Phytotoxicological Tests - Applications of Foils Based on Graphene (Graphene Oxide)

Open access

Abstract

This paper discusses the problematics of phytotoxicity of chemicals. It mainly focuses on the phytotoxicity of nanomaterials made of graphene. It describes phytotoxicological tests performed with foils from materials belonging to the graphene family. It also describes testing the influence of plants on these films. Furthermore, the paper discusses the issues of mutual influence between plants and tested nanomaterials.

AGHARKAR, M.; KOCHREKAR, S.; HIDOURI, S.; AZEEZ, M.A. (2014).: Trends in green reduction of graphene oxides, issues and challenges: a review. Material Research Bulletin (59). p. 323-328.

AHMED, F.; RODRIGUES, D.F. (2013).: Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J Hazard Mater. p. 256-257:3-39.

AL-MARRI, A.H.; KHAN, M.; KHAN, M.; ADIL, S.F.; AL-WARTHAN, A.; ALKHATHLAN, H.Z.; TREMEL, W.; LABIS, J.P.; SIDIQUI, M.R.H.; TAHIR, M.N. (2015).: Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites. Int. J. Mol. Sci. 16. p. 1131-1142.

AN, J.; GOU, Y.; YANG, C. et al. (2013).: Synthesis of biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater SciEng C Mater BiolApplic. (33), p. 2827-2837.

ANJUM, N.A.; SINGHT, N.; SINGHT, M.K.; SAYEED, I.; DUARTE, A.C.; PEREIRA, E.; AHMAD, I. (2014).: Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Science of the Total Environment, Vol. 472, p. 834-841.

ASLANI, F.; BAGHERI, S.; MUHD, JULKAPLI, N.; JURAIMI, A.S.; HASHEMI, F.S.; BAGHDADI, A. (2014).: Effects of engineered nanomaterials on plants growth: an overview. Scientific World Journal. 2014: 641759. doi: 10.1155/2014/641759.

BEGUM, P.; IKHTIARI, R.; FUGETSU, B. (2011).: Graphene phytotoxicity in the seedling stage of cabbage tomato, red spinach and lettuce. Carbon. Vol. 49, I: 12, p. 3907-3919.

BO, Z.; SHUAI, X.; MAO, S.; YANG, H.; QIAN, J.; CHEN, J.; YAN, J.; CEN, K. (2014).: Green preparation of reduced graphene oxide for sensing and energy storage applications. Scientific reports 4, 4684.

ČR (2007 a).: Metodický pokyn odboru odpadů ke stanovení ekotoxicity odpadů. [Methodical instruction of Waste Department to determine the ecotoxicity of waste.] Věstník Ministerstva životního prostředí, ročník XVII, částka 4. (in Czech)

ČR (2007 b).: ČSN EN 14735 - Charakterizace odpadů - Příprava vzorků odpadu pro testy ekotoxicity [Characterization of waste - Preparation of waste samples for ecotoxicity tests]. (in Czech)

DIXIT, P.; GHASKADBI, S.; MOHAN, H.; DEVASAGAYAM, T.P. (2005).: Antioxidant properties of germinated fenugreek seeds. Phytother Res. 19(11), p. 977-983.

FLETCHER, J.S.; RATSCH, H.C. (1991).: Plant tier testing: A workshop to evaluate non target plant testing in Subdivisions. J.Pesticide Guidelines. EPA/600/9-91/041. Corvalis, OR.

FRIEDRICHOVÁ, R.; KLOUDA, K.; WEISHEITELOVÁ, M.; ROUPCOVÁ, P. (2016).: Tepelná stabilita biocharu a jeho modifikovaných verzí [Thermal Stability of Biochar and its Modifications], In: Fire protection 2016: Transactions of the contributions of the international conference. Ostrava: SPBI, 2016, p-76-85. ISBN 987-80-7385-177-4. (in Czech)

GEMBALOVÁ, L.; KLOUDA, K.; ROUPCOVÁ, P.; RUSÍN, J.; PRYSZCZ, A.; WEISHEITELOVÁ, M. (2016).: Biochar- ekologický product a jeho uplatnění v ochraně životního prostředí. [Biochar- ecological Product and its Application in Environmental Protection], In: Civil protection-Medical Rescue Work in Protection of population 2016: Transactions of the contributions of the international conference. Ostrava: SPBI, 2016, p. 24-31. ISBN 978-80-73-85-171-2. (in Czech)

GOVRIN, E.M.; LEVINE, A. (2000).: The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol. 10(13), p. 751-757.

GUO, X.; MEI, N. (2014).: Assessment of the toxic potential of graphene family nanomaterials. JFDA: 22, p. 105-115.

GURUNATHAN, S.; HAN, J.W.; PARK, J.H.; EPPAKAYALA, V.; KIM, J.H. (2014).: Ginkgo biloba: a natural reducing agent for synthesis of cytocompatible graphene. Int J Nanomedicine. 9. p. 363-377.

HAIGHIGHI, B.; TABRIZI, M.A. (2013).: Green synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Adv. 3, p. 13365-13371.

HEATH, M.C. (2000).: Hypersensitive response-related death. Plant Mol. Biol. 44(3), p. 321-333.

JASTRZEBSKA, A.M.; OLSZYNA, A.R. (2015).: The ecotoxicity of graphene family materials: current status, knowledge gaps and future needs, J Nanopart Res. 17:40.

KU, S.H.; LEE, M.; PARK, C.B. (2013).: Carbon-based Nanomaterials for Tissue Engineering. Adv. Healthcare Mater. 2, p. 244-260.

KUILA, T.; BOSE, S.; KHANRA, P.; A. MISHRA, K.; KIM, N.H.; LEE, J.H. (2012).: A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50, p. 914-921.

LI, H.; FIERENS, K.; ZHANG, Z.; VANPARIJS, N.; SCHUIJS, M.J.; VANSTEENDAM, K.; GRACIA, N.F.; RYCKE, R.D.; BEER, T.D.; BEUCKELAER, A.D.; KOKER, S.D.; DEFORCE, D.; ALBERTAZZI, L.; GROTEN, J.; LAMBRECHT, B.N.; GEEST, B-G.D. (2016).: Spontaneous Protein Adsorption on Graphene Oxide Nanosheets Allowing Efficient Intracellular Vaccine Protein Delivery. Appl. Mater. Interfaces 8 (2) p. 1147-1155.

LIQIANG, C.; PINGPING, H.U.; LI, Z.; SIZHOU, H.; LINGFEI, L.; CHENGZHI, H. (2012).: Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci China Chem 55, p. 2209-2216.

LIU, Y.; YU, D.; ZENG, C. et al. (2010).: Biocompatible graphene oxide-based glucose biosensors. Langmuir (26), p. 6158-6160.

LUO, J.; LAI, J.; ZHANG, N.; LIU, Y.; LIU, R.; LIU, X. (2016).: Tannic Acid Induced Self-Assembly of Three-Dimensional Graphene with Good Adsorption and Antibacterial Properties. ACS Sustainable Chem. Eng. 4 (3), p. 1404-1413.

MESARIČ, T.; SEPČIČ, K.; PIAZZA, V.; GAMBARDELLA, C.; GARAVENTA, F.; DROBNE, D.; FAIMALI, M. (2013).: Effects of nano carbon black and single-layer graphene oxide on settlement, survival and swimming behavior of Amphibalanus Amphitrite larvae. Chem Ecol. 29. p. 643-652.

OECD (2006).: Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Publishing, Paris.

PAN, Y.; SAHOO, N.G.; LI, L. (2012).: The application of graphene oxide in drug delivery. Expert Opin Drug Deliv. (9) 1365-1376.

RAHMAN, O.S.A.; CHELLASAMY, V.; PONPANDIAN, N.; ARMIRTHAPANDIAN, S.; PANIGRAHI, B.K.; THANGADURAI, P. (2014).: A facile green synthesis of reduced graphene oxide by using pollen grains of Peltophorum pterocarpum and study of its electrochemical behavior. RCS Adv. 4. 56910-56917.

RATSCH, H.C. (1983).: Interlaboratory root elongation testing of toxic substances on selected plant species. EPA/600/3-83/051. U.S. Environmental Protection Agency, Corvallis, OR.

ROUPCOVÁ, P.; KLOUDA, K.; PAVLOVSKÝ, J. (2016).: Příspěvek k monitorování ekotoxicity u uhlíkatých nanočástic na bázi grafenu. [Contribution to the Monitoring of Ecotoxicity of Carbon Nanoparticles Based on Graphene] In Occupational health and safety 2016: Transactions of the contributions from the international conference. Sepetná: SPBI, 2016, p. 74-77. ISBN 978-80-7385-175-0. (in Czech)

ŘEZNÍČKOVÁ, P. (2014).: Olejnatá semena, bakalářská práce [Oilseeds, bachelor thesis], LF, Masarykova univerzita Brno. (in Czech)

RODRIGUES-GONZALES, C.; BRIZUELA-COLMENARES, N.; SALAS, P.; KHARISSOVA, O.V.; CASTANO, V.M. (2015): Chapter 25. Graphene Oxide: Grafting Biomolecules onto Graphene Oxide Sheets. In CRC Concise Encyclopedia of Nanotechnology. CRC Press 2015, p. 285-303 ISBN 978-1-4665-8034-3.

SEABRA, A.B.; PAULA, A.J.; DE LIMA, R.; ALVES, O.L.; DURAN, N. (2014).: Nanotoxicity of Graphene and Graphene Oxide. Chem. Res. Toxicol., 27 (2), pp 159-168.

SINGH, C.; ALI, Md. A.; SUMANA, G. (2016).: Green synthesis of graphene based Biomaterial Using Fenugreek Seeds for lipid Detection. ACS Sustainable Chem. Eng., 4 (3), p. 871-880.

THAKUR, S.; KARAK, N. (2012).: Green reduction of graphene oxide by aqueous phytoextracts. Carbon (50), p. 5331-5339.

WANG, G.; QUIAN, F.; SALTIKOW, C.W.; JIAO, Y.; LI, Y.: (2011).: Microbial reduction of graphene oxide by Shewanella. Nano Res 4, p. 563-570.

WANG, Y.; SHI, Z.; YIN, J. (2011 a).: Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Appl. Mater. Interfaces 3 (4), p. 1127-1133.

WANG, Y.; ZHAOUHI, L.; WANG, J.; JINGHONG, L.; YUEHE, L. (2011 b).: Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology Vol. 29, No. 5, p. 205-212.

XU, C.; SHI, X.; JI, A.; SHI, L.; ZHOU, C.; CUI, Y. (2015).: Fabrication and Characteristics of Reduced Graphene Oxide Produced with Different Green Reductants. PLoS One. 10(12):e0144842. doi: 10.1371/journal.pone.0144842. eCollection 2015.

ZHOU, X.; LAROCHE, F.; LAMERS, G.E.M.; TORRACA, V.; VOSKAMP, P.; LU, T.; CHU, F.; SPAINK, H.P.; ABRAHAMS J.P.; LIU, Z. (2012).: Ultra - small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and Zebrafish embryos. Nano Res 5: 2012.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 137 8
PDF Downloads 65 65 5