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ABSTRACT. It is known that there is a constant ¢ > 0 such that for every
sequence 1,2, ... in [0,1) we have for the star discrepancy DY, of the first N
elements of the sequence that ND%; > c-log N holds for infinitely many N. Let c*
be the supremum of all such ¢ with this property. We show ¢* > 0.065664679 . . .,
thereby slightly improving the estimates known until now.

Communicated by Werner Georg Nowak

1. Introduction and statement of the result

Let x1,x2,... be a point sequence in [0,1). By D} we denote the star dis-
crepancy of the first N elements of the sequence, i.e.,
An(x
Dy = sup An() ,
z€[0,1] N

where Ay (z) := #{1 < n < N|z, < z}. The sequence x1,zs, ... is uniformly
distributed in [0, 1) if and only if limx_,oc D} = 0.
In 1972 W. M. Schmidt [7] showed that there is a positive constant ¢ such

that for all sequences x1, 2, ... in [0,1) we have
log N
D; : 1
N > C N (1)
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e log N
for infinitely many N. The order =5~

/. log N
N

is best possible. There are many known
sequences for which Dy < ¢ holds for all N with an absolute constant .
For all necessary details on discrepancy and low-discrepancy sequences see the
monographs [2] or [5].

So it makes sense to define the one-dimensional star discrepancy constant c*
to be the supremum over all ¢ such that () holds for all sequences z1,x3,. .. in
[0,1) for infinitely many N. Or, in other words,

.. e NDy (w)

c¢® := inf lim sup

“  N—oo IOgN ’

where the infimum is taken over all sequences w = 1,2, ... 1in [0,1), and where
D3, (w) denotes the star discrepancy of the first N elements of w.

The currently best known estimates for c* are
0.0646363... < c" <0.222...

The upper bound was given by Ostromoukhov [6] (thereby slightly improving
earlier results of Faure (see, for example, [I])). The lower bound was given by
Larcher [3].

It is the aim of this paper to improve the above lower bound for ¢*. That is,
what we prove

THEOREM 1. For the one-dimensional star discrepancy constant we have

¢* > 0.065664679. ..

The idea of the proof follows a method introduced by Liardet [4] which was
also used by Tijdeman and Wagner in [§ and by Larcher in [3].

2. Main ideas and proof of Theorem [1I

We will heavily make use of the idea, the notation, and most of the results
used and obtained in [3]. In this paper we extend the analysis carried out in the
aforementioned paper. In this section we therefore repeat the most important
notation and facts from [3] and explain how we extend the method to prove
Theorem [T

We consider a finite point set P = {z1,x2,...,2x} in [0,1) with N = [a']
for some real a, 3 < a < 3.7, and some t € N. Further, we divide the index-set
A ={1,2,...,N} into index-subsets Ag, A1, Aa, where Ag = {1,2,...,[a’"!]},
Ay ={[a'] = [a'"] +1,...,[a']}, and A; = A\ (4o U A3).
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t 1

For simplicity, let us first of all assume that a' and a'~! are integers
(of course this can only happen if a = 3). For z € [0, 1) we consider the discrep-
ancy function D, (x) := #{i < n|z; < } — nz = A, (z) — nx and we define the
function f(z) := max,ea, Dy () — max,ea, Dn(x).

In [3] it was shown that the function f has the following properties:

(i) f(0)=r(1)=0.

(ii) f is piecewise linear, piecewise monotonically decreasing, and |f| is bounded

by at.

(iii) f is left-continuous and each discontinuity constitutes a positive jump.

(iv) The slope of f is always between —a® and s := —a’~!(a — 2).

(v) If f is continuous on [z, y] then the slope of f(x) and f(y) can differ at most
by a'~1.

(vi) f has discontinuities with a jump of height at least 1 in all points z; with
1€ Ay

Further it was shown in [3] Lemma 2.11] that for given a and ¢ there exists
a function f3, e [0,1] — R satisfying (i)-(vi) for some zy,...,zy (we say
is strongly admissible) such that

1 1
/0|f:mg<x>|dx= min /O|g<x>|dx,

strong
g strongly admissible

and (in [3, Lemma 2.14]) that for every € > 0 and (now arbitrary) a € [3,4] and
t with t > t(e) ) o — 2)(Ba+3)
a— a—+
" de > ——————— —¢.
o |fstrong(x)| T =z 8(1 . 2(1)2 €
Finally, we finished the proof of the Theorem in [3] in the following way:
It was shown that (see Section 3 in [3])

1 1
/ <maXDn(x) mlnDn(x)> dz > t/ |f;;rong(x)| dz
0 0

- - . <(a—2)(8a+3) E)

8(1 — 2a)?
logN [ (a—2)(8a+ 3)
~ Toga | < 8(1 — 2a)2 5)

> 2log N - 0.0646363 . . .

if we choose a = 3.71866... and N large enough. Hence there exist = € [0, 1]

and n < N with
D, (x) > 0.0646363 ... - log N

and Theorem 1.1 from [3] follows.
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To improve the above result from [3] in the present paper we proceed as
follows: We show that f has to satisfy an even more restrictive property (vi’)
instead of property (vi) and we call a function ¢ satisfying (i)—(v) and (vi’)
strictly admissible. Moreover, we show that there exists a strictly admissible
function f%,.: [0,1] = R with

1 1
* dz = i d
/O |fstr1ct (.’IJ)| * g strictlgl;{ilmissible/o |g(x)| *

and

/01 (o) de 2 (120 49+ (a -2 —3)log (1+ 325))

a(a——) <3+(a—2)10g(1+— )

for all @ € (3,3.7) and ¢t > t(¢).

Note that, in the following, we will work with a’ and a'~! as if they were
integers and we will obtain the above result without “—¢” and for all ¢t > ¢
in this case. For working with [a'™!] and [a!] instead of a'~! and a' we then
easily obtain the stated result.

— &

In the very same way as in [3] and as described above we then obtain D, (z) >
0.065664679 ... -log N for some z € [0,1] and n > N by choosing a = 3.62079. ..
Consequently, Theorem [I] follows.

So it remains to prove the two main auxiliary results, namely, that a stronger
property (vi’) for f as well as the lower bound for fo | fiice ()| dz as stated
above hold. This is carried out in the next section. For the proofs of these two
results we will have to use some facts already obtained in [3], again.

3. Proof of the auxiliary results

LEMMA 1. Let j € A, i.e., j = a' —a'~! +k for some integer k, 1 < k < a1,
and assume that f(x) = maxpea, Dy(x) — min,ea, Dy (x) has a discontinuity
in xj. Let further l;, r; € A such that P 0 (x1,,2,,) = {x;}. If there exists an
T € (xj,x,,) such that, inT f has slope s(T) > so—k, then f(x) > f(T)—s0(T—2)
for all z € [x;;,2;). Here, again, so = a'"*(a —2) as defined in property (iv)
above.

REMARK. The meaning of Lemma [l is illustrated in Figure [[I Using the same
notation f(z) lies above the line with slope sy reaching back from the point
(Z, f(Z)) (dashed) in case the slope of f (solid) becomes flatter than sy — k.
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FIGURE 1.

Proof of Lemma [0 Let z, T be like above with s(Z) > sg — k. We set
m; =n;(T) and n; =n;(x)

such that
D5z, (T) = max D, (T) and D, (z)= max D,(z).

nEA; o ne€A;
So
f(@) = Dz, (T) = Dpy(z) and  f(z) = Dp,(z) — Dp,(2).
First we show that ny < j. Indeed, we have

Tt =Ty > T —Te = s(T) > 50—k =—a"(a—2) k.

Thus, 7y < a® —a'~! +k = j.
Since A,, does not change its value in x; for n < j, Dy, does not have a jump
in z;. Consequently, Dz, (T) = Dx,(z) — T2(T — x). This observation yields

Dy, (z) — Dz, (%) 2 Dx,(z) — Dg,(T) = m2(T — z).
By the same argument we additionally obtain
Dny(2) = Dy (T) < Da, (2) = D, (T) = 00(T — ).
Alltogether
f(z) = £(@) = (Dn, (z) — Dry(

> (g — o) (& —

7)) = (Du, (z) = D5, (7))
)

> —s0(T —2)

and the result follows. O
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In addition to the new property of f obtained in Lemma [Il one can easily
convince oneself that f is continuous at 1. This result is not very efficient yet
but nice for calculation purposes.We will use this fact in the following concept
of strict admissibility.

DEFINITION 1. A function g: [0, 1] — R is called strictly admissible if it satisfies
conditions (i)—(v) and the following additional condition (vi).
There exists a set I' = {&1,&2,...,&t—1} C [0,1) such that:

a) If g has a jump in £ then £ € T.

b) There exists aset 'y C T, |I';| = a’~!(a—2), such that f has a jump of height
at least one in each £ € I'y.

c¢) There exist a’~! — 1 further points {€k1 Ehas o3&y b =1 T2 with the
following property: For each 1 < n < a'™! let &, ,&,, € I'U{0,1} such that

r'n(&,,&,) ={&:, }- Now, if there is an T € (&, , &, ) with
s(T) >sp—n (2)

then
9(z) = 9(T) — 50(T — z) (3)

for all z € &, ,&k, ). Here, s(z) denotes the slope of g in .

From the paper [3] and from Lemma [Tl it follows that f is strictly admissible.
The space of strictly admissible functions, again, is obviously closed with respect

to pointwise convergence. Hence, there exists f3 ;. strictly admissible with

1 1 1
[ir@iarz i Cg@)de = [ @)l de
0 g strictly admissible /g 0

We intend to estimate fol | f2 et ()] dz from below. To this end we have to derive

strict
some properties of fJ ;...

LEMMA 2. Let %, ... have a discontinuity in y. Then there exist two zeros a,
B of [t with a <y < [ such that v is the only discontinuity in the interval

(@, B).

Proof. First of all, if 7y is the only point at which fZ ;.. has a jump, the claim is
fulfilled with @ = 0 and 8 = 1. Hence it suffices to show the following statement:

Let fZ ;.. have two successive discontinuities in, say, a; and as, 0 < a1 < az < 1.

Then f .. has a zero in the interval (a;,as).

For contradiction we assume fZ ;.. > 0 on (a1, az2) (the case fJ ;.. < 0 can be

treated quite similarly). In what follows, we will construct a strictly admissible
function f such that
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/01 (@) de < /01 | fotriet (2)] d,

which clearly contradicts the definition of f ;.-

Naturally, we need to take special care in constructing f if either a; € I'y or
as € T's which was defined in Definition [II Moreover, if we manage to preserve
the height of any existing jump in any other case then (vi'b) is automatically
fulfilled for f.

First of all, we notice that f cannot have a bend at, say, y € (a1, a2)

trict
such that the slope before the bend is greater than afterwards. We say fZ ;.. has

a bend in y if fJ ;.. is continuous in y and if it changes its slope in y. Indeed, let
d > 0 such that the slope of fZ ... is constant on [y — 4, y) as well as on (y,y +d].

strict
Then, as can be seen in Figure 2l we may interchange those pieces such that

the resulting function f (solid) remains continuous in [y — 4,y + d]. Tts absolute

integral, however, is smaller than that of fJ . (dashed). Thus, we need only

FIGURE 2.

consider bends where fZ,;.. becomes flatter.

Let now ay ¢ I';. We choose 01 > 0 such that the slope of fZ ;.. is a constant s;
on (az,az + 61). Furthermore, we set

s=min{s"(z): x € (a1,a2 + 1)},

where s* denotes the slope of fJ ., and where we define s*(az) as its left limit.

Now, let 0 < § < min{—2f% ..(a2)/(s1 + s),1}. With this choice of § we have

trict
fs*trict<a2) + 50 > _fs*trict ((lg + 5)

In this case we may thus construct f by moving the discontinuity to ag = az+9.
The missing part of f on the left of as of length § is then chosen such that f

7
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is continuous in as and such that it has constant slope s. This construction is
visualized in Figure Bl (again fJ, ;. is represented by the dashed and f by the
solid line). This choice for the slope guarantees that the height of the jump is
preserved and, additionally, property (vi’c) from Definition [ too, cannot be

violated by this construction if a; € I's.

-

\_.
T B\

FIGURE 3.

Certainly, the same construction also works if as = &, € I'y for a suitable k,
with s* < —a’~1(a — 2) — n between az and the next discontinuity of fJ ...

However, if there is some point x > ay before the next jump of fJ ;.. with
s*(z) > —a*~!(a — 2) — n we have to proceed differently. In this case, we keep

the discontinuity at as and take the smallest such z, call it T. We define

50(T — @) + [inict (T) ifx € [ —0,T),
flx):=¢ s*@(@T -0 —2)+ f(T—9) if x € [a2,T — ),

Sriet() - else,

where 0 > 0 is such that we still have a positive jump in as. Recall that a dis-
continuity always constitutes a positive jump, hence this is possible. Figure @l

shows f (solid) as well as f% ... (dashed) in this case. Notice that, again,

1 1
/ (@) de < / | Frnies (2)] da
0 0

and that (vi'.c) from Definition [ is not violated for ay. Additionally, the condi-
tion on ¢ guarantees that (vi'.c) is not violated for a; if a; € T’y either. Moreover,
we need not take care of the height of the jump in as, since I'y and I's are disjoint.
The dotted line represents the line with slope sy reaching back from {Z, % ;.. (7)}
which occurs in Definition [Tl O

8
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FIGURE 4. FIGURE 5.

Thus, ;¢ consists of parts @), each of which is defined on an interval [«, /]

with fJ . (0) = fi(8) = 0 and such that there is exactly one discontinuity

trict strict

in (o, 8), see Figure bl

In the following we determine the number of such @’s for fZ*

strict*

LeMMA 3. The function f has ezactly a® — 1 discontinuities.

*
strict

Proof. Assume that the total number of discontinuities of f,.; is less than

a' —1. Then, in the following, we will define a strictly admissible function f from
fairiet Whose absolute integral is smaller than that of f ;... Let I'* be the set I'
from property (vi’) for the function fJ ;.-
By assumption there is a £ € I'* such that f3 ;. is continuous in {* The
definition of T'f (i.e., the set I'y for fZ ..) guarantees {* ¢ I'f. Assume that
& €Tl (the case &* e I'§ :==T" \ (I'f UL'S) can be treated quite analogously).
Now choose v € I'* such that fJ ;. has a jump in v. We show that v € I']
and that f% ;. has a jump of height 1 in v (case d) below). Indeed, & priori we

are in one of the following four cases:

*

a) v €Iy,

b) v €T3,

c) v € I'f with a jump of height greater than 1, or

d) v € T'f with a jump of height exactly equal to 1 in ~.

Assume that v € I'5 (case b). By Lemma [ « is isolated by two successive

zeros of f% ... Hence @) from property (vi’) cannot hold, and therefore (2I)

from the same property does not hold either. Consequently, (see Fig. ) we can

9
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take a point € on the left of 4 and insert a short piece of minimal slope on [é v)
without interferring with property (vi'c). Again, the dashed line represents fJ;.,

and the solid one the resulting new function f The new set I is the set I'* with
&* replaced by f .

a\§\7 3

-~
-~
-~

FIGURE 6.

This construction also works for case a) in the same way, and, with some
special care, i.e., the jump of f in v maintains a height of at least one, for the
case ¢) too.

Consequently, f% ... can only have the a’~!(a—2) jumps at the positions given
by I'j. All these jumps have height exactly equal to one and there are absolutely
no further jumps. Obviously, f%,;.; cannot have slope —a’ everywhere, since then

0> at_l(a - 2) - at = f:trict<]')7
a contradiction to property (i). Thus, there exists an interval [d1, 02| such that
F e > 0 (or fi .. <0)on [d1,ds] and its slope is greater than —a’. We choose
§’ € (01, 62) sufficiently close to d; (or to d2) and define

n _ btrlCt(él) (.%' - 51) ifz e (617 6/]7
f<l‘) B { strict (.%') else?
N fioy = { o)==ty a6
a s*trict (:E) else,
respectively. See Figures [1 and
d

From the above results we obtain that fJ ;.. has to be of the following form:
It divides [0, 1) into a® — 1 parts [a, B) with [ . (@) = fi..(8) =0, and fZ .
has exactly one discontinuity v € («, ). We say that [« () is of type Q; if v € '}
fori=0,1,2.

10
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L L L

01 o’ 02

FIGURE 7. Case f% .. >0 on [01,02] FIGURE 8. Case f% ... <0 on [1, 2]

strict strict

From [3], the equation (2), we know that, for an interval of type the Qg

(this corresponds to the type Q" in the abovementioned paper), we have
B t—1
. a*”Ha—2)
/ |fstrict<‘r>| dZEZXZ 4 ) X:ﬁ_aa
(0%
and from [3 Lemma 2.12] and the considerations following the proof of this
lemma we know that for an interval of type @1 (this corresponds to the type Q'
in the abovementioned paper) we have
t—1

B 4 — aqt—
x X a X
/ |fstrict(x)| d.’IJZ ( 16 )7 X:B—a
[e%
Moreover, we know from [3, Lemma 2.10] that for fZ ;.. all a’~! intervals Qg
have the same length and all a’ — 2a’~! intervals Q; have the same length.

LEMMA 4. For1 <n <a' ! —1 let Qén) be given by the interval (o, 8). Then

we have
2150[(n + [s0])
2(n + 2|so|)

[ i)l do = (3= )

Q3

Proof. This follows from the remark preceeding Lemma [ and simple calcula-

tions. (Il
To finish the proof of our theorem we finally show:

LEMMA 5. For all 3 < a < 3.7 we have

(a—2) (12a—|—9—|— (a — 2)(4a — 3) log
+

16 (a — %)2 (3+(a72)10g (1

/N

)}

1
a—2

1
/0 i) d >

N—

11
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Proof. Due to Lemma M and the remarks preceeding it we have to minimize
the right hand-side of

1 t—1 t—1
f2 4_
/ @l de a2 Y@= e, gy xa(mdT)
0 4 16
at7 —1
(n)\? |50l(n + |so])
DI R
n; X2 ) a1 2s0))

x1(4—a""tx1)

= a7t Ay +at N a—-2) - 16

a' -1 2
+ > ()
n=1

with respect to Xo,X1,Xén) > 0 (these quantities denote the lengths of the

intervals Qq, @1, én)) under the constraint

at=1_1

a'txo+a'” 1(a—2X1+Z =1

n=1
The Lagrangian approach immediately implies

Agxo = flnxg") forall 1 <n<a'"'.

The constraint therefore yields
1—a"Ya—-2)x1
at 1 + Zat 1_1q A

Xo =

Moreover, the denominator in the above equation simplifies to
at=1_1 A at=1_1
at—1 410 t—1
+ =a + —
Z Z < \So\ + n))

T —14|so

a
_ 1 EN
=20t -1 2 § 1- ==

n=|so|+1
at =t —14|s|

- 1
=3 3a"™" — 1+ |so Z -

n=|so|+1

12
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The latter sum can be bounded by log(1+41/(a—2)) from above. We summarize
our intermediate findings and obtain
Lo (a=2) (1= aa—2n)°
/ |fstrict<‘r)|dx > ( 1 )
0 2(3+ (- 2)log (1+55))

x1(4—a"""x1)

+a""a—2) 16

=:p(x1)-

Now, our goal is to minimize the function p. We immediately see that p is a
polynomial of degree two and its leading coefficient is positive for all 3 < a < 3.7.
Thus, it attains its minimum at its only critical point

. 2(4a—11—(a—2)1og(1+a—£2))

Xerit = @&~ .
20+ Sa(a —4) - (0 — 2) log (1 + %)

On the other hand, from the proof of Lemma 2.13 in [3] we know that we have

the following bounds for x

al—t al—t
Xmin ‘= T <x1< 7.
a — b} a — b}

We will show that xerit < Xmin- Indeed, it can easily be verified that the denom-
inator of Xt is positive. Thus, Xcrit > Xmin if and only if

0>3a9(a1)(a2)log<1+ﬁ> =: q(a).

We observe that ¢(3.7) < 0 and, additionally, that ¢’(a) > 0 for all a € (3, 3.7].

Hence
al—t
X1 =
3

and by inserting this value into the function p the result follows.
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