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The paper describes an eventual combination of discrete-event simulation and genetic algorithm to define the optimal 

inventory policy in stochastic multi-product inventory systems. The discrete-event model under consideration corresponds to the 

just-in-time inventory control system with a flexible reorder point. The system operates under stochastic demand and replenishment 

lead time. The utilized genetic algorithm is distinguished for a non-binary chromosome encoding, uniform crossover and two 

mutation operators. The paper contains a detailed description of the optimization technique and the numerical example of six-

product inventory model. The proposed approach contributes to the field of industrial engineering by providing a simple, but still 

efficient way to compute nearly-optimal inventory parameters with regard to risk and reliability policy. Besides, the method may be 

applied in automated ordering systems. 

Keywords: stochastic inventory optimization, simulation-based optimization, simheuristics, smart solutions, non-binary 
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1. Introduction 

Modern markets are extremely competitive. Businesses are facing unceasingly growing pressure 

on both prices and quality. Besides that, the company is required to swiftly respond to stochastic market 

conditions. Incorrect inventory policy leads not only to corporate losses, but also to overproduction, 

which is extremely harmful for an industry as a whole. In this regard, traditional “binge-and-purge” 

inventory policy is not appropriate anymore. Each penny lost in variable costs inevitably entails huge 

additional expenses along with reduced efficiency. Market competitiveness is simply not compatible with 

over-purchasing and throwing away an extra product. Reports of the International Data Corporation 

(Brandel, 2009) undeniably confirm this, namely companies that had utilized smart solutions for 

inventory optimization, managed to reduce inventory levels by up to 25 %. This fact emphasizes that the 
inventory optimization is, undoubtedly, a tremendously important task, the execution of which will allow 

a company to cut broad spectrum of operating costs and increase net profit as the result.  

The real-world inventory optimization is commonly characterized by the necessity for nearly-

optimal solutions in feasible computing times. That is why, the metaheuristics in general and genetic 

algorithms in particular are used so widely to define an optimal inventory policy. The world is full of 

uncertainty, which frequently makes classical deterministic approaches unsuitable due to excessive 

simplicity. On the other hand, metaheuristics provides a gargantuan arsenal of random search methods 

and parallelization paradigms. This paper proposes a simulation-driven approach to solve the stochastic 

inventory optimization problem. Unlike in traditional models, values of the reorder level, safety-stock and 

the reorder quantity are approached iteratively. The research goal is to utilize a simulation instead of an 

objective function in traditional form and apply the genetic algorithm to find such simulation adjustments 

that lead to the optimal output. The proposed combined approach provides a modeller with a tool to deal 
with real-world stochasticity in unconstrained way and assess alternative candidate-solutions by risk and 

reliability analysis.   
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2. The Essence of the Method  

As it is mentioned in the recent research (Juan et al., 2015), real-life stochastic combinatorial 

optimization problems may be reformulated as a simulation in a natural way. Thus, the hybridization of 

metaheuristics and simulation techniques promises to be an efficient solution of stochastic inventory 

optimization and inventory control problems. First and foremost, the combination of simulation and 

metaheuristics is focused on efficiency taking into account stochastic components that may be contained 

either in the objective function or in the constraints. Such approaches are conventionally called 

simulation–based optimization (Subramanian et al., 2000) or “simheuristics” in recent articles (Juan et al., 
2014). In general, the proposed method is applied to solve the stochastic optimization problems of the 

form Eq. (1) in subject to Eqs. (2, 3, 4) including classical (r, Q) models (Zvirgzdiņa and Tolujew, 2016).  

                  , (1) 

                                , (2) 

                        , (3) 

where   represents a discrete space of feasible solutions a ∈   for the inventory optimization problem. 

TC(a) stands for a stochastic total cost function and E[TC(a)] is an expected value of TC(a) or another 

probabilistic measure associated with the cost function (e.g., probability of an undesirable events to 

occur). Eq. (2) stands for probabilistic constraints related to the problem. For example, the probability that 

the reorder point ri happens to be smaller than the emerging demand during the replenishment θi must be 

smaller than ki. Eq. (3) is resource constraints required to be satisfied. Namely, resources (e.g., inventory 

capacity) utilized by a solution lj(a) must not exceed a threshold cj (e.g., available inventory capacity). 

The method aims to utilize a simulation instead of an objective function in traditional form and 
apply the genetic algorithm to find such simulation adjustments that would lead to the optimal output 

(Fig. 1). In the proposed method, the iterative searching process of the genetic algorithm has to assess the 

quality of feasible individual solutions, highlighting the promising ones. The process continues until the 

search time runs out. Immediately after this, a decision maker selects a final solution among promising 

with regard to a preferable risk policy. According to Pidd (1998), the simulation provides a natural way to 

introduce randomness of stochastic process. Furthermore, real-world stochasticity may be modelled 

throughout the best-fit probability distribution. The distribution may be either theoretical or empirical, 

without the need to be approximated to normal or exponential.  

 

Figure 1. The logic behind the simulation-driven approach 

Unequivocally, the most significant drawback of such a combined approach is that the solutions 

are not expected to be optimal. However, real-life stochastic optimization is commonly NP-hard in nature, 

thus, the combination of simulation with metaheuristics seems to be a tempting alternative for practical 

tasks, since such an approach provides a relatively simple and flexible method to deal with complex 

problems in reasonable computing times. 
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3. The Simulation Description 

First of all, the proposed method requires designing a simulation that corresponds to the real 

system with a sufficient degree of accuracy. As it is already mentioned, such a simulation with stochastic 

parameters will play the role of an objective function. Thus, an optimization process will be reduced to 

the search of the best simulation adjustments. The inventory theory at its current stage has developed a 

significant mathematical foundation for solving problems related to the determination of the optimal 

inventory policy (Zipkin, 2000). The most suitable model among considered is the model of Hopp and 

Spearman (2008). It is also worth noting that several distinguishing features were taken from “lost sales 
(r, Q) inventory control model” (Kouki et al., 2015), classical (r, Q) models of Bookbinder and 

Cakanyildirim (1998) and Bijvank and Vis (2011). The considered model makes several assumptions. 

Firstly, unfulfilled demands are defined as a lost opportunity and no backlog shall be fulfilled later. 

Secondly, demand size, demand frequency and replenishment lead time are continuous random variables. 

Thirdly, a product of a particular type is replenished by an individual supplier.  

Discrete-event simulation paradigm is chosen in order to take into account random components 

without a dramatic increase in system complexity at the computational level. The simulation of this kind 

was successfully performed and analysed in several recent articles by Alizadeh et al. (2011), Min and 

Lindu (2016) and Sinaga et al. (2016). Unlike in continuous simulation, system dynamics is not 

unceasingly tracked during the simulation time. Discrete-event simulation contains a list of events, such 

that each event takes place at a particular instant of time altering the state of the system. It is important to 

emphasize that there are no changes in the system between consecutive events. That is why, the 
simulation laps in time from previous event to the next one and runs much faster saving precious 

computational resources (Fig. 2). Each event is scheduled according to preliminary generated time tn and 

executes sequentially. Generated time is appended to a time vector T = (t0, t1…tn), which may be 

interpreted as a clock or a time-counter.   

The total inventory assortment corresponds to the set of products P, such that each product pi ∈ P. 

The storage capacity allocation is the first priority task. Presuming that Imax is the total storage capacity, 

we may declare Β as a vector of individual storage capacities assigned for each product p, such that  

Β = (β1, β2, … β|P|) and    
   
    = Imax. The simulation begins with an initial inventory level of Ip at t0. 

During the simulation, emerging demands xp,t are satisfied and the stock level declines gradually. If the 

stock level falls below a certain threshold (reorder point) rp,t, the inventory places a new order yp,t to refill 

the stock. Assuming that xp,t cannot exceed the corresponding inventory capacity βp, an inventory level at 

a particular moment of time equals to an inventory level in previous moment subtracting received demand 

and adding an order that was placed at order time t – L Eq. (4). Where L is the replenishment lead time, 

the time it will take to deliver the product from a supplier to the warehouse. It is also worth to note that 
such a model aims to represent an inventory under some sort of just-in-time policy, thus, the order size 

yp,t-L (Q in classical (r, Q) models) equals to the corresponding maximal inventory capacity βp subtracting 

the difference between the current inventory level Ip,t and adjusted safety-stock SSp Eq. (5). In the 

proposed model, a new reorder point rp is recalculated after each replenishment Eq. (6). Where θp,t-L 

stands for a mean demand during the replenishment lead time and SSp is a value of the corresponding 

safety-stock. Based on that, the number of arisen backorders Op,t may be determined as the step function 

Eq. (7). 

                         –   , (4) 

      
  –                        

                                         
 , (5) 

          –      , (6) 

       
                                   

                             
 . (7) 
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Figure 2. The example of an inventory path 

Discrete-event simulation of such models is simple enough and can be performed by the iterative 

algorithm (Fig. 3). 

 

Figure 3. The logic behind the simulation 

Each product in an assortment has a different market price and thus a different backorder cost bp. 

Likewise, unit costs of storage and shipping, hp and lp respectively, vary depending on product’s 

properties and subtleties of handling. Thereby, the total cost function for each product is the sum of the 

products of unit costs on number of units shipped, stored or backordered respectively Eq. (8).  

           
 
            

 
             

 
   . (8) 

According to Eq. (5), the overflow (    
   
   

   
   
   ) may occur. Such a case may be taken into 

account by declaring a specific cost s related to the unit overflow and tracing the overflow level Eq. (9). 

In real world, such a cost corresponds to the warehouse outsourcing or reverse logistics.   
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In this regard the total costs function for an inventory as a whole is     
   
    +     

 
   . 
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4. The Optimization Procedure 

4.1. The essence of genetic algorithms 

The genetic algorithm is a stochastic search technique that mimics the evolutionary phenomena of 

natural selection, namely, the chromosome inheritance and darwinistic struggle for survival. The genetic 

algorithm was invented and firstly introduced by Holland (1975). To date, genetic algorithms have been 

successfully implemented in logistics and supply chain management (Altiparmak et al., 2006) and (Yeh 

and Chuang, 2011). It is expected that the algorithm converges to the optimum in several generations 

(Pasandideh and Niaki, 2008). According to the research (Man et al., 1996), genetic algorithms are quite 
simple to design, however, their behaviour is hard to predict and understand, especially, why genetic 

algorithms frequently succeed at providing near-optimal solutions in real-world stochastic problems. 

Conventionally, such phenomena are attempted to be explained by the building-block hypothesis. The 

hypothesis says that genetic algorithm looks for a near-optimal solution by the juxtaposition of the 

schemes with high fitness (the building block). The highly-fit strings (or other data structures) are 

sampled, crossed over and resampled to form new even fitter strings. Working with these building blocks, 

we manage to reduce the complexity of the problem. Namely, instead of building strings with good 

fitness by trying every feasible combination, algorithm improves strings step by step from the partially 

best solutions of the previous samplings. 

In order to apply genetic algorithm, the following initial parameters are required: 

 Population size (N) – the number of chromosomes in each generation;  

 Crossover rate (Pc) – the probability of executing a crossover operator; 

 Mixing ratio (Pu) – the probability for each attribute to be exchanged; 

 Mutation rate (Pm1) – the probability of executing a mutation operator 1; 

 Mutation rate (Pm2) – the probability of executing a mutation operator 2; 

 Mutation step ( ) – the gene-multiplier used by the mutation operator 2; 

 Tournament size (t). 

The pivotal steps involved in the applied genetic algorithm are described in pseudocode (Luke, 

2015): 

 
N ← desired population size  

P ← {} 

for N times do 

  P ← P ∪ {new random individual} 

Best ← ☐ 
repeat 

  for each individual Pi ∈ P do  
    AssesFitness(Pi) 

    if Best = ☐ or Fitness(Pi) > Fitness(Best) then 

      Best ← Pi 

  Q ← {} 

  for N/2 times do 

    Parent Pa ← SelectWithReplacement(P) 

    Parent Pb ← SelectWithReplacement(P) 

    Offspring Ca, Cb ← Crossover(Copy(Pa), Copy(Pb)) 

    Q ← Q ∪ {Mutate(Ca), Mutate(Cb)} 
  P ← Q 

until time runs out 

return Best 

4.2. Chromosome representation and fitness function 

Practically, genetic algorithm is quite efficient in cases of large search space with lack of 

knowledge on the structure of the fitness function. The stochastic inventory optimization problem 

undoubtedly belongs to this domain. Moreover, in cases of high stochasticity (Fig. 4), it becomes difficult 

to apply some traditional optimization techniques. 
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Figure 4. Total costs function of the 2-product stochastic inventory model with the constant safety-stock parameter 

Genetic algorithm is quite famous as a problem-independent approach, nevertheless, the chromosome 

representation is a critical issue. Applying genetic algorithm to the inventory optimization problem under 

consideration, we are looking for such adjustments to simulation parameters: storage-resources allocation 
Β = (β1, β2, … β|P|) and corresponding safety-stock levels SS = (SS1, SS2, …SS|P|) that lead to the best 

fitness. The chromosome may be encoded as a |P| size list of integers    = (β1, SS1, β2, SS2, … β|P|, SS|P|). 

In such a list each odd element stands for the inventory capacity allocated to each product p and each 

even element represents adjusted safety-stock level for the corresponding product p (Fig. 5). 

 

 

Figure 5. Chromosome representation 

In such a simulation-driven approach, fitness function is evaluated by sequential runs of several 

simulations. In this case, fitness is the mean value of total costs calculated in several sequential 

simulation’s runs. with the same parameters. We are looking for such parameters that lead to the minimal 

mean value of the total cost function Eq. (10) satisfying the constraints Eqs. (11, 12). 

     ∈           
   
   , (10) 

   
   
                          , (11) 

                       . (12) 

In case the solution does not satisfy constraints Eqs. (11, 12) the fitness will take extremely high 

values, due to infeasibility of such a solution. During the optimization procedure, such individuals 

(candidate solutions) will have only an insignificant chance to pass to the next generation.   

It is pointing out that a suitable chromosome representation for the particular problem domain is an 

extremely important task, since a good choice will make the search faster and easier by restricting the 

search space. However, it is tremendously important to keep in mind that the crossover and mutation 

operators must take into account the design (especially datatype) of the chromosome. It is important to 

emphasize that in the considered problem a non-binary chromosome representation was chosen.  

As it is mentioned in Stack Exchange (2017), the main reason why binary representation is the 

most frequent is the simplicity to implement and popularity in academic papers. Moreover, binary 
chromosome representation is usually space-efficient, that is why it was so popular in times, when 
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memory was a serious problem. However, in real-world problems, it becomes common to create a 

genotype representation that corresponds to the considered problem with a high degree of accuracy. 

4.3. Crossover and mutation 

Crossover is the distinguishing operator of the genetic algorithm. Basically, it is a process of 

taking two parent solutions and production of offspring solutions in order to get a new, potentially better 

one. Crossover is used to vary chromosomes from one generation to the next. In order to solve the 

stochastic inventory problem, the uniform crossover is proposed (Fig. 6). 

 

 

Figure 6. Uniform crossover representation 

In the uniform crossover individual genes in the chromosome are compared between two parents 

and swapped with the fixed mixing ratio Pu. Uniform crossover is chosen for three main reasons. Firstly, 

since genes in the chromosome correspond to different simulation parameters SS and B, we seek a way to 

keep odd and even genes separated. Secondly, the uniform crossover is an efficient way to avoid the 

premature convergence (Michalewicz, 1996). Lastly, Williams and Crossley provided an empirical 

evidence (1998) that the uniform crossover is an exploratory approach in comparison to the traditional 

exploitative one, as the result, it becomes more efficient in more complete search by maintaining the 

exchange of valuable information.  

 
Pu ← probability of swapping values  

     ← first vector〈v1, v2, …, vn〉to be crossed over 

      ← second vector 〈w1, w2, …, wn〉to be crossed over  

for i in range from 1 to length of the vector do 

   if Pu ≥ random number in range (0.0, 1.0) then   

     swap the values of vi and wi 

return       and       
 

Besides, genetic algorithm requires a mutation operator to perform the optimization. Taking into 

account the particularities of chromosome encoding, it is proposed to apply two different mutation 

operators (“mild” and “radical”). The radical mutation is applied in order to prevent the premature 

convergence (otherwise population may get stuck in local optima). In radical mutation we replace gens in 

the chromosome by a new integer number in a feasible range (0, Imax) with the probability Pm1. 

 
Pm1 ← probability of replacing the value  

     ← vector 
for i in range from 1 to length of      do 
  if Pm ≥ random number in range (0.0, 1.0) then   

       ← random integer in feasible range  

return      
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On the other hand, mild mutation is applied to accelerate convergence. The mild-mutation operator 

alters genes in the chromosome with the probability Pm2 by multiplying them on some (relatively small) 

step   rounding to the nearest integer after that. 

 
Pm2 ← probability of altering the value  

     ← vector 
for i in range from 1 to length of      do 
  if Pm ≥ random number in range (0.0, 1.0) then   

       ← round(   *  ) 
return      

4.4. Selection 

It is concluded by Miller and Goldberg (1995) that tournament selection is an efficient and robust 

mechanism for working with imperfect (noisy) fitness functions. Tournament selection runs several 

"tournaments" among t individuals (chromosomes) randomly chosen from the population. The fittest 
individual in each tournament is selected for the following crossover. Since weak individuals have 

relatively a small chance to be selected in large tournaments, it is quite important to find the optimal 

tournament size t. Tournament Selection can be programmed by the extremely simple algorithm: 

 
P ← population 

t ← tournament size, t ≥ 2 

Best ← randomly picked individual from P with replacement  

for i in range from 2 to t do 

   Next ← randomly picked individual from P with replacement 

   if Fitness(Next) > Fitness(Best) then 

      Best ← Next 

return Best 

 

Tournament selection has several significant benefits over alternative selection methods, namely, it 

is both simple and efficient to code, it works with parallel architectures and, lastly, it may be easily 
adjusted. 

5. The Numerical Example  

Consider an example of the six-product inventory control system that operates under just-in-time 

policy. There is a retailer selling products of 6 types that are replenished by an individual supplier. 

Products of all six types share a common storage with a limited capacity of 150 pallets    
 
     150. 

Each type of product has a unique triangular distribution (Kotz and Van Dorp, 2004) for both demand 

size and replenishment lead time and exponential distribution for demand interarrivals (Table 1.). 

Table 1. The initial data 

Storage 

costs 

(USD) 

Shipping costs 

(USD) 

Backorder 

costs (USD) 

Lead time 

(days) 

Demand size 

(pallets) 

λ of demand  

interarrivals (days) 

7.2 3.5 730 (7.5, 9.0, 11.5) (0.3, 0.85, 1.2) 2.0 

6.32 3.2 650 (3.5, 5.5, 7.5) (0.7, 1.45, 2.1) 1.11 

4.32 2.7 350 (4.2, 5.3, 9.5) (0.45, 0.75, 1.3) 1.43 

5.5 3.0 510 (3.5, 4.5, 7.5) (0.43, 0.65, 2.3) 2.86 

8.2 4.3 900 (1.3, 2.2, 3.0) (0.09, 0.15, 0.5) 0.021 

4.5 3.9 270 (1.5, 2.0, 2.9) (0.26, 0.34, 0.43) 0.9 

 

We apply given adjustments and execute 60-days simulation of the inventory control system. The 

simulation is designed in “SimPy”, process-based discrete-event simulation framework on standard 

Python 3.6 (Scherfke, 2014). We also use evolutionary computation framework “DEAP” to develop the 

genetic algorithm with the required operators. DEAP is chosen, because it works perfectly with 

parallelisation mechanisms and keeps data structures transparent (Fortin et al., 2012).  
The algorithm has successfully converged at the optimum in 122 generations. The optimal solution 

is represented by the chromosome    = (30, 4, 17, 2, 24, 4, 41, 5, 15, 1, 13, 1) with the expected total costs 
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of             
 
    = 2828835 USD. The fittest chromosome    stands for the following simulation 

adjustments: storage-resources allocation Β = (30, 17, 24, 41, 15, 13) pallets with the corresponding 

safety-stock levels SS = (4, 2, 4, 5, 1, 1) pallets. The pivotal advantage of the involved discreet-event 

simulation is a possibility to perform risk and reliability analysis. Additionally, such an approach allows 

the researcher to plot the inventory dynamics in details and easily spot existing bottlenecks or system 

vulnerabilities. 

Since the parameters of a genetic algorithm (especially a population size N and a tournament  

size t) have tremendous impact on convergence speed and a probability of premature convergence, it is 

very important to find a balance between search speed and premature convergence prevention (Fig. 7).  

 

 

Figure 7. The example of convergence path 

Parameters with such a balance may be found empirically (Table 2). According to the Table 2, we 

can conclude that even relatively insignificant alterations in parameters of the genetic algorithm 

noticeably affect the convergence speed. Furthermore, some unsuccessful settings may result a premature 

convergence. 

Table 2. The parameters of the genetic algorithm 

№ Pop. size 

(N) 

Cross. 

rate (Pc) 

Mix. ratio 

(Pu) 

Mut. rate 

(Pm1) 

Mut. rate 

(Pm2) 

Mut. 

step ( ) 

Tour. 

size (t) 

Fitness 

value 

Conv. 

speed 

1 120 0.3 0.1 0.025 0.1 1.1 2 4437934 43 

2 130 0.3 0.2 0.05 0.05 1.15 4 2828811 198 

3 140 0.4 0.4 0.025 0.05 1.2 5 2828901 274 

4 150 0.4 0.3 0.05 0.05 1.05 3 2828835 122 

5 160 0.5 0.5 0.05 0.025 1.25 6 2828622 334 

6 170 0.5 0.6 0.1 0.025 1.3 7 2828873 219 

 

Variation of parameters, among other things, is a reliable way to verify a preliminary solution, to 

make sure that the algorithm has not converged at a local optimum or even to a random point, 

unfortunately, it is not a panacea.   

6. Risk and Reliability Analysis  

The remarkable advantage of a simulation-driven approach is the possibility to utilize risk and 

reliability analysis in the decision-making process. Since system under consideration is characterized by a 

sufficient degree of uncertainty, a decision-maker may be interested not only in optimization of the 
expected value, but also in avoidance of undesirable events, such as backorders and overflows. Even a 

very accurate model may miss some of the subtleties. Furthermore, some undesirable events may be 

slightly underestimated in a cost function. For example, in real world backorder induces not only loss of 

opportunity (potential profit), but also loss of business reputation and image, which is extremely 

complicated to assess monetary. Similarly, abrupt storage-overflow involves either warehouse 

outsourcing or reverse logistics, an extra difficulty in terms of management. Following the described 
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approach, an expert may eventually choose the most suitable solution among several nearly-optimal 

candidates based on specific criteria, for instance, the likelihood of a backorder to arise during the 

replenishment (Fig. 8).  

 

Figure 8. Backorder risk comparison of two candidate-solutions 

Besides, risk-averse decision maker will be, most likely, interested in the solution with a smaller 

standard deviation over the riskier solution with a slightly better expected value (Juan et al., 2015). 

7. Conclusion 

Summarizing, the proposed optimization technique is a simple to design and computationally 

efficient approach to find nearly-optimal inventory policy in stochastic multi-product inventory systems. 

The combination of discrete-event simulation and genetic algorithm provides a flexible method to solve 

complex problems with lack of knowledge on the structure of the objective function. Furthermore, the 

discrete-event simulation paradigm takes into account random components. Besides, the key advantage of 

such a simulation-driven approach is the possibility to trace inventory dynamics in details and utilize risk 

and reliability analysis in a decision-making process.  

The research also concludes with a statement that the non-binary chromosome encoding works 
properly in combination with uniform crossover and two mutation operators. Such a design provides a 

fine balance between convergence speed and likelihood of premature convergence. There are still several 

minor problems to solve, such as the program-optimization of both the simulation and genetic algorithm. 

Moreover, it is crucially important to test the proposed approach on problems with higher dimension and 

compare it to alternative metaheuristic techniques. These issues are waiting to be deeply explored in a 

future research. 
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