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ABSTRACT. It is known that there is a constant c > 0 such that for every
sequence x1, x2, . . . in [0, 1) we have for the star discrepancy D∗

N of the first N

elements of the sequence that ND∗
N ≥ c· logN holds for infinitely many N . Let c∗

be the supremum of all such c with this property. We show c∗ > 0.065664679 . . . ,
thereby slightly improving the estimates known until now.

Communicated by Werner Georg Nowak

1. Introduction and statement of the result

Let x1, x2, . . . be a point sequence in [0, 1). By D∗
N we denote the star dis-

crepancy of the first N elements of the sequence, i.e.,

D∗
N = sup

x∈[0,1]

∣∣∣∣AN (x)

N
− x

∣∣∣∣ ,
where AN (x) := #{1 ≤ n ≤ N |xn < x}. The sequence x1, x2, . . . is uniformly
distributed in [0, 1) if and only if limN→∞ D∗

N = 0.

In 1972 W. M. Schmidt [7] showed that there is a positive constant c such
that for all sequences x1, x2, . . . in [0, 1) we have

D∗
N > c · logN

N
(1)
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for infinitely many N . The order logN
N is best possible. There are many known

sequences for which D∗
N ≤ c′ · logN

N holds for all N with an absolute constant c′.
For all necessary details on discrepancy and low-discrepancy sequences see the
monographs [2] or [5].

So it makes sense to define the one-dimensional star discrepancy constant c∗

to be the supremum over all c such that (1) holds for all sequences x1, x2, . . . in
[0, 1) for infinitely many N . Or, in other words,

c∗ := inf
ω

lim sup
N→∞

ND∗
N (ω)

logN
,

where the infimum is taken over all sequences ω = x1, x2, . . . in [0, 1), and where
D∗

N (ω) denotes the star discrepancy of the first N elements of ω.

The currently best known estimates for c∗ are

0.0646363 . . .≤ c∗ ≤ 0.222 . . .

The upper bound was given by Ostromoukhov [6] (thereby slightly improving
earlier results of Faure (see, for example, [1])). The lower bound was given by
Larcher [3].

It is the aim of this paper to improve the above lower bound for c∗. That is,
what we prove

������� 1� For the one-dimensional star discrepancy constant we have

c∗ ≥ 0.065664679 . . .

The idea of the proof follows a method introduced by Liardet [4] which was
also used by Tijdeman and Wagner in [8] and by Larcher in [3].

2. Main ideas and proof of Theorem 1

We will heavily make use of the idea, the notation, and most of the results
used and obtained in [3]. In this paper we extend the analysis carried out in the
aforementioned paper. In this section we therefore repeat the most important
notation and facts from [3] and explain how we extend the method to prove
Theorem 1.

We consider a finite point set P = {x1, x2, . . . , xN} in [0, 1) with N = [at]
for some real a, 3 ≤ a ≤ 3.7, and some t ∈ N. Further, we divide the index-set
A = {1, 2, . . . , N} into index-subsets A0, A1, A2, where A0 = {1, 2, . . . , [at−1]},
A2 = {[at]− [at−1] + 1, . . . , [at]}, and A1 = A \ (A0 ∪A2).

2



STAR DISCREPANCY OF SEQUENCES

For simplicity, let us first of all assume that at and at−1 are integers
(of course this can only happen if a = 3). For x ∈ [0, 1) we consider the discrep-
ancy function Dn(x) := #{i ≤ n|xi < x} − nx = An(x)− nx and we define the
function f(x) := maxn∈A2

Dn(x)−maxn∈A0
Dn(x).

In [3] it was shown that the function f has the following properties:

(i) f(0) = f(1) = 0.

(ii) f is piecewise linear, piecewise monotonically decreasing, and |f | is bounded
by at.

(iii) f is left-continuous and each discontinuity constitutes a positive jump.

(iv) The slope of f is always between −at and s0 := −at−1(a− 2).

(v) If f is continuous on [x, y] then the slope of f(x) and f(y) can differ at most
by at−1.

(vi) f has discontinuities with a jump of height at least 1 in all points xi with
i ∈ A1.

Further it was shown in [3, Lemma 2.11] that for given a and t there exists
a function f∗

strong : [0, 1] → R satisfying (i)–(vi) for some x1, . . . , xN (we say
f∗
strong is strongly admissible) such that∫ 1

0

∣∣f∗
strong(x)

∣∣ dx = min
g strongly admissible

∫ 1

0

|g(x)| dx,

and (in [3, Lemma 2.14]) that for every ε > 0 and (now arbitrary) a ∈ [3, 4] and
t with t ≥ t(ε) ∫ 1

0

|f∗
strong(x)| dx ≥ (a− 2)(8a+ 3)

8(1− 2a)2
− ε.

Finally, we finished the proof of the Theorem in [3] in the following way:

It was shown that (see Section 3 in [3])∫ 1

0

(
max
n∈A

Dn(x)− min
n∈A

Dn(x)

)
dx ≥ t

∫ 1

0

∣∣f∗
strong(x)

∣∣ dx
≥ t

(
(a− 2)(8a+ 3)

8(1− 2a)2
− ε

)

≥ logN

log a
·
(
(a− 2)(8a+ 3)

8(1− 2a)2
− ε

)

≥ 2 logN · 0.0646363 . . .
if we choose a = 3.71866 . . . and N large enough. Hence there exist x ∈ [0, 1]
and n ≤ N with

Dn(x) ≥ 0.0646363 . . . · logN
and Theorem 1.1 from [3] follows.
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To improve the above result from [3] in the present paper we proceed as
follows: We show that f has to satisfy an even more restrictive property (vi′)
instead of property (vi) and we call a function g satisfying (i)–(v) and (vi′)
strictly admissible. Moreover, we show that there exists a strictly admissible
function f∗

strict : [0, 1] → R with∫ 1

0

|f∗
strict(x)| dx = min

g strictly admissible

∫ 1

0

|g(x)| dx
and∫ 1

0

|f∗
strict(x)| dx ≥

(a− 2)
(
12a+ 9 + (a− 2)(4a− 3) log

(
1 + 1

a−2

))

a
(
a− 1

2

)2 (
3 + (a− 2) log

(
1 + 1

a−2

)) − ε

for all a ∈ (3, 3.7] and t ≥ t(ε).

Note that, in the following, we will work with at and at−1 as if they were
integers and we will obtain the above result without “−ε” and for all t ≥ t0
in this case. For working with [at−1] and [at] instead of at−1 and at we then
easily obtain the stated result.

In the very same way as in [3] and as described above we then obtain Dn(x) ≥
0.065664679 . . . · logN for some x ∈ [0, 1] and n ≥ N by choosing a = 3.62079 . . .
Consequently, Theorem 1 follows.

So it remains to prove the two main auxiliary results, namely, that a stronger

property (vi′) for f as well as the lower bound for
∫ 1

0
|f∗

strict(x)| dx as stated
above hold. This is carried out in the next section. For the proofs of these two
results we will have to use some facts already obtained in [3], again.

3. Proof of the auxiliary results

����	 1� Let j ∈ A2, i.e., j = at − at−1 + k for some integer k, 1 ≤ k < at−1,
and assume that f(x) = maxn∈A2

Dn(x) − minn∈A0
Dn(x) has a discontinuity

in xj . Let further lj , rj ∈ A such that P ∩ (xlj , xrj ) = {xj}. If there exists an
x ∈ (xj , xrj ) such that, in x f has slope s(x) > s0−k, then f(x) ≥ f(x)−s0(x−x)

for all x ∈ [xlj , xj). Here, again, s0 = at−1(a − 2) as defined in property (iv)
above.


��	��� The meaning of Lemma 1 is illustrated in Figure 1. Using the same
notation f(x) lies above the line with slope s0 reaching back from the point
(x, f(x)) (dashed) in case the slope of f (solid) becomes flatter than s0 − k.
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xlj x xj x xrj

Figure 1.

P r o o f o f L e mm a 1. Let x, x be like above with s(x) > s0 − k. We set

ni = ni(x) and ni = ni(x)

such that

Dni
(x) = max

n∈Ai

Dn(x) and Dni
(x) = max

n∈Ai

Dn(x).

So

f(x) = Dn2
(x)−Dn0

(x) and f(x) = Dn2
(x)−Dn0

(x).

First we show that n2 < j. Indeed, we have

at−1 − n2 ≥ n0 − n2 = s(x) > s0 − k = −at−1(a− 2)− k.

Thus, n2 < at − at−1 + k = j.

Since An does not change its value in xj for n < j, Dn2
does not have a jump

in xj. Consequently, Dn2
(x) = Dn2

(x)− n2(x− x). This observation yields

Dn2
(x)−Dn2

(x) ≥ Dn2
(x)−Dn2

(x) = n2(x− x).

By the same argument we additionally obtain

Dn0
(x)−Dn0

(x) ≤ Dn0
(x)−Dn0

(x) = n0(x− x).

Alltogether

f(x)− f(x) =
(
Dn2

(x)−Dn2
(x)

)− (
Dn0

(x)−Dn0
(x)

)
≥ (n2 − n0)(x− x) ≥ −s0(x− x)

and the result follows. �
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In addition to the new property of f obtained in Lemma 1 one can easily
convince oneself that f is continuous at x1. This result is not very efficient yet
but nice for calculation purposes.We will use this fact in the following concept
of strict admissibility.

��
������� 1� A function g : [0, 1] → R is called strictly admissible if it satisfies
conditions (i)–(v) and the following additional condition (vi′).
There exists a set Γ = {ξ1, ξ2, . . . , ξat−1} ⊂ [0, 1) such that:

a) If g has a jump in ξ then ξ ∈ Γ.

b) There exists a set Γ1 ⊂ Γ, |Γ1| = at−1(a−2), such that f has a jump of height
at least one in each ξ ∈ Γ1.

c) There exist at−1 − 1 further points {ξk1
, ξk2

, . . . , ξkat−1−1
} =: Γ2 with the

following property: For each 1 ≤ n < at−1 let ξln , ξrn ∈ Γ ∪ {0, 1} such that

Γ ∩ (ξln , ξrn) = {ξkn
}. Now, if there is an x ∈ (ξlk , ξrk) with

s(x) > s0 − n (2)

then
g(x) ≥ g(x)− s0(x− x) (3)

for all x ∈ [ξln , ξkn
). Here, s(x) denotes the slope of g in x.

From the paper [3] and from Lemma 1 it follows that f is strictly admissible.
The space of strictly admissible functions, again, is obviously closed with respect
to pointwise convergence. Hence, there exists f∗

strict strictly admissible with∫ 1

0

|f(x)| dx ≥ min
g strictly admissible

∫ 1

0

|g(x)| dx =

∫ 1

0

|f∗
strict(x)| dx.

We intend to estimate
∫ 1

0
|f∗

strict(x)| dx from below. To this end we have to derive
some properties of f∗

strict.

����	 2� Let f∗
strict have a discontinuity in γ. Then there exist two zeros α,

β of f∗
strict with α < γ < β such that γ is the only discontinuity in the interval

(α, β).

P r o o f. First of all, if γ is the only point at which f∗
strict has a jump, the claim is

fulfilled with α = 0 and β = 1. Hence it suffices to show the following statement:
Let f∗

strict have two successive discontinuities in, say, a1 and a2, 0 < a1 < a2 < 1.
Then f∗

strict has a zero in the interval (a1, a2).

For contradiction we assume f∗
strict > 0 on (a1, a2) (the case f

∗
strict < 0 can be

treated quite similarly). In what follows, we will construct a strictly admissible

function f̃ such that
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∫ 1

0

|f̃(x)| dx <

∫ 1

0

|f∗
strict(x)| dx,

which clearly contradicts the definition of f∗
strict.

Naturally, we need to take special care in constructing f̃ if either a1 ∈ Γ2 or
a2 ∈ Γ2 which was defined in Definition 1. Moreover, if we manage to preserve
the height of any existing jump in any other case then (vi′.b) is automatically

fulfilled for f̃ .

First of all, we notice that f∗
strict cannot have a bend at, say, y ∈ (a1, a2)

such that the slope before the bend is greater than afterwards. We say f∗
strict has

a bend in y if f∗
strict is continuous in y and if it changes its slope in y. Indeed, let

δ > 0 such that the slope of f∗
strict is constant on [y−δ, y) as well as on (y, y+δ].

Then, as can be seen in Figure 2, we may interchange those pieces such that
the resulting function f̃ (solid) remains continuous in [y − δ, y + δ]. Its absolute
integral, however, is smaller than that of f∗

strict (dashed). Thus, we need only

Figure 2.

y − δ y δ + y

consider bends where f∗
strict becomes flatter.

Let now a2 /∈ Γ2. We choose δ1 > 0 such that the slope of f∗
strict is a constant s1

on (a2, a2 + δ1). Furthermore, we set

s = min {s∗(x) : x ∈ (a1, a2 + δ1)} ,
where s∗ denotes the slope of f∗

strict and where we define s∗(a2) as its left limit.
Now, let 0 < δ ≤ min{−2f∗

strict(a2)/(s1 + s), δ1}. With this choice of δ we have

f∗
strict(a2) + sδ > −f∗

strict(a2 + δ).

In this case we may thus construct f̃ by moving the discontinuity to ã2 = a2+δ.
The missing part of f̃ on the left of ã2 of length δ is then chosen such that f̃

7
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is continuous in a2 and such that it has constant slope s. This construction is
visualized in Figure 3 (again f∗

strict is represented by the dashed and f̃ by the
solid line). This choice for the slope guarantees that the height of the jump is
preserved and, additionally, property (vi′.c) from Definition 1, too, cannot be
violated by this construction if a1 ∈ Γ2.

a1 a2

Figure 3.

Certainly, the same construction also works if a2 = ξkn
∈ Γ2 for a suitable kn

with s∗ ≤ −at−1(a− 2)− n between a2 and the next discontinuity of f∗
strict.

However, if there is some point x > a2 before the next jump of f∗
strict with

s∗(x) > −at−1(a − 2) − n we have to proceed differently. In this case, we keep
the discontinuity at a2 and take the smallest such x, call it x. We define

f̃(x) :=

⎧⎨
⎩

s0(x− x) + f∗
strict(x) if x ∈ [x− δ, x),

s∗(x)(x− δ − x) + f̃(x− δ) if x ∈ [a2, x− δ),
f∗
strict(x) else,

where δ > 0 is such that we still have a positive jump in a2. Recall that a dis-
continuity always constitutes a positive jump, hence this is possible. Figure 4
shows f̃ (solid) as well as f∗

strict (dashed) in this case. Notice that, again,

∫ 1

0

|f̃(x)| dx <

∫ 1

0

|f∗
strict(x)| dx

and that (vi′.c) from Definition 1 is not violated for a2. Additionally, the condi-
tion on δ guarantees that (vi′.c) is not violated for a1 if a1 ∈ Γ2 either. Moreover,
we need not take care of the height of the jump in a2, since Γ1 and Γ2 are disjoint.
The dotted line represents the line with slope s0 reaching back from {x, f∗

strict(x)}
which occurs in Definition 1. �
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a1 a2 x

Figure 4.

α β

Figure 5.

Thus, f∗
strict consists of parts Q, each of which is defined on an interval [α, β]

with f∗
strict(α) = f∗

strict(β) = 0 and such that there is exactly one discontinuity
in (α, β), see Figure 5.

In the following we determine the number of such Q’s for f∗
strict.

����	 3� The function f∗
strict has exactly at − 1 discontinuities.

P r o o f. Assume that the total number of discontinuities of f∗
strict is less than

at−1. Then, in the following, we will define a strictly admissible function f̃ from
f∗
strict whose absolute integral is smaller than that of f∗

strict. Let Γ
∗ be the set Γ

from property (vi′) for the function f∗
strict.

By assumption there is a ξ∗ ∈ Γ∗ such that f∗
strict is continuous in ξ∗. The

definition of Γ∗
1 (i.e., the set Γ1 for f∗

strict) guarantees ξ∗ /∈ Γ∗
1. Assume that

ξ∗ ∈ Γ∗
2 (the case ξ∗ ∈ Γ∗

0 := Γ∗ \ (Γ∗
1 ∪ Γ∗

2) can be treated quite analogously).

Now choose γ ∈ Γ∗ such that f∗
strict has a jump in γ. We show that γ ∈ Γ∗

1

and that f∗
strict has a jump of height 1 in γ (case d) below). Indeed, à priori we

are in one of the following four cases:

a) γ ∈ Γ∗
0,

b) γ ∈ Γ∗
2,

c) γ ∈ Γ∗
1 with a jump of height greater than 1, or

d) γ ∈ Γ∗
1 with a jump of height exactly equal to 1 in γ.

Assume that γ ∈ Γ∗
2 (case b). By Lemma 2 γ is isolated by two successive

zeros of f∗
strict. Hence (3) from property (vi′) cannot hold, and therefore (2)

from the same property does not hold either. Consequently, (see Fig. 6) we can

9
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take a point ξ̃ on the left of γ and insert a short piece of minimal slope on [ξ̃, γ)
without interferring with property (vi′.c). Again, the dashed line represents f∗

strict

and the solid one the resulting new function f̃ . The new set Γ̃ is the set Γ∗ with
ξ∗ replaced by ξ̃.

Figure 6.

α ξ̃ γ β

This construction also works for case a) in the same way, and, with some

special care, i.e., the jump of f̃ in γ maintains a height of at least one, for the
case c) too.

Consequently, f∗
strict can only have the at−1(a−2) jumps at the positions given

by Γ∗
1. All these jumps have height exactly equal to one and there are absolutely

no further jumps. Obviously, f∗
strict cannot have slope −at everywhere, since then

0 > at−1(a− 2)− at = f∗
strict(1),

a contradiction to property (i). Thus, there exists an interval [δ1, δ2] such that
f∗
strict > 0 (or f∗

strict < 0) on [δ1, δ2] and its slope is greater than −at. We choose
δ′ ∈ (δ1, δ2) sufficiently close to δ1 (or to δ2) and define

f̃(x) =

{
f∗
strict(δ1)− at(x− δ1) if x ∈ (δ1, δ

′],
f∗
strict(x) else,

or

f̃(x) =

{
f∗
strict(δ2)− at(x− δ2) if x ∈ (δ′, δ2],

f∗
strict(x) else,

respectively. See Figures 7 and 8.

�

From the above results we obtain that f∗
strict has to be of the following form:

It divides [0, 1) into at − 1 parts [α, β) with f∗
strict(α) = f∗

strict(β) = 0, and f∗
strict

has exactly one discontinuity γ ∈ (α, β). We say that [α, β) is of type Qi if γ ∈ Γ∗
i

for i = 0, 1, 2.
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Figure 7. Case f∗
strict > 0 on [δ1, δ2]

δ1 δ′ δ2

Figure 8. Case f∗
strict < 0 on [δ1, δ2]

δ1 δ′ δ2

From [3], the equation (2), we know that, for an interval of type the Q0

(this corresponds to the type Q′′ in the abovementioned paper), we have∫ β

α

|f∗
strict(x)| dx ≥ χ2 at−1(a− 2)

4
, χ = β − α,

and from [3, Lemma 2.12] and the considerations following the proof of this
lemma we know that for an interval of type Q1 (this corresponds to the type Q′

in the abovementioned paper) we have∫ β

α

|f∗
strict(x)| dx ≥ χ

(
4− at−1χ

)
16

, χ = β − α.

Moreover, we know from [3, Lemma 2.10] that for f∗
strict all at−1 intervals Q0

have the same length and all at − 2at−1 intervals Q1 have the same length.

����	 4� For 1 ≤ n ≤ at−1 − 1 let Q
(n)
2 be given by the interval [α, β). Then

we have ∫
Q

(n)
2

|f∗
strict(x)| dx ≥ (β − α)2

|s0|(n+ |s0|)
2(n+ 2|s0|) .

P r o o f. This follows from the remark preceeding Lemma 4 and simple calcula-
tions. �

To finish the proof of our theorem we finally show:

����	 5� For all 3 ≤ a ≤ 3.7 we have

∫ 1

0

|f∗
strict(x)| dx ≥

(a− 2)
(
12a+ 9 + (a− 2)(4a− 3) log

(
1 + 1

a−2

))

16
(
a− 1

2

)2 (
3 + (a− 2) log

(
1 + 1

a−2

)) .
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P r o o f. Due to Lemma 4 and the remarks preceeding it we have to minimize
the right hand-side of

∫ 1

0

|f∗
strict(x)| dx ≥ at−1 · χ2

0

at−1(a− 2)

4
+ at−1(a− 2) · χ1

(
4− at−1χ1

)
16

+

at−1−1∑
n=1

(
χ
(n)
2

)2 |s0|(n+ |s0|)
2(n+ 2|s0|)

=: at−1 · χ2
0Ã0 + at−1(a− 2) · χ1

(
4− at−1χ1

)
16

+

at−1−1∑
n=1

(
χ
(n)
2

)2

Ãn

with respect to χ0, χ1, χ
(n)
2 ≥ 0 (these quantities denote the lengths of the

intervals Q0, Q1, Q
(n)
2 ) under the constraint

at−1χ0 + at−1(a− 2)χ1 +

at−1−1∑
n=1

χ
(n)
2 = 1.

The Lagrangian approach immediately implies

Ã0χ0 = Ãnχ
(n)
2 for all 1 ≤ n < at−1.

The constraint therefore yields

χ0 =
1− at−1(a− 2)χ1

at−1 +
∑at−1−1

n=1
Ã0

Ãn

.

Moreover, the denominator in the above equation simplifies to

at−1 +

at−1−1∑
n=1

Ã0

Ãn

= at−1 +

at−1−1∑
n=1

(
1− n

2(|s0|+ n)

)

= 2at−1 − 1− 1

2

at−1−1+|s0|∑
n=|s0|+1

(
1− |s0|

n

)

=
1

2

⎛
⎝3at−1 − 1 + |s0|

at−1−1+|s0|∑
n=|s0|+1

1

n

⎞
⎠ .
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The latter sum can be bounded by log(1+1/(a−2)) from above. We summarize
our intermediate findings and obtain

∫ 1

0

|f∗
strict(x)| dx ≥ (a− 2)

(
1− at−1(a− 2)χ1

)2
2
(
3 + (a− 2) log

(
1 + 1

a−2

))

+ at−1(a− 2)
χ1(4− at−1χ1)

16
=: p(χ1).

Now, our goal is to minimize the function p. We immediately see that p is a
polynomial of degree two and its leading coefficient is positive for all 3 < a ≤ 3.7.
Thus, it attains its minimum at its only critical point

χcrit = a1−t
2
(
4a− 11− (a− 2) log

(
1 + 1

a−2

))

29 + 8a(a− 4)− (a− 2) log
(
1 + 1

a−2

) .

On the other hand, from the proof of Lemma 2.13 in [3] we know that we have
the following bounds for χ1

χmin :=
a1−t

a− 1
2

≤ χ1 ≤ a1−t

a− 3
2

.

We will show that χcrit ≤ χmin. Indeed, it can easily be verified that the denom-
inator of χcrit is positive. Thus, χcrit > χmin if and only if

0 > 3a− 9− (a− 1)(a− 2) log

(
1 +

1

a− 2

)
=: q(a).

We observe that q(3.7) < 0 and, additionally, that q′(a) > 0 for all a ∈ (3, 3.7].
Hence

χ1 =
a1−t

a− 1
2

and by inserting this value into the function p the result follows. �
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