
Transport and Telecommunication Vol. 20, no. 3, 2019

251

Transport and Telecommunication, 2019, volume 20, no. 3, 251–259
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia
DOI 10.2478/ttj-2019-0021

METAMODELLING OF INVENTORY-CONTROL

SIMULATIONS BASED ON A MULTILAYER PERCEPTRON

Ilya Jackson 1, Jurijs Tolujevs 2, Sebastian Lang 3, Zhandos Kegenbekov 4

1,2 Transport and Telecommunication Institute (TTI)
Lomonosova iela 1, Riga, Latvia

1 jackson.i@tsi.lv
2 tolujevs.j@tsi.lv

3 Fraunhofer Institute for Factory Operation and Automation (IFF)
Sandtorstraße 22, Magdeburg, Germany

sebastian.lang@iff.fraunhofer.de

4 Kazakh-German University
Pushkin 111, Almaty, Kazakhstan

kegenbekov@dku.kz

Inventory control problems arise in various industries, and each single real-world inventory is replete with non-standard
factors and subtleties. Practical stochastic inventory control problems are often analytically intractable, because of their complexity.
In this regard, simulation-optimization is becoming more and more popular tool for solving complicated business-driven problems.
Unfortunately, simulation, especially detailed, is both time and memory consuming. In the light of this fact, it may be more reasonable
to use an alternative cheaper-to-compute metamodel, which is specifically designed in order to approximate an original simulation. In
this research we discus metamodelling of stochastic multiproduct inventory control system with perishable products using a multilayer
perceptron with a rectified linear unit as an activation function.

Keywords: metamodelling, simulation, inventory control, artificial neural network, industrial artificial intelligence

1. Introduction

Mankind deals with inventory management, since it started to mine and stockpile resources of the
planet. For the last 80 years, the field of inventory management has attracted massive attention in both
academic and business worlds (Jalali and Nieuwenhuyse, 2015). This is not surprising, since inventory-
related issues constitute significant expenses for various businesses. According to IHL Group's report, a
tremendous share of capital, namely $1.1 trillion in cash or equivalent to 7% of the U.S. GDP are tied up
in inventory (IHL and Buzek, 2015). Moreover, companies are losing $634.1 Billion each year due to
backorders, which makes up 4.1% of revenue for an average retailer (Dynamic Action and IHL, 2015).
Traditionally inventory control problems are solved with dynamic programming methods (Domschke et
al., 2015). The basic idea of dynamic programming is based on separation of a problem into various sub-
problems. For each sub-problem objective function is recursively assigned in such a way that the
combination of the partial problems’ optima corresponds to the optimum of the main problem (Bellman,
1957). However, the computational effort for solving problems with more than one state variable and many
periods to be considered can be still very huge. Furthermore, determining a global optimum with dynamic
programming can be even practically impossible, if one deals with a stochastic inventory control problem,
where periodical demands, replenishment lags or other parameters are random variables. Besides that,
inventory control problems arise in various industries, and each single real-world inventory is replete with
non-standard factors and subtleties. In this regard, it is extremely unlikely that the same set of assumptions
and considerations will be equally applicable to all real systems.

Moreover, as it recognized by such researchers as Duan and Liao (2013) and Tsai and Zheng (2013),
practical stochastic inventory problems are often analytically intractable, because of their complexity. Due
to such restrictions of both analytical models and approaches based on dynamic programming, simulation-
optimization is becoming more and more popular tool for solving complicated business-driven problems
(Jalali and Nieuwenhuyse, 2015). Unfortunately, simulation, especially detailed, is both time and memory
consuming. Besides that, simulation-optimization algorithms do not “learn”, more specifically, whenever

Transport and Telecommunication Vol. 20, no. 3, 2019

252

the input parameters change slightly, a metaheuristic search (or another optimization method) must be
executed once again. Taking into account a scale and dimensionality of real-world inventory control
problems, such a never-ending search becomes an unacceptable luxury for business. In the light of these
facts, it may be more reasonable to use an alternative cheaper-to-compute model, which is specifically
designed in order to approximate an original simulation with a sufficient degree of accuracy (Merkuryeva,
2004). Such a “model of the model” is conventionally called a metamodel (Blanning, 1975). Pursuing this
goal, we suggest taking advantage on the property of feed-forward neural networks to generalize. More
specifically, the pivotal idea is based on the fact that during a metaheuristic search candidate solutions may
be stored and used later to train an artificial neural network (ANN). Considering the fact that ANNs with
more than one hidden layer are distinguished for such properties as the ability to learn nonlinear relations
and robustness to noise, they become a promising metamodelling candidate.

2. Related Work

The simulation model under consideration is mainly based on the recent work (Jackson and
Tolujevs, 2019) and (Jackson et al., 2018) adopting several new features from related papers. Namely, the
model incorporates perishability mechanics quite similar to one used by Duan and Liao (2013). Besides
that, the model operates with multiple products under the constrained total inventory in a similar way as
the transhipment inventory simulation described by Hochmuth and Kochel (2012).

Metamodelling is a fairly old and well-known approach in simulation community (Law and Kelton,
2000). Besides, metamodelling did not bypass logistics and production (Tolujev et al., 1998). However,
with recent revolution in deep-learning, metamodelling with ANN has once again sparked the surge of
interest and become a “hot-topic” in simulation community (Lechevalier et al., 2015). Among applications
related to inventory-control, it is worth to mention the research conducted by Prestwich et al. (2012), who
managed to efficiently combine a single-layered ANN with an evolutionary algorithm to find an optimal
policy for a simulation-based stochastic multi-echelon inventory-control system. Additionally, it is
important to emphasize the study (Lin et al., 2009) that proposes an algorithm for defining a work-in-
process inventory level for wafer fabrication processes. This study adopts a simulation model based on a
real wafer fabrication factory to generate data and demonstrates an optimization algorithm combining a
multilayer feedforward neural network and sequential quadratic programming. Furthermore, Farhat and
Owayjan (2017) have recently presented the simulation of an enterprise resource planning system that
utilizes 30-layered ANN as an inventory-policy controller.

3. Methodology

In order to formalize metamodelling with ANN, let’s consider a nonlinear input-output mapping
described by the functional relationship d=f(x), where the vector x is the input and y is the output. The
simulation f(.) is a “black-box”. However, we are given the set of observations 𝜏 ൌ {ሺ𝑥௜, 𝑦௜ሻ}௜ୀଵ

ே . The
requirement is to design an ANN that approximates the “black-box”, such that the network’s prediction F(.)
is close enough to f(.) in Euclidean sense ‖𝐹ሺ𝑥ሻ െ 𝑓ሺ𝑥ሻ‖ ൏ 𝜀, where ε is a positive number, small enough
in the context of the task (Haykin, 2009).

In this research we rely on the universal approximation theorem proved by Cybenko (1989) and later
extended by Hornik (1991), which states that a feed-forward network with at least one hidden layer
containing a finite number of neurons can approximate any simulation model distinguished for nonlinear
relation between input and output variables. The developed metamodel may be classified as a multilayer
perceptron (MLP) with a rectified linear unit (ReLU) as an activation function. Since ReLU includes only
such operations as comparison, addition and multiplication, it becomes extremely efficient in terms of
computation (Glorot et al., 2011), which is, along with accuracy, the most important requirement for a
metamodel. The considered MLP uses mean squared error as a loss function and the extension to stochastic
gradient descent “Adam” for weights recalculations (Kingma and Ba, 2014). In order to test the ability of
the metamodel to predict simulation’s output for inputs that were not used in training, this research takes
advantage on k-fold cross-validation. With such an approach, common machine learning-related problems
like overfitting will be spot (Cawley and Talbot, 2010).

4. Model Description

The model is designed for further algorithmic implementation in the form of a discrete-event
simulation (DES), and described using Hurlimann’s indexed notation (Hurlimann, 2007) as a base
complemented with set theory notation (Winskel, 2010) and Iverson’s brackets (Iverson, 1962).

Transport and Telecommunication Vol. 20, no. 3, 2019

253

4.1. Material flow

The inventory-control system (ICS) under consideration operates with a sequence of products
𝑃 ൌ ሺ𝑝ଵ, 𝑝ଶ, . . . , 𝑝௡ሻ௡∈ℕ+ and has a limited total storage capacity Imax. The model considers only those
moments of time, in which the system parameters change (discrete events of particular interest happen).
Timings of such events is given as a sequence 𝑇 ൌ ሺ𝑡ଵ, 𝑡ଶ, . . . , 𝑡௡ሻ௡∈ℕ+. In this regard, the value of tn – t1
may be considered as the planning horizon. Since the ICS deals with perishable products, the storage is
represented as a sequence of lots 𝑆௧

௣ ൌ ሺ𝑠ଵ
p,t, 𝑠ଶ

p,t, . . . , 𝑠௡
p,tሻ௡∈ℕ+ replenished at different moments of time t∈T.

Such that for each 𝑆௧
௣ there is a corresponding sequence of days to expiration (DTE)

𝐸௧
௣ ൌ ሺ𝑒ଵ

p,t, 𝑒ଶ
p,t, . . . , 𝑒௡

p,tሻ௡∈ℕ+ , ห𝑆௧
௣ห ൌ ห𝐸௧

௣ห ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇. Thus, for each single product at each moment of
time, there is an inventory level 𝐼௧

௣ ൌ ∑ 𝑆௧
௣௡

௜ୀଵ . DTE decrease during the time and, in order to model that in
iterative way, the following function is introduced:

𝐸t+1
௣ ൌ 𝜀ሺ𝐸t

௣, 𝑡i, 𝑡i+1ሻ ൌ ሺ𝑒଴
p,t െ ሺ𝑡i+1 െ 𝑡iሻ, 𝑒ଵ

p,t െ ሺ𝑡i+1 െ 𝑡iሻ, . . . , 𝑒௡
p,t െ ሺ𝑡i+1 െ 𝑡iሻሻ. (1)

Such that in each discrete time interval 𝛥𝑡 ൌ 𝑡i െ 𝑡i-1 , all empty and expired lots are removed,
∀𝑒௜

p,t ⩽ 0, 𝑆௧
p ← 𝑆௧

p 𝑠௜
p,tൗ , 𝐸௧

p ← 𝐸௧
p 𝑒௜

p,tൗ and ∀𝑠௜
p,t ൌ 0, 𝑆௧

p ← 𝑆௧
p 𝑠௜

p,tൗ , 𝐸௧
p ← 𝐸௧

p 𝑒௜
p,tൗ (Fig. 1). It is done for

an obvious reason, namely, expired commodity is unfit for use, consumption, or sale. It is also crucially
important to trace the number of expired products for later total expenses calculation (2).

𝐸𝑥𝑝𝑖𝑟𝑒𝑑t
௣ ൌ ∑ 𝑠i

p,tሾΦሿ௡
௜ୀଵ , (2)

where: [Φ] is the Iverson bracket ሾΦሿ ൌ ൜1 𝑖𝑓𝑒i
p,t ⩽ 0

𝑒𝑙𝑠𝑒 0
 (Iverson, 1962).

Figure 1. Perishability mechanics

Let’s assume that 𝑇ௗ௘௠௔௡ௗ௦
௣ ൌ ሺ𝑡̂ଵ, 𝑡̂ଶ, … , 𝑡̂௡ሻ consists only of time instances, when the new demand

𝑑௧
௣ for a product p arises. Since the model under consideration is stochastic, demand size is a random

variable D under a known distribution 𝐹ௗ ൌ 𝑃ሺ𝑑 ⩽ 𝐷ሻ. In this regard, we may denote demand inter-arrival
time as 𝑎௜ ൌ 𝑡̂௜ െ 𝑡̂௜ିଵ, which is a value of a random variable A under a specified continuous distribution
𝐹௔ ൌ 𝑃ሺ𝑎 ⩽ 𝐴ሻ. We also define a recursive function 𝑓௜ୀଵሺ. ሻ that fulfils arising demands depending on the
available inventory capacity (3).

𝑓௜ୀଵሺ𝑠௜
p,t, 𝑑t

௣ሻ ൌ ቊ
𝑠௜

p,t ← 𝑠௜
p,t െ 𝑑௧

p 𝑖𝑓 𝑠௜
p,t ൒ 𝑑௧

p

𝑒𝑙𝑠𝑒 𝑠௜
p,t ← 0, 𝑓i+1ሺ𝑠i+1

p,t , 𝑑௧
p െ 𝑠௜

p,tሻ
 , (3)

where: i stands for a lot’s index to fulfil the demand from. We also keep track on fulfilled demand 𝑆𝑎𝑙𝑒𝑠௧
௣ ൌ

ቊ
𝑑௧

p 𝑖𝑓 𝐼௧
p ൒ 𝑑௧

p

𝑒𝑙𝑠𝑒 𝐼௧
p for later net profit calculation.

For each product p∈P there is a pair of control parameters (𝑄௣, 𝑟௣) that determine an inventory
control policy. It is important to note that such parameters are constant and do not vary over time. As soon
as the current inventory level reaches the threshold 𝑟௣ (reorder point) 𝐼௧

௣ ൑ 𝑟௣, the ICS orders a new batch
of size 𝑄௣. Besides, a Boolean variable 𝑠𝑡𝑎𝑡𝑢𝑠௣ ∈ ሼTrue, Falseሽ is declared in order to know if the batch
is already ordered and on the way (4).

𝑜t
௣ ൌ ൜𝑄௣, 𝑠𝑡𝑎𝑡𝑢𝑠௣ ← 𝑇𝑟𝑢𝑒 𝑖𝑓 𝐼௧

௣ ൑ 𝑟௣and 𝑠𝑡𝑎𝑡𝑢𝑠௣𝑖𝑠 𝐹𝑎𝑙𝑠𝑒
𝑒𝑙𝑠𝑒 0

 . (4)

Transport and Telecommunication Vol. 20, no. 3, 2019

254

If an order is placed, namely 𝑜t
௣ ൐ 0, the inventory-level will not be replenished immediately.

Instead, there will be a lag between the time, when the order has been placed and the time, when the order
is delivered. We denote such a delivery lag (or replenishment lead time) as a random variable L under a
known distribution 𝐹௟ ൌ 𝑃ሺ𝐿 ⩽ 𝑙ሻ. This literally means that the order 𝑜௧ି௟

௣ made at the moment of time ti∈T
will be appended to the storage 𝑆௧

௣ ∪ {𝑜t-l
௣ }, 𝐸௧

௣ ∪ {𝑒௣} at the moment of time 𝑡௝ ∈ 𝑇 such that
𝑡௝െ 𝑡௜ ൌ 𝑙. For this reason, we introduce a supply function g(.) (5).

ሺ𝑆t+1
௣ , 𝐸t+1

௣ ሻ ൌ 𝑔ሺ𝑆௧
௣, 𝐸t

௣, 𝑄௣ሻ ൌ ቊ
𝑆௧

௣, 𝐸௧
௣ 𝑖𝑓 𝑜t-l

௣ ൌ 0

𝑒𝑙𝑠𝑒 𝑆௧
௣ ∪ {𝑜t-l

௣ }, 𝐸௧
௣ ∪ {𝑒௣}, 𝑠𝑡𝑎𝑡𝑢𝑠௣ ← 𝐹𝑎𝑙𝑠𝑒

 . (5)

It is important to note that either a backorder-event 𝑑௧
௣ ൐ 𝐼௧

௣ or an overflow-event ∑ 𝑆௧
௣௡

௧ୀଵ ൐ 𝐼max
may take place. The model also keeps track on these events for later cost function calculation (6,7).

𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠t
௣ ൌ ቊ

0 𝑖𝑓𝑑௧
௣ ൑ 𝐼௧

௣

𝑒𝑙𝑠𝑒 𝑑௧
௣ െ 𝐼௧

௣ , (6)

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤t
௣ ൌ ቊ

0 𝑖𝑓 ∑ 𝑆௧
௣ ൑ 𝐼max

௡
௧ୀଵ

𝑒𝑙𝑠𝑒 ∑ 𝑆௧
௣ െ 𝐼max

௡
௧ୀଵ

 . (7)

Obeying the following natural order of operations: 1) check expiration dates 2) replenish previously
ordered goods 3) fulfil the demand, we may finally end up with the equation that will simulate the dynamics
(8).

ሺ𝑆t+1
௣ , 𝐸t+1

௣ ሻ ൌ 𝑓ሺ𝑔ሺ𝑆t
௣, 𝜀ሺ𝐸t

௣ሻ, 𝑄௣ሻሻ . (8)

Considering that 𝐼௧
௣ ൌ ∑ 𝑆௧

௣௡
௧ୀଵ , The overall inventory dynamics may be expressed in the following

way:

𝐼t+1
௣ ൌ 𝑚𝑖𝑛ሺ𝑚𝑎𝑥ሺ𝐼t

௣ ൅ 𝑜t
௣ െ 𝑑t

௣ െ 𝐸𝑥𝑝𝑖𝑟𝑒𝑑௧
௣, 0ሻ, 𝐼௠௔௫ሻ . (9)

With this equation we also emphasize that inventory cannot be negative or bigger than Imax.

4.2. Monetary flow

At the monetary level the model makes a mild assumption. Namely, income is received immediately
after commodity is sold, and transfer does not take time. The model takes into account 5 composite costs:
ordering costs, inventory costs, backorder costs, overflow fee and recycle fee.

Ordering cost includes both purchase price and transportation cost. This model adopts the cut-off
point quantity discount (Buffa and Taubert, 1972), which is given only to the extent that the order exceeds
a cut-off point (10).

𝑐௣ሺ𝑄௣ሻ ൌ ቐ
𝑐௣𝑓𝑜𝑟 0 ൏ 𝑄௣ ൑ 𝛽ଵ

𝑘ଶ𝑐௣𝑓𝑜𝑟 𝛽ଵ ൏ 𝑄௣ ൑ 𝛽ଶ

𝑘௡𝑐௣𝑓𝑜𝑟 𝛽n-1 ൏ 𝑄௣ ൑ 𝛽௡

 , (10)

where: ordering costs for a unit (e.g. pallet) 𝑐௣ (𝑄௣) is a function of an order quantity, such that
𝐵௣ ൌ ሺ𝛽ଵ

p, 𝛽ଶ
p, . . . , 𝛽௡

pሻ is a series of cut-off points and 𝐾௣ ൌ ሺ1, 𝑘ଶ
௣, . . . , 𝑘௡

௣ሻ , ∀𝑘௜
௣ ∈ ሾ0,1ሿ is a series of

corresponding discount factors.
From a business point of view, a quantity discount is a stimulus offered to a customer that results in

a decreased cost per unit, when a commodity is purchased in a greater amount. That is a common practice
to entice customers to purchase more. As the result, a seller can increase turnover, and a customer receives
more favourable prices. In this regard, the cut-off point quantity discount introduces a quite realistic return-
to-scale mechanics to the model. Depending on the real-world context, unit inventory cost ℎ௣may consist
of handling costs and opportunity loss. By opportunity loss, we mean the possibility of using the capital for
other purposes (frozen capital). In this model inventory cost is constant and set for a unit of modelling time.
Such that 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑐𝑜𝑠𝑡௣ ൌ ℎ௣ ∑ 𝐼௜

௣𝛥𝑡௜
௡
௜ୀଵ . We also consider that every single backorder (out-of-stock)

is associated with a loss of business reputation. When a product is backordered, a customer is stimulated to
search for a substitute. This fact provides a possibility that once loyal customer may potentially switch,
which leads to eventual loss of a market share. In this regard, for every product in the ICS backorder is
associated with a constant fee 𝑏௣. Overflows are also penalized by a constant fee 𝑤௣. In real world, such
expenses may be related to the sudden need for reverse logistics. Additionally, when a lot is perished, quite

Transport and Telecommunication Vol. 20, no. 3, 2019

255

similar penalty 𝑥௣ related to reverse logistics of expired goods arises. Namely, such a batch must be sent
for recycling. Based on the introduced variables total costs related to a product p may be calculated as
follows (11).

𝑇𝐶௣ ൌ 𝑐௣∑𝑜௧
௣ ൅ ℎ௣∑𝐼௧

௣𝛥𝑡 ൅ 𝑏௣∑𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠௧
௣ ൅ 𝑤௣∑𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤௧

௣ ൅ 𝑥௣∑𝐸𝑥𝑝𝑖𝑟𝑒𝑑௧
௣ . (11)

Taking into account that each unit of product p is sold by a constant 𝑝𝑟𝑖𝑐𝑒௣, the net profit associated
with this product is 𝑃𝑟𝑜𝑓𝑖𝑡௣ ൌ 𝑝𝑟𝑖𝑐𝑒௣∑𝑠𝑎𝑙𝑒𝑠௣ െ 𝑇𝐶௣. Thus, total net profit of the ICS is ∑ 𝑃𝑟𝑜𝑓𝑖𝑡௣௡

௣ୀଵ ,
which is treated as the simulation output.

Figure 2. The dynamics of physical and monetary flows

4.3. Algorithmic implementation

Despite such a verbose formal description, the simulation model may be executed by a relatively
simple iterative algorithm consisting of three functions (Table 1).

Table 1. Pivotal functions behind the simulation algorithm

Function 1: Check the expiry() Function 2: Replenishment() Function 3: Fulfil demand()
for all elements in 𝐸௧

௣ do
 if 𝑒௜

௣ ≤ 0 do
 𝐸௧

௣. 𝑝𝑜𝑝ሺ𝑖ሻ
 end if
end for
if 𝑟௣>𝐼௧

௣and status = False do
 status ← True
 𝑜௧

௣← 𝑄௣
end if

if status = True and 𝑜௧ି௟
௣ ≠ 0 do

 𝑆௧
௣. 𝑎𝑝𝑝𝑒𝑛𝑑ሺ𝑄௣ሻ

 𝐸௧
௣. 𝑎𝑝𝑝𝑒𝑛𝑑ሺ𝑒௣ሻ

 status ← False
end if

if 𝐼௧
௣ ൒ 𝑑௧

௣do
 i ← 1
 while 𝑑௧

௣> 0 do
 tmp ← si
 si ← si - 𝑑௧

௣
 𝑑௧

௣ ← 𝑑௧
௣- tmp

 if si <0 do
 si ← 0
 end if
 i ← i+1
 end while
else do
 𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟௧

௣ =𝑑௧
௣- 𝐼௧

௣
 𝑆௧

௣ ← ሺሻ
end if
if 𝑟௣>𝐼௧

௣and status = False do
 status ← True
 𝑜௧

௣← 𝑄௣
end if

Source-code implementation in Python 3.7 is available in the GitHub repository (Jackson, 2019).

5. Defining the Number of Replications

Due to the fact that some input variables of the model are random, namely in considered numerical
example D~N(μ, σ2), L~N(μ, σ2) and A~Exp(λ), the output (net profit) is also a random variable under some
distribution. Thus, a persistent question arises “how many runs of the model are adequate to produce a
meaningful prediction?”. We approach this problem using a method based on confidence intervals (12).

𝑛 ൌ ሺ
௭ഀ మ⁄

௪
𝐶𝑉ሻଶ , (12)

Transport and Telecommunication Vol. 20, no. 3, 2019

256

where: n is a minimum number of model’s replications to achieve desired confidence interval width w
(expressed as a multiplier by the mean) for model with a coefficient of variation CV and (Byrne, 2013).

We generated a set of random inputs in feasible range. After that the simulation model was replicated
10.000 times. Such that each single replication had the same inputs and covered 120 modelling days. With
such a procedure a sample was generated (Fig. 3), which was used to calculate a coefficient of variation
and test normality (Table 2).

Figure 3. The empirical distribution of the output variable

In order to test normality, we have chosen the Anderson-Darling test, which is recognized as one of
the most reliable, especially in cases of samples with more than 100 observations (Razali and Wah, 2011).

Table 2. The Anderson-Darling normality test

Statistic Critical value Significance level
7.16 0.787 0.5

We assume the confidence level of 95% and corresponding 𝑧ఈ ଶ⁄ ൌ 1.96. Calculating the coefficient
of variation using sample mean and variance CV = 1512.8/9968.2 = 0.15, we have decided to work with a
confidence interval of length 498.4 (5% of the mean) running each simulation 35 times to take the average
output.

6. ANN-Based Metamodel

In the numerical experiment we consider the ICS that operates with 10 products and comprises 150
input parameters. We have begun with generating 5 datasets using Monte Carlo sampling. Firstly, we have
generated random inputs in feasible range. Secondly, simulation model was run 35 consecutive times with
these inputs. After that, the average output value is calculated. Each of 5 generated datasets contains exactly
1000 observations (Fig. 4).

Figure 4. Outline of the experiment

Transport and Telecommunication Vol. 20, no. 3, 2019

257

The MLP-based metamodel comprises 3 hidden layers (30/30/10 neurons) and 5371 trainable
parameters. It is worth to note that this research is not focused on neural architecture search. In this regard,
the network architecture was derived using “trial and error” method and may be not optimal. The metamodel
is trained in 200 epochs with the batch size of 20, and successfully validated for all 5 datasets with10-fold
cross-validation (Fig. 5.).

Figure 5. The learning procedure and predicted output (standardized)

As Table 3 demonstrates the MLP-based metamodel was capable to generalize from a given sample
and learn all the nonlinearity within the original simulation model. However, there is an upper-bound for
accuracy due to inevitable presence of stochastic noise in training sample. On the other hand, this noise
may be reduced by increasing the number of simulation’s runs, which puts forward a classical trade-of
between performance and computational time. Additionally, such overfitting-preventing techniques as
regularization and dropout look quite promising and will be reviewed in future research.

Table 3. Accuracy of the metamodel

 Training Test

Exp. № df1 df2 F-statistic F-critical p-level R2 adj. R2 SEE R2 adj. R2

1 149 850 2.54 1.22 0.95 0.89 0.87 0.22 0.85 0.82

2 149 850 1.98 1.22 0.95 0.84 0.82 0.21 0.81 0.79

3 149 850 2.62 1.22 0.95 0.90 0.87 0.22 0.86 0.83

4 149 850 2.47 1.22 0.95 0.89 0.86 0.22 0.84 0.81

5 149 850 2.51 1.22 0.95 0.89 0.87 0.22 0.84 0.81

7. Conclusions

Summing up, MLP is capable to “learn” and generalize complex nonlinear relations between
simulation variables and, thus, may be efficiently applied for metamodelling of real-world inventory-
control systems. Despite the fact that ANN is generally robust to stochastic noise in a training sample, a
MLP-based metamodel will anyway have some upper-bound for accuracy. However, the amount of noise
may be controlled by increasing the number of simulation’s runs within the restrictions of computational
budget. Moreover, both numerical and categorical variables can be used as inputs and outputs. Besides that,
MLP-based metamodel equipped with ReLU needs much less computational time and memory than the
corresponding simulation model, which makes it extremely useful for simulation-based optimization.

In order to make the proposed metamodelling approach more tailored to the industrial needs, in
future research it worth to pay attention on automatic neural architecture search and such overfitting-
preventing techniques as regularization and dropout.

References

1. Bellman, R. (1957) Dynamic Programming. Princeton, Princeton University Press.

Transport and Telecommunication Vol. 20, no. 3, 2019

258

2. Blanning, R.W. (1975) The construction and implementation of metamodels, Simulation, 24, 177–184.
DOI:10.1177/003754977502400606.

3. Buffa, E.S. and Taubert, W.H. (1972) Production-inventory systems planning and control (NTIS No.
658.4032 B8).

4. Byrne, M.D. (2013) How many times should a stochastic model be run? An approach based on
confidence intervals. In: Proceedings of the 12th International conference on cognitive modelling,
Ottawa, July 2013.

5. Cawley, G.C. and Talbot, N.L. (2010) On over-fitting in model selection and subsequent selection bias
in performance evaluation. Journal of Machine Learning Research, 11(Jul), 2079–2107.

6. Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4), 303–314.

7. Domschke, W., Drexl, A., Klein, R. and Scholl, A. (2015) Einführung in Operations Research. 9th
Ed., Berlin, Heidelberg: Springer Gabler.

8. Duan, Q. and Liao, T.W. (2013) Optimization of replenishment policies for decentralized and
centralized capacitated supply chains under various demands. International Journal of Production
Economics, 194–204.

9. DynamicAction and IHL-group, (2015) Research Study: Retailers and the Ghost Economy $1.75
Trillion Reasons to be Afraid.

10. Farhat, J. and Owayjan, M. (2017) ERP Neural Network Inventory Control. Procedia computer
science, 114, 288-295.

11. Glorot, X., Bordes, A. and Bengio, Y. (2011) Deep sparse rectifier neural networks. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics, Lauderdale, FL,
USA, June 2011, pp. 315-323.

12. Haykin, S.S. (2009) Neural networks and learning machines. Pearson (ISBN-10: 0131471392).
13. Hochmuth, C.A. and Kochel, P. (2012) How to order and transship in multi-location inventory systems:

The simulation optimization approach. International Journal of Production Economics, 140, 646–654.
14. Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural networks,

4(2), 251–257.
15. Hurlimann, T. (2007) Index notation in mathematics and modelling language LPL: theory and

exercises. Department of Informatics University of Fribourg.
16. IHL-group and Buzek G. (2015) Research Study: We Lost Australia! Retail's $1.1 Trillion Inventory

Distortion Problem.
17. Iverson, K.E. (1962) A programming language. In: Proceedings of the spring joint computer

conference. ACM, May 3, 1962, pp. 345-351.
18. Jackson, I. (2019) GitHub repository “metainventory” - https://github.com/Jackil1993/metainventory,

last accessed 2019/04/05.
19. Jackson, I. and Tolujevs, J. (2019) The Discrete-Event Approach to Simulate Stochastic Multi-Product

(Q, r) Inventory Control Systems. Information Modelling and Knowledge Bases XXX, 312, 32–39.
20. Jackson, I., Tolujevs, J. and Reggelin, T. (2018) The Combination of Discrete-Event Simulation and

Genetic Algorithm for Solving the Stochastic Multi-Product Inventory Optimization Problem.
Transport and Telecommunication Journal, 19(3), 233–243.

21. Jad, F. and Owayjan, M. (2017) ERP Neural Network Inventory Control. Procedia Computer Science,
114, 288–295.

22. Jalali, H. and Nieuwenhuyse, I.V. (2015) Simulation optimization in inventory replenishment: a
classification. IIE Transactions, 47(11), 1217–1235.

23. Kingma, D.P. and Ba, J. (2014) Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

24. Law, A.M. and Kelton, W.D. (2000) Simulation modelling and analysis. New York: McGraw-Hill.
25. Lechevalier, D., Hudak, S., Ak, R., Lee, Y.T., and Foufou, S. (2015) A neural network meta-model

and its application for manufacturing. In: Proceedings of the IEEE International Conference on Big
Data, Santa Clara, USA, 2015.

26. Lin, Y., Shie, J. and Tsai, C. (2009) Using an artificial neural network prediction model to optimize
work-in-process inventory level for wafer fabrication. Expert Systems with Applications 36(2) 3421–
3427.

27. Merkuryeva, G. (2004) Metamodelling for simulation applications in production and logistics.
In: Proceedings of the Sim-Serv Workshop: Roadmap of simulation in manufacturing and logistics,
pp. 1-6.

Transport and Telecommunication Vol. 20, no. 3, 2019

259

28. Prestwich, S.D., Tarim, S.A., Rossi, R. and Hnich, B. (2012) A neuroevolutionary approach to
stochastic inventory control in multi-echelon systems. International Journal of Production Research,
50, 2150–2160.

29. Razali, N.M. and Wah, Y.B. (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests. Journal of statistical modelling and analytics, 2(1), 21–33.

30. Tolujev, J., Lorenz, P., Beier, D. and Schriber, T.J. (1998) Assessment of simulation models based on
trace-file analysis: a metamodeling approach. In: Proceedings of the Winter Simulation Conference.
IEEE. December 1998, pp. 443-450.

31. Tsai, S.C. and Zheng, Y.X. (2013) A simulation optimization approach for a two-echelon inventory
system with service level constraints. European Journal of Operational Research, 229, 364–374.

32. Winskel, G. (2010) Set theory for computer science. Unpublished lecture notes.

