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Inventory control problems arise in various industries, and each single real-world inventory is replete with non-standard 
factors and subtleties. Practical stochastic inventory control problems are often analytically intractable, because of their complexity. 
In this regard, simulation-optimization is becoming more and more popular tool for solving complicated business-driven problems. 
Unfortunately, simulation, especially detailed, is both time and memory consuming. In the light of this fact, it may be more reasonable 
to use an alternative cheaper-to-compute metamodel, which is specifically designed in order to approximate an original simulation. In 
this research we discus metamodelling of stochastic multiproduct inventory control system with perishable products using a multilayer 
perceptron with a rectified linear unit as an activation function. 
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1. Introduction  

Mankind deals with inventory management, since it started to mine and stockpile resources of the 
planet. For the last 80 years, the field of inventory management has attracted massive attention in both 
academic and business worlds (Jalali and Nieuwenhuyse, 2015). This is not surprising, since inventory-
related issues constitute significant expenses for various businesses. According to IHL Group's report, a 
tremendous share of capital, namely $1.1 trillion in cash or equivalent to 7% of the U.S. GDP are tied up 
in inventory (IHL and Buzek, 2015). Moreover, companies are losing $634.1 Billion each year due to 
backorders, which makes up 4.1% of revenue for an average retailer (Dynamic Action and IHL, 2015). 
Traditionally inventory control problems are solved with dynamic programming methods (Domschke et 
al., 2015). The basic idea of dynamic programming is based on separation of a problem into various sub-
problems. For each sub-problem objective function is recursively assigned in such a way that the 
combination of the partial problems’ optima corresponds to the optimum of the main problem (Bellman, 
1957). However, the computational effort for solving problems with more than one state variable and many 
periods to be considered can be still very huge. Furthermore, determining a global optimum with dynamic 
programming can be even practically impossible, if one deals with a stochastic inventory control problem, 
where periodical demands, replenishment lags or other parameters are random variables. Besides that, 
inventory control problems arise in various industries, and each single real-world inventory is replete with 
non-standard factors and subtleties. In this regard, it is extremely unlikely that the same set of assumptions 
and considerations will be equally applicable to all real systems.  

Moreover, as it recognized by such researchers as Duan and Liao (2013) and Tsai and Zheng (2013), 
practical stochastic inventory problems are often analytically intractable, because of their complexity. Due 
to such restrictions of both analytical models and approaches based on dynamic programming, simulation-
optimization is becoming more and more popular tool for solving complicated business-driven problems 
(Jalali and Nieuwenhuyse, 2015). Unfortunately, simulation, especially detailed, is both time and memory 
consuming. Besides that, simulation-optimization algorithms do not “learn”, more specifically, whenever 
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the input parameters change slightly, a metaheuristic search (or another optimization method) must be 
executed once again. Taking into account a scale and dimensionality of real-world inventory control 
problems, such a never-ending search becomes an unacceptable luxury for business. In the light of these 
facts, it may be more reasonable to use an alternative cheaper-to-compute model, which is specifically 
designed in order to approximate an original simulation with a sufficient degree of accuracy (Merkuryeva, 
2004). Such a “model of the model” is conventionally called a metamodel (Blanning, 1975). Pursuing this 
goal, we suggest taking advantage on the property of feed-forward neural networks to generalize. More 
specifically, the pivotal idea is based on the fact that during a metaheuristic search candidate solutions may 
be stored and used later to train an artificial neural network (ANN). Considering the fact that ANNs with 
more than one hidden layer are distinguished for such properties as the ability to learn nonlinear relations 
and robustness to noise, they become a promising metamodelling candidate. 

2. Related Work 

The simulation model under consideration is mainly based on the recent work (Jackson and 
Tolujevs, 2019) and (Jackson et al., 2018) adopting several new features from related papers. Namely, the 
model incorporates perishability mechanics quite similar to one used by Duan and Liao (2013). Besides 
that, the model operates with multiple products under the constrained total inventory in a similar way as 
the transhipment inventory simulation described by Hochmuth and Kochel (2012). 

Metamodelling is a fairly old and well-known approach in simulation community (Law and Kelton, 
2000). Besides, metamodelling did not bypass logistics and production (Tolujev et al., 1998). However, 
with recent revolution in deep-learning, metamodelling with ANN has once again sparked the surge of 
interest and become a “hot-topic” in simulation community (Lechevalier et al., 2015). Among applications 
related to inventory-control, it is worth to mention the research conducted by Prestwich et al. (2012), who 
managed to efficiently combine a single-layered ANN with an evolutionary algorithm to find an optimal 
policy for a simulation-based stochastic multi-echelon inventory-control system. Additionally, it is 
important to emphasize the study (Lin et al., 2009) that proposes an algorithm for defining a work-in-
process inventory level for wafer fabrication processes. This study adopts a simulation model based on a 
real wafer fabrication factory to generate data and demonstrates an optimization algorithm combining a 
multilayer feedforward neural network and sequential quadratic programming. Furthermore, Farhat and 
Owayjan (2017) have recently presented the simulation of an enterprise resource planning system that 
utilizes 30-layered ANN as an inventory-policy controller. 

3. Methodology  

In order to formalize metamodelling with ANN, let’s consider a nonlinear input-output mapping 
described by the functional relationship d=f(x), where the vector x is the input and y is the output. The 
simulation f(.) is a “black-box”. However, we are given the set of observations 𝜏 ൌ {ሺ𝑥௜, 𝑦௜ሻ}௜ୀଵ

ே . The 
requirement is to design an ANN that approximates the “black-box”, such that the network’s prediction F(.) 
is close enough to f(.) in Euclidean sense ‖𝐹ሺ𝑥ሻ െ 𝑓ሺ𝑥ሻ‖ ൏ 𝜀, where ε is a positive number, small enough 
in the context of the task (Haykin, 2009). 

In this research we rely on the universal approximation theorem proved by Cybenko (1989) and later 
extended by Hornik (1991), which states that a feed-forward network with at least one hidden layer 
containing a finite number of neurons can approximate any simulation model distinguished for nonlinear 
relation between input and output variables. The developed metamodel may be classified as a multilayer 
perceptron (MLP) with a rectified linear unit (ReLU) as an activation function. Since ReLU includes only 
such operations as comparison, addition and multiplication, it becomes extremely efficient in terms of 
computation (Glorot et al., 2011), which is, along with accuracy, the most important requirement for a 
metamodel. The considered MLP uses mean squared error as a loss function and the extension to stochastic 
gradient descent “Adam” for weights recalculations (Kingma and Ba, 2014). In order to test the ability of 
the metamodel to predict simulation’s output for inputs that were not used in training, this research takes 
advantage on k-fold cross-validation. With such an approach, common machine learning-related problems 
like overfitting will be spot (Cawley and Talbot, 2010). 

4. Model Description  

The model is designed for further algorithmic implementation in the form of a discrete-event 
simulation (DES), and described using Hurlimann’s indexed notation (Hurlimann, 2007) as a base 
complemented with set theory notation (Winskel, 2010) and Iverson’s brackets (Iverson, 1962). 
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4.1. Material flow 

The inventory-control system (ICS) under consideration operates with a sequence of products  
𝑃 ൌ ሺ𝑝ଵ, 𝑝ଶ, . . . , 𝑝௡ሻ௡∈ℕ+  and has a limited total storage capacity Imax. The model considers only those 
moments of time, in which the system parameters change (discrete events of particular interest happen). 
Timings of such events is given as a sequence 𝑇 ൌ ሺ𝑡ଵ, 𝑡ଶ, . . . , 𝑡௡ሻ௡∈ℕ+. In this regard, the value of tn – t1 
may be considered as the planning horizon. Since the ICS deals with perishable products, the storage is 
represented as a sequence of lots 𝑆௧

௣ ൌ ሺ𝑠ଵ
p,t, 𝑠ଶ

p,t, . . . , 𝑠௡
p,tሻ௡∈ℕ+ replenished at different moments of time t∈T. 

Such that for each 𝑆௧
௣ there is a corresponding sequence of days to expiration (DTE) 

𝐸௧
௣ ൌ ሺ𝑒ଵ

p,t, 𝑒ଶ
p,t, . . . , 𝑒௡

p,tሻ௡∈ℕ+ , ห𝑆௧
௣ห ൌ ห𝐸௧

௣ห ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇. Thus, for each single product at each moment of 
time, there is an inventory level 𝐼௧

௣ ൌ ∑ 𝑆௧
௣௡

௜ୀଵ . DTE decrease during the time and, in order to model that in 
iterative way, the following function is introduced: 

𝐸t+1
௣ ൌ 𝜀ሺ𝐸t

௣, 𝑡i, 𝑡i+1ሻ ൌ ሺ𝑒଴
p,t െ ሺ𝑡i+1 െ 𝑡iሻ, 𝑒ଵ

p,t െ ሺ𝑡i+1 െ 𝑡iሻ, . . . , 𝑒௡
p,t െ ሺ𝑡i+1 െ 𝑡iሻሻ. (1) 

Such that in each discrete time interval 𝛥𝑡 ൌ 𝑡i െ 𝑡i-1 , all empty and expired lots are removed, 
∀𝑒௜

p,t ⩽ 0, 𝑆௧
p ← 𝑆௧

p 𝑠௜
p,tൗ , 𝐸௧

p ← 𝐸௧
p 𝑒௜

p,tൗ  and ∀𝑠௜
p,t ൌ 0, 𝑆௧

p ← 𝑆௧
p 𝑠௜

p,tൗ , 𝐸௧
p ← 𝐸௧

p 𝑒௜
p,tൗ  (Fig. 1). It is done for 

an obvious reason, namely, expired commodity is unfit for use, consumption, or sale. It is also crucially 
important to trace the number of expired products for later total expenses calculation (2). 

𝐸𝑥𝑝𝑖𝑟𝑒𝑑t
௣ ൌ ∑ 𝑠i

p,tሾΦሿ௡
௜ୀଵ  , (2) 

where: [Φ] is the Iverson bracket  ሾΦሿ ൌ ൜1 𝑖𝑓𝑒i
p,t ⩽ 0 

𝑒𝑙𝑠𝑒 0
 (Iverson, 1962). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Perishability mechanics 

Let’s assume that 𝑇ௗ௘௠௔௡ௗ௦
௣ ൌ ሺ𝑡̂ଵ, 𝑡̂ଶ, … , 𝑡̂௡ሻ consists only of time instances, when the new demand 

𝑑௧
௣  for a product p arises. Since the model under consideration is stochastic, demand size is a random 

variable D under a known distribution 𝐹ௗ ൌ 𝑃ሺ𝑑 ⩽ 𝐷ሻ. In this regard, we may denote demand inter-arrival 
time as 𝑎௜ ൌ 𝑡̂௜ െ 𝑡̂௜ିଵ, which is a value of a random variable A under a specified continuous distribution 
𝐹௔ ൌ 𝑃ሺ𝑎 ⩽ 𝐴ሻ. We also define a recursive function 𝑓௜ୀଵሺ. ሻ that fulfils arising demands depending on the 
available inventory capacity (3). 

𝑓௜ୀଵሺ𝑠௜
p,t, 𝑑t

௣ሻ ൌ ቊ
𝑠௜

p,t ← 𝑠௜
p,t െ 𝑑௧ 

p  𝑖𝑓 𝑠௜
p,t ൒ 𝑑௧

p

𝑒𝑙𝑠𝑒 𝑠௜
p,t ← 0, 𝑓i+1ሺ𝑠i+1

p,t , 𝑑௧
p െ 𝑠௜

p,tሻ
 , (3) 

where: i stands for a lot’s index to fulfil the demand from. We also keep track on fulfilled demand 𝑆𝑎𝑙𝑒𝑠௧
௣ ൌ

ቊ
𝑑௧

p 𝑖𝑓 𝐼௧
p ൒ 𝑑௧

p

𝑒𝑙𝑠𝑒 𝐼௧
p  for later net profit calculation.  

For each product p∈P there is a pair of control parameters (𝑄௣, 𝑟௣) that determine an inventory 
control policy. It is important to note that such parameters are constant and do not vary over time. As soon 
as the current inventory level reaches the threshold  𝑟௣ (reorder point) 𝐼௧

௣ ൑ 𝑟௣, the ICS orders a new batch 
of size 𝑄௣. Besides, a Boolean variable 𝑠𝑡𝑎𝑡𝑢𝑠௣ ∈ ሼTrue, Falseሽ is declared in order to know if the batch 
is already ordered and on the way (4). 

𝑜t
௣ ൌ ൜𝑄௣, 𝑠𝑡𝑎𝑡𝑢𝑠௣ ← 𝑇𝑟𝑢𝑒 𝑖𝑓 𝐼௧

௣ ൑ 𝑟௣and 𝑠𝑡𝑎𝑡𝑢𝑠௣𝑖𝑠 𝐹𝑎𝑙𝑠𝑒
𝑒𝑙𝑠𝑒 0

 . (4) 
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If an order is placed, namely 𝑜t
௣ ൐ 0, the inventory-level will not be replenished immediately. 

Instead, there will be a lag between the time, when the order has been placed and the time, when the order 
is delivered. We denote such a delivery lag (or replenishment lead time) as a random variable L under a 
known distribution 𝐹௟ ൌ 𝑃ሺ𝐿 ⩽ 𝑙ሻ. This literally means that the order 𝑜௧ି௟

௣  made at the moment of time ti∈T 
will be appended to the storage 𝑆௧

௣ ∪ {𝑜t-l
௣ }, 𝐸௧

௣ ∪ {𝑒௣} at the moment of time 𝑡௝ ∈ 𝑇 such that  
𝑡௝െ 𝑡௜ ൌ 𝑙. For this reason, we introduce a supply function g(.) (5). 

ሺ𝑆t+1
௣ , 𝐸t+1

௣ ሻ ൌ 𝑔ሺ𝑆௧
௣, 𝐸t

௣, 𝑄௣ሻ ൌ ቊ
𝑆௧

௣,  𝐸௧
௣ 𝑖𝑓 𝑜t-l

௣ ൌ 0

𝑒𝑙𝑠𝑒 𝑆௧
௣ ∪ {𝑜t-l

௣ }, 𝐸௧
௣ ∪ {𝑒௣}, 𝑠𝑡𝑎𝑡𝑢𝑠௣ ← 𝐹𝑎𝑙𝑠𝑒

 . (5) 

It is important to note that either a backorder-event 𝑑௧
௣ ൐ 𝐼௧

௣ or an overflow-event ∑ 𝑆௧
௣௡

௧ୀଵ ൐ 𝐼max 
may take place. The model also keeps track on these events for later cost function calculation (6,7). 

𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠t
௣ ൌ ቊ

0 𝑖𝑓𝑑௧
௣ ൑ 𝐼௧

௣

𝑒𝑙𝑠𝑒 𝑑௧
௣ െ 𝐼௧

௣ , (6) 

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤t
௣ ൌ ቊ

0 𝑖𝑓 ∑ 𝑆௧
௣ ൑ 𝐼max

௡
௧ୀଵ

𝑒𝑙𝑠𝑒 ∑ 𝑆௧
௣ െ 𝐼max

௡
௧ୀଵ

 . (7) 

Obeying the following natural order of operations: 1) check expiration dates 2) replenish previously 
ordered goods 3) fulfil the demand, we may finally end up with the equation that will simulate the dynamics 
(8). 

ሺ𝑆t+1
௣ , 𝐸t+1

௣ ሻ ൌ 𝑓ሺ𝑔ሺ𝑆t
௣, 𝜀ሺ𝐸t

௣ሻ, 𝑄௣ሻሻ . (8) 

Considering that 𝐼௧
௣ ൌ ∑ 𝑆௧

௣௡
௧ୀଵ , The overall inventory dynamics may be expressed in the following 

way: 

𝐼t+1
௣ ൌ 𝑚𝑖𝑛ሺ𝑚𝑎𝑥ሺ𝐼t

௣ ൅ 𝑜t
௣ െ 𝑑t

௣ െ 𝐸𝑥𝑝𝑖𝑟𝑒𝑑௧
௣, 0ሻ, 𝐼௠௔௫ሻ . (9) 

With this equation we also emphasize that inventory cannot be negative or bigger than Imax. 

4.2. Monetary flow 

At the monetary level the model makes a mild assumption. Namely, income is received immediately 
after commodity is sold, and transfer does not take time. The model takes into account 5 composite costs:  
ordering costs, inventory costs, backorder costs, overflow fee and recycle fee.  

Ordering cost includes both purchase price and transportation cost. This model adopts the cut-off 
point quantity discount (Buffa and Taubert, 1972), which is given only to the extent that the order exceeds 
a cut-off point (10). 

𝑐௣ሺ𝑄௣ሻ ൌ ቐ
𝑐௣𝑓𝑜𝑟 0 ൏ 𝑄௣ ൑ 𝛽ଵ

𝑘ଶ𝑐௣𝑓𝑜𝑟 𝛽ଵ ൏ 𝑄௣ ൑ 𝛽ଶ

𝑘௡𝑐௣𝑓𝑜𝑟 𝛽n-1 ൏ 𝑄௣ ൑ 𝛽௡

 , (10) 

where: ordering costs for a unit (e.g. pallet) 𝑐௣ ( 𝑄௣ ) is a function of an order quantity, such that  
𝐵௣ ൌ ሺ𝛽ଵ

p, 𝛽ଶ
p, . . . , 𝛽௡

pሻ  is a series of cut-off points and 𝐾௣ ൌ ሺ1, 𝑘ଶ
௣, . . . , 𝑘௡

௣ሻ , ∀𝑘௜
௣ ∈ ሾ0,1ሿ is a series of 

corresponding discount factors. 
From a business point of view, a quantity discount is a stimulus offered to a customer that results in 

a decreased cost per unit, when a commodity is purchased in a greater amount. That is a common practice 
to entice customers to purchase more. As the result, a seller can increase turnover, and a customer receives 
more favourable prices. In this regard, the cut-off point quantity discount introduces a quite realistic return-
to-scale mechanics to the model. Depending on the real-world context, unit inventory cost ℎ௣may consist 
of handling costs and opportunity loss. By opportunity loss, we mean the possibility of using the capital for 
other purposes (frozen capital). In this model inventory cost is constant and set for a unit of modelling time. 
Such that 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑐𝑜𝑠𝑡௣ ൌ ℎ௣ ∑ 𝐼௜

௣𝛥𝑡௜
௡
௜ୀଵ . We also consider that every single backorder (out-of-stock) 

is associated with a loss of business reputation. When a product is backordered, a customer is stimulated to 
search for a substitute. This fact provides a possibility that once loyal customer may potentially switch, 
which leads to eventual loss of a market share. In this regard, for every product in the ICS backorder is 
associated with a constant fee 𝑏௣. Overflows are also penalized by a constant fee 𝑤௣. In real world, such 
expenses may be related to the sudden need for reverse logistics. Additionally, when a lot is perished, quite 
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similar penalty 𝑥௣ related to reverse logistics of expired goods arises. Namely, such a batch must be sent 
for recycling. Based on the introduced variables total costs related to a product p may be calculated as 
follows (11). 

𝑇𝐶௣ ൌ 𝑐௣∑𝑜௧
௣ ൅ ℎ௣∑𝐼௧

௣𝛥𝑡 ൅ 𝑏௣∑𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠௧
௣ ൅ 𝑤௣∑𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤௧

௣ ൅ 𝑥௣∑𝐸𝑥𝑝𝑖𝑟𝑒𝑑௧
௣ . (11) 

Taking into account that each unit of product p is sold by a constant 𝑝𝑟𝑖𝑐𝑒௣, the net profit associated 
with this product is 𝑃𝑟𝑜𝑓𝑖𝑡௣ ൌ 𝑝𝑟𝑖𝑐𝑒௣∑𝑠𝑎𝑙𝑒𝑠௣ െ 𝑇𝐶௣. Thus, total net profit of the ICS is ∑ 𝑃𝑟𝑜𝑓𝑖𝑡௣௡

௣ୀଵ , 
which is treated as the simulation output. 

 

Figure 2. The dynamics of physical and monetary flows 

4.3. Algorithmic implementation 

Despite such a verbose formal description, the simulation model may be executed by a relatively 
simple iterative algorithm consisting of three functions (Table 1).  

Table 1. Pivotal functions behind the simulation algorithm 

Function 1: Check the expiry() Function 2: Replenishment() Function 3: Fulfil demand() 
for all elements in 𝐸௧

௣ do 
      if 𝑒௜

௣ ≤ 0 do 
            𝐸௧

௣. 𝑝𝑜𝑝ሺ𝑖ሻ  
     end if 
end for 
if 𝑟௣>𝐼௧

௣and status = False do 
     status ← True 
     𝑜௧

௣← 𝑄௣ 
end if 
 

if status = True and  𝑜௧ି௟
௣ ≠ 0 do 

      𝑆௧
௣. 𝑎𝑝𝑝𝑒𝑛𝑑ሺ𝑄௣ሻ 

      𝐸௧
௣. 𝑎𝑝𝑝𝑒𝑛𝑑ሺ𝑒௣ሻ 

      status ← False 
end if 
 
 

if 𝐼௧
௣ ൒ 𝑑௧

௣do 
      i ← 1 
      while 𝑑௧

௣> 0 do 
           tmp ← si 
           si ← si  - 𝑑௧

௣ 
           𝑑௧

௣ ← 𝑑௧
௣- tmp 

           if si <0 do 
                si ← 0 
           end if 
           i ← i+1 
      end while 
else do 
      𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟௧

௣ =𝑑௧
௣- 𝐼௧

௣ 
      𝑆௧

௣ ← ሺሻ 
end if 
if 𝑟௣>𝐼௧

௣and status = False do 
      status ← True 
      𝑜௧

௣← 𝑄௣ 
end if

 
Source-code implementation in Python 3.7 is available in the GitHub repository (Jackson, 2019). 

5. Defining the Number of Replications 

Due to the fact that some input variables of the model are random, namely in considered numerical 
example D~N(μ, σ2), L~N(μ, σ2) and A~Exp(λ), the output (net profit) is also a random variable under some 
distribution. Thus, a persistent question arises “how many runs of the model are adequate to produce a 
meaningful prediction?”. We approach this problem using a method based on confidence intervals (12). 

𝑛 ൌ ሺ
௭ഀ మ⁄

௪
𝐶𝑉ሻଶ , (12) 
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where: n is a minimum number of model’s replications to achieve desired confidence interval width w 
(expressed as a multiplier by the mean) for model with a coefficient of variation CV and (Byrne, 2013). 

We generated a set of random inputs in feasible range. After that the simulation model was replicated 
10.000 times. Such that each single replication had the same inputs and covered 120 modelling days. With 
such a procedure a sample was generated (Fig. 3), which was used to calculate a coefficient of variation 
and test normality (Table 2). 

 
Figure 3. The empirical distribution of the output variable 

In order to test normality, we have chosen the Anderson-Darling test, which is recognized as one of 
the most reliable, especially in cases of samples with more than 100 observations (Razali and Wah, 2011). 

Table 2. The Anderson-Darling normality test 

Statistic Critical value Significance level 
7.16 0.787 0.5 

 

We assume the confidence level of 95% and corresponding 𝑧ఈ ଶ⁄ ൌ 1.96. Calculating the coefficient 
of variation using sample mean and variance CV = 1512.8/9968.2 = 0.15, we have decided to work with a 
confidence interval of length 498.4 (5% of the mean) running each simulation 35 times to take the average 
output. 

6. ANN-Based Metamodel 

In the numerical experiment we consider the ICS that operates with 10 products and comprises 150 
input parameters. We have begun with generating 5 datasets using Monte Carlo sampling. Firstly, we have 
generated random inputs in feasible range. Secondly, simulation model was run 35 consecutive times with 
these inputs. After that, the average output value is calculated. Each of 5 generated datasets contains exactly 
1000 observations (Fig. 4). 

 

 
Figure 4. Outline of the experiment  
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The MLP-based metamodel comprises 3 hidden layers (30/30/10 neurons) and 5371 trainable 
parameters. It is worth to note that this research is not focused on neural architecture search. In this regard, 
the network architecture was derived using “trial and error” method and may be not optimal. The metamodel 
is trained in 200 epochs with the batch size of 20, and successfully validated for all 5 datasets with10-fold 
cross-validation (Fig. 5.). 

 

 
Figure 5. The learning procedure and predicted output (standardized)  

As Table 3 demonstrates the MLP-based metamodel was capable to generalize from a given sample 
and learn all the nonlinearity within the original simulation model. However, there is an upper-bound for 
accuracy due to inevitable presence of stochastic noise in training sample. On the other hand, this noise 
may be reduced by increasing the number of simulation’s runs, which puts forward a classical trade-of 
between performance and computational time. Additionally, such overfitting-preventing techniques as 
regularization and dropout look quite promising and will be reviewed in future research.  

Table 3. Accuracy of the metamodel 

 Training Test 

Exp. № df1 df2 F-statistic F-critical p-level R2 adj. R2 SEE R2 adj. R2 

1 149 850 2.54 1.22 0.95 0.89 0.87 0.22 0.85 0.82 

2 149 850 1.98 1.22 0.95 0.84 0.82 0.21 0.81 0.79 

3 149 850 2.62 1.22 0.95 0.90 0.87 0.22 0.86 0.83 

4 149 850 2.47 1.22 0.95 0.89 0.86 0.22 0.84 0.81 

5 149 850 2.51 1.22 0.95 0.89 0.87 0.22 0.84 0.81 

7. Conclusions 

Summing up, MLP is capable to “learn” and generalize complex nonlinear relations between 
simulation variables and, thus, may be efficiently applied for metamodelling of real-world inventory-
control systems. Despite the fact that ANN is generally robust to stochastic noise in a training sample, a 
MLP-based metamodel will anyway have some upper-bound for accuracy. However, the amount of noise 
may be controlled by increasing the number of simulation’s runs within the restrictions of computational 
budget. Moreover, both numerical and categorical variables can be used as inputs and outputs. Besides that, 
MLP-based metamodel equipped with ReLU needs much less computational time and memory than the 
corresponding simulation model, which makes it extremely useful for simulation-based optimization. 

In order to make the proposed metamodelling approach more tailored to the industrial needs, in 
future research it worth to pay attention on automatic neural architecture search and such overfitting-
preventing techniques as regularization and dropout. 
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