ 1

0
f2(x) dx is small 1. Two extremal

cases,
∫ 1

0
f2(x) dx = 0 and λ(J) = 1 will be discussed in the rest of the paper.

First, let us suppose that
∫ 1

0
f2(x) dx = 0. This means that f = c1, where c1

is the distribution function with total jump at 1, i.e., c1(x) = 0 for all x ∈ [0, 1).
The following statement says that if c1 belongs toG(Xn), then the corresponding
subsequence of step distribution functions converging to c1 has arbitrary large
gaps.


	����
�
�� 1� Let X ⊂ N and J ⊂ N be such that limj∈J F (Xj , x) = c1(x).
Then λ(J) = ∞.

P r o o f. Suppose that λ(J) < ∞. Then, by Theorem 1, it would be that

G(Xn) = {c1}.
But, by the result in [ST] characterising all possible singletons G(Xn) and men-
tioned in the Introduction, this happens for no X ⊂ N, a contradiction. �

The extremal case λ(J) = 1 is presented by the next theorem.

1Another possible kind of application of the previous theorem can be the following one. Suppose
that we know G(Xn), i.e., also diamG(Xn) for some X ⊂ N. Then the inequality (3) provides
a lower bound for λ(J) for arbitrary f(x) ∈ G(Xn), in special cases also for f(x) = x.
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����	�� 2� Let X ⊂ N. Then G(Xn) = {f} if and only if there exists a set
J ⊂ N such that

lim
j∈J

F (Xj , x) = f(x) and λ(J) = 1.

P r o o f. The implication ⇒ is evident as limn→∞ F (Xn, x) = f(x). The oppo-
site implication follows from Theorem 1 and the fact that for every subset A
of a metric space diamA = 0 if and only if A is a singleton. �
������� 1� Let k ∈ N and suppose that there exists f ∈ G(Xn) such that
limn→∞ F (Xnk , x) = f . Then G(Xn) = {f}.
����	� 1� Roughly spoken, Theorem 2 says that if there exists a distribution
function in G(Xn) so that it is a limit along a “quite large and regular” set
of indices, then G(Xn) is a singleton.

Now we will introduce two important special cases of the preceding theorem.
For the first one we need the following definition. It was introduced by Pólya
in [Po] in a bit more general context.

���
�
�
�� 1� Let X ⊂ N. The lower and upper Pólya densities of X are
defined by

p(X) = lim
δ→0+

lim inf
n→∞

#
(
X ∩ ((1− δ)n, n]

)
δn

and

p(X) = lim
δ→0+

lim sup
n→∞

#
(
X ∩ ((1− δ)n, n]

)
δn

,

respectively.

����	� 2� It is known [Po] that for every set X of positive integers the fol-
lowing inequalities

0 ≤ p(X) ≤ d(X) ≤ d(X) ≤ p(X) ≤ 1 (7)

hold. In addition, the equality d(X) = d(X) implies the equality p(X) = p(X).

��	����	� 1� Let X ⊂ N be such that there exists a function f ∈ G(Xn) and
a set K ⊂ N with p(K) > 0 so that limk∈K F (Xk, x) = f . Then G(Xn) = {f}.
P r o o f. Let K = {k1 < k2 < · · · }. By Theorem 1 it is sufficient to prove that

limn→∞
kn+1

kn
= 1. Suppose the contrary, i.e., lim supn→∞

kn+1

kn
= h > 1. Choose

any q ∈ ( 1h , 1). Then there exists an increasing sequence (nm) of positive integers

such that
knm−1

knm
< q. Put δ = 1 − q and notice that K ∩ (

(1− δ)knm
, knm

]
= ∅

for every m ∈ N, contradicting p(K) > 0. �
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The next statement follows from the previous one and the last sentence
in Remark 2.

��	����	� 2� Let X ⊂ N be such that there exists a function f ∈ G(Xn) and
a set K ⊂ N with d(K) > 0 so that limk∈K F (Xk, x) = f . Then G(Xn) = {f}.

In the previous corollary “quite large and regular” set of indices (see Re-
mark 1) means that it possesses a positive asymptotic density. One can wonder
what happens if we lose a part of this information, i.e., the set of indices is either
“quite large” or “quite regular”. The first case is discussed in Example 2. In fact,
it says that there are very large sets of indices, with respect to asymptotic den-
sities, such that the convergence along them does not guarantee that G(Xn) is
a singleton. To introduce the example we will need some notation and a simple
lemma. For every γ ∈ [0, 1] let us denote by hγ the distribution function such
that hγ(x) = γ for all x ∈ (0, 1).

����� 2� For every n ∈ N let a finite sequence Tn = (t1 < t2 < · · · < tkn
)

in [0, 1] be given and put Fn(x) = #{i≤kn | ti<x}
kn

. Suppose that there exists a

sequence of non-negaitive integers (mn) with mn ≤ kn and such that

tmn
→ 0, tmn+1 → 1 and

mn

kn
→ γ ∈ [0, 1].

Then Fn(x) → hγ(x) for every x ∈ [0, 1].

P r o o f. The statement of lemma definitely holds for x = 0 and x = 1, thus
suppose that x ∈ (0, 1). Then there exists n0 such that for all n > n0 inequalities
tmn

< x < tmn+1 hold. Thus

Fn(x) =
#{i ≤ kn | ti < x}

kn
=

mn

kn
→ γ.

�
������� 2� For every ε ∈ (0, 1) there exist sets X ⊂ N, K ⊂ N such that

d(K) = 1− ε, d(K) = 1 (8)

and lim
k∈K

F (Xk, x) = h1(x) for almost all x ∈ [0, 1], but

G(Xn) =
{
hγ | γ ∈ [1− ε, 1]

}
,

consequently diamG(Xn) = ε.

P r o o f. First put η = ε
1−ε , i.e., ε =

η
1+η . To construct the example set

J =

∞⋃
n=1

[
n! + 2, (1 + η)n!

) ∩ N and K = N \ J.
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Then for every sufficiently large n

J
(
(1 + η)n!

) ≈
n∑

k=1

ηk! = η

n∑
k=1

k! ≈ ηn!

and consequently,

d(K) = 1− d(J) = 1− lim
n→∞

ηn!

(1 + η)n!
= 1− η

1 + η
= 1− ε.

Similarly,

d(K) = lim
n→∞

K(n!)

n!
= lim

n→∞
n!− η(n− 1)!

n!
= 1

which verifies (8). Now define

xk = k! for all k ∈ K, xj = xj−1 + 1 for all j ∈ J

and let

X = {x1, x2, . . .}.
Notice that

xn ≤ n! holds for every n ∈ N. (9)

Now we show that

lim
k∈K

F (Xk, x) = h1(x) for all x ∈ [0, 1].

Let (kn) be an increasing sequence in K. Then, by (9), for every n all terms
of the block

Xkn
=

(
x1

xkn

,
x2

xkn

, · · · , xkn−1

xkn

,
xkn

xkn

)
,

except the last one are less than or equal to
xkn−1

xkn
≤ (kn−1)!

(kn)!
≤ 1

kn
→ 0.

Using Lemma 2 with mn = kn − 1, giving γ = lim
n→∞

mn

kn
= 1 yields

lim
k∈K

F (Xk, x) = h1(x) for all x ∈ [0, 1].

Now suppose that (jn) is an increasing sequence in J such that there exists

lim
n→∞

F (Xjn , x) for almost all x ∈ [0, 1].

Then, passing to a suitable subsequence, if necessary, we can assume that
there exists an increasing sequence of positive integers (kn) such that

(i) (kn)! < jn ≤ (1 + η)(kn)!

(ii) lim
n→∞

(kn)!
jn

= γ ∈
[

1
1+η , 1

]
.
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For simplicity put Kn = (kn)! and look at the terms of

Xjn =

(
x1

xjn

, · · · , xKn

xjn

,
xKn+1

xjn

, · · · , xjn

xjn

)
.

By definition of sets J and K, the elements Kn and Kn + 1 belong to K, while
Kn + 2 ∈ J . Consequently, for m ≤ Kn we have

xm

xjn

≤ xKn

xjn

≤ (Kn)!

(Kn + 1)!
=

1

Kn + 1
→ 0.

On the other hand, for Kn < m ≤ jn and putting

m−Kn − 1 = a, jn −Kn − 1 = b,

we have
xm

xjn

=
(Kn + 1)! + a

(Kn + 1)! + b
→ 1

as both a and b are less than or equal to

ηKn = o
(
(Kn)!

)
.

Now application of Lemma 2 yields

lim
n→∞F (Xjn , x) → hγ(x) for almost all x ∈ [0, 1].

On the other hand, for each γ ∈ [ 1
1+η , 1] such a sequence (jn) exists, it is sufficient

to put jn = � 1
γn!
. This proves

G(Xn) =
{
hγ | γ ∈ [1− ε, 1]

}
and diamG(Xn) = ε. �

In the context of the previous example, let us note that in [GS] an example
of an increasing sequence of positive integers xn, n = 1, 2, . . . such that there is
given

G(xn) =
{
hα(x); α ∈ [0, 1]

}
.
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