
Transport and Telecommunication Vol. 19, no. 2, 2018 

77 

Transport and Telecommunication, 2018, volume 19, no. 2, 77–92 
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia 

DOI 10.2478/ttj-2018-0007 

 

SIMULATION OF CONGESTION PHENOMENA  

AND STRATEGIC PASSENGER BEHAVIOUR  

ON TRANSIT NETWORKS 

Lory Michelle Bresciani Miristice
1
, Dario Menichetti

2
, Guido Gentile

3
 

1 
Università di Roma La Sapienza  

Via Eudossiana 18 - 00184 Roma, Italy 

+39 335 1502 532, lory.bresciani@ptvgroup.com 
2 
Università IUAV di Venezia 

Ca' Tron Santa Croce 195 - 30135 Venezia, Italy 

+971 50 6023 320, dario.menichetti.ing@hotmail.it 
3 
Università di Roma La Sapienza 

Via Eudossiana 18 - 00184 Roma, Italy 

+39 06 4585 150, guido.gentile@uniroma1.it 

 

 
This article focuses on the simulation of transit networks, including passengers’ congestion phenomena and strategic 

behaviour, as a tool for planning and operation. Specifically, it describes a model of user equilibrium on large-scale transit networks 

considering on-board overcrowding, queuing at stops and dwelling delay, and representing in addition the effects of random events, 
such as the availability of seats and the waiting of vehicles, through hyperarcs. The assignment algorithm computes a strategy-based 

user equilibrium with implicit hyperpath enumeration by solving a fixed-point formulation, through a gradient projection method, 

which highly improves convergence performance. The model was implemented in .net as a dll that uses the software PTV Visum as 
I/O source. This article will focus on the model formulation and its capability of reproducing the target phenomena, while the results 

of model validation and testing will be described in a following paper. 

Keywords: public transport assignment, hyperpaths, user equilibrium, failing probabilities, common lines 

1. Introduction 

1.1. Motivation 

According to the World Health Organization, on the one hand, transport has a positive key role in 

the economy, on the other hand, its externalities can harm human health and the environment. In the 

European region alone, about 100,000 premature adult deaths occur each year due to air pollution, which 

is mostly caused by emissions from road traffic. In addition, road accidents result in about 127,000 deaths 

and 2.4 million injuries per year, killing more young people aged 5-29 than any other cause. Moreover, 

transport is the fastest growing source of fossil-fuel CO2 emissions, which is one of the main factors of 

climate change. Finally, traffic noise and congestion damage health, psychological well-being, work 

performances and overall life satisfaction (Dora and Phillips, 2000). 

Public transport is way more efficient of private transport in terms of the above externalities as 

well as in terms of space usage: just consider that one metro line can carry more than 50,000 passengers 

per hour, while one road lane can serve at most 2,000 vehicles per hour. Moreover, in the near future ride 

sharing with electric and autonomous vehicles will probably change our mobility habits but will not solve 

the capacity issue. Therefore, governments are still recommended to invest on public transport, 

attempting to attract more users by increasing the quality of transit service in terms of comfort, reliability 

and speed. 

However, also public transport may be negatively influenced by congestion, especially in presence 

of the desired higher modal shift. Oversaturation of vehicles makes boarding/alighting at stops a difficult 

operation, causing significant delays and heavily affecting service regularity, while the stress of riding on 

overcrowded transit carriers may reduce people’s productivity at work. For instance, in London transit 

network, congestion costs to passengers around £230 million per year (Oxford Economic Forecasting, 

2003). Level of service increase can be achieved by reducing congestion through careful planning of the 

public transport service. To this purpose, different transit assignment models have been introduced in the 

last 50 years. 
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This article focuses on the simulation of public transport networks, including passengers’ 

congestion due to vehicle and platform capacities, and strategic behaviour due to en-trip unpredictable 

events, such as failing to sit or boarding and vehicles arrivals at stops. In particular, the following typical 

transit phenomena will be modelled:  

 passengers discomfort due to overcrowding on-board of a vehicle and at platforms; 

 passengers queuing/waiting at stops for more than one vehicle arrivals, due to the inability of 

boarding crowded carriers; 

 dwelling delay for passengers boarding and alighting, due to limited door capacity and vehicle 

overcrowding; 

 limited availability of seats, for boarding and dwelling passengers; 

 waiting for the first vehicle of an attractive set of lines at stops. 

1.2. Existing approaches to transit assignment 

The available approaches to the simulation of public transport networks and transit services can be 

divided into three main categories: frequency-based (FB) models, schedule-based (SB) models and agent-

based models (AB). 

SB models are usually adopted to simulate low-frequency and high reliability services, which have 

timetables available to users with departures and arrivals times at each stop. The typical implementation of 

this approach requires to introduce a diachronic graph to represents every single run of the service, making 

the models inherently dynamic. Indeed, the assignment results (travel times and passenger flows) are always 

referred to a specific run and thus to a certain time of the day. SB models can represent in details passengers’ 

congestion due to vehicle capacities but are not suitable to simulate the delays of vehicles due to alighting 

and boarding passengers at stops, as the diachronic graph is conceived as a fixed space-time network. 

Another weakness of the diachronic graph is the representation of the time-continuous elements of the 

transit network, such as the pedestrian links and the interfaces with multimodal transport systems, which 

may result in a relevant growth of the problem dimension in terms of arc numbers. 

FB models are usually preferred to simulate high-frequency or low-reliability services, where 

vehicles are not able to follow timetables or when timetables are not considered by users. These models 

simulate services as they are perceived by passengers, that is in terms of probabilistic departure events. 

All runs of the same transit line are considered by passengers as a unitary supply facility with a certain 

frequency, thus users do not try to synchronize their arrival at stops with the scheduled passage of carries 

(if any). In this case, it is rather convenient to wait for a certain set of attractive lines and board the first 

arriving vehicle of them, because this allows to reduce significantly the waiting times, that are a major 

component of urban journey cost. FB models rely on a spatial/functional graph without usually involving 

dynamic aspects. Within the limits of static assignment, it is possible to simulate (as it will be shown in 

this paper) most of the relevant phenomena occurring on transit networks, including non-separable 

congestion and strategic behaviour. 

AB models for transit assignment adopt essentially a meso or micro simulation approach, with its 

pros (e.g. great detail with individual vehicles and passengers) and cons (e.g. high runtime, difficult 

calibration and convergence issues). Because of these problems FB models are still the most used in 

practice. 

The state-of-the-art of transit assignment is summarized in the recent book by Gentile and Noekel 

(2016), which provides a complete review of the available approaches to the simulation of public 

transport networks, as well as the available methodologies to encompass emerging aspects such as fleet 

control, passenger information and multimodality. 

The FB model presented in this article derives from a combination of the transit assignment 

models introduced in Gentile et al. (2016a) and Gentile et al. (2016b), providing a practical 

implementation of the equilibrium model and a detailed discussion of its supply side. 

2. User equilibrium and network loading 

2.1. Fixed-point formulation 

The transport network is represented as a directed graph (N, A), where N is the set of nodes and A 

is the set of arcs, each one with its attributes. Travel demand is segmented into a set G of user classes, 

each one with its preferences. The study area is partitioned into a set of traffic zones ZN, each one 

associated with a specific centroid node, where trips start and end. 



Transport and Telecommunication Vol. 19, no. 2, 2018 

79 

A user equilibrium for the transit assignment model discussed in this paper can be found by 

solving the fixed-point problem with implicit strategy enumeration schematized in Figure 2.1, whose 

main variables are: 

dg
aq   flow on arc aA of class gG users directed to destination dZ - it is the main variable; 

aq   volume of arc aA; 

agc   cost of travelling on arc aA for class gG users;  

ag   diversion probability of arc aA for class gG users;  

dg
ap   conditional probability of arc aA for class gG users directed to destination dZ; 

dg
iw   expected cost of class gG users from node iN to destination dZ; 

odgd   demand trip flow of class gG users from origin oZ to destination dZ; 

dg
ay   auxiliary flow on arc aA of class gG users directed to destination dZ. 

 

 

Figure 2.1. Fixed-point schema of the equilibrium model 
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The main peculiarity of this model is that congestion affects not only the arc costs but also the 

diversion probabilities, that are the results of random events on the network.  

While the network loading model (route choice and flow propagation) is clearly partitioned into 

demand segments (group and destination), the congestion model is non-separable and requires flows to be 

aggregated into volumes. 

To cast the proposed fixed-point schema into an efficient equilibrium algorithm, arc costs and 

placing probabilities must be recomputed through the congestion model right after the update of the 

destination specific flows for each class (without waiting for all the other demand segments). Moreover, it 

is convenient to repeat the optimization of the same problem partition until the convergence to 

equilibrium is sufficiently improved, before analysing the next demand segment. 

2.2. Route choice model 

The main feature of the proposed strategy-based model for transit assignment is the presence of 

particular nodes where the conditional probabilities are not outcome of passengers’ choices but depend on 

the average results of network events. Indeed, at stops SN passengers board on the first available 

attractive line, while at placing nodes PN they are affected by the probability of seating or boarding. 

Moreover, these probabilities are affected by congestion. The route choice model has then a different 

form depending on the node type. 

For a standard node iN-(S+P) it is: 

 :
a

dg dg
i ag i dN

w Min c w a A A

    , (2.1) 

 :
a

dg dg
i ag i dN

s ArgMin c w a A A

    ,  (2.2) 

 ,dg dg
a i ip B a s a A    ,   (2.3) 

where the Boolean function B(x) yields 1, if x is true, and 0, otherwise. 

This is the classical determinist model where users of class gG choose the successive arc si
dg
A 

to reach their destination dZ form node iN as the best local alternative among the forward star: 

 Ai
+
 = {aA: Na

-
 = i}, where Na

-
N and Na

+
N denote, respectively, the tail and head nodes of 

arc a;  

 Ai
-
 = {aA: Na

+
 = i} will denote instead the backward start of node iN. 

 

Note that in the proposed model we limit the route choice to the so called efficient arcs Ad of 

each destination dZ. More specifically, we consider only arcs whose head is closer to the destination 

than the tail in terms of a given graph topological order z(i, d), which essentially measures a distance from 

each node iN to d: 

Ad = {aA: z(Na
-
, d) > z(Na

+
, d)}. (2.4) 

The restriction to efficient arcs greatly simplifies the whole equilibrium model as it allows to 

easily compute route choice and flow propagation of each destination by processing nodes in reverse and 

direct topological order, respectively. In section 5 we will relief this assumption for the sake of generality. 

 

For a stop node iS it is: 

1

1 a

i

i d

dg dg dg
i a N

a A

a A A ag

w p w

c









 

  


,  (2.5) 

 

1

,
1

i d

agdg
a i d i

b A A bg

c
p B a A A a A

c

 

 

     


.   (2.6) 
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This formulation results from the classical optimal strategy model (Spiess and Florian, 1989) 

under the hypothesis that the cost of each waiting arc exiting the stop is proportional to the headway of 

the corresponding line. 
 

Finally, for a placing node iP it is: 

0
a

i

dg dg dg
i a N

a A

w p w 



   , (2.7) 

,dg
a ag ip a A    .  (2.8) 

Both the placing probabilities and the waiting arc costs depend on passengers’ flows; the form of 

these relations will be presented in the congestion model. 

2.3. Flow propagation model 

The classical flow propagation model consists in loading the demand flows towards each 

destination, according to the arc conditional probabilities resulting from the route choice model as 

follows: 

i

dg dg
i idg b

b A

q d y


   ,  (2.9) 

,dg dg dg
a i a iy q p a A    .  (2.10) 

The first equation yields the flow exiting from each node as the sum of the travel demand and the 

entering arc flows. The second one propagates the node flow on the arcs of its forward star. 

In the following, to improve convergence to equilibrium we adopt gradient projection when 

finding the search direction ya
dg

 in the propagation model of used standard nodes, as follows: 

1 1
0, ,

2 2
a

i

dg dg
dg dga i
a i idg dg

b ag N
b A

q w
p Max a A s

q c w 







 
 

       
 

 


, (2.11) 

1 ,

i

dg dg dg
a b i

b A

p p a s


   .  (2.12) 

In the proposed implementation of the gradient projection schema, the probability shift of each 

non-minimal local alternative is negative and equals to half of the complement to one of the ratio between 

the minimum cost from node i to destination d and the cost to reach d using arc a. When these two costs 

coincide, the shift is null as the local flows satisfy the conditions for deterministic equilibrium. The 

resulting probabilities must anyhow be non-negative. Finally, the probability of the node successive arc 

acquires all the shifts subtracted to the non-minimal alternatives, but not necessarily all their probabilities, 

as it would happen instead in the classical All-Or-Nothing assignment. 

For stops, placing and unused nodes we stick to the probabilities of the route choice model. 

Note that gradient projection requires the previous values of the conditional probabilities that are 

obtained from the destination specific flows qa
dg

. 

To measure convergence, we introduce the following version of the relative gap: 

 
 

 
 

a

i i i

a

i i i

dg dg dg dg dg dg dg
a ag i i a a bN

i N S P i S Pa A a A b A

dg dg dg dg dg dg dg
a ag i i a a bN

i N S P i S Pa A a A b A

q c w w w q p q

q c w w w q p q





  



  

      

      

      


 

       
 
 

    

    

;  (2.13) 

because at stops and placing nodes no decision is actually taken, a flow difference is considered instead of 

the gap with respect to the minimum cost. 
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The averaging model which is required to guarantee the convergence of the gradient projection 

method is like the Method of Successive Averages, where k
bad

 is the number of previous iterations that 

did not provide a sufficient improvement of the relative gap: 

1

1 badk
 


, (2.14) 

 1dg dg dg
a a aq y q     .  (2.15) 

The aggregation model consists in a simple sum over all destinations: 

dg
ag a

d Z

q q


  . (2.16) 

3. Supply model 

3.1. Transit network 

The proposed supply model simulates the line services and the pedestrian network that connects 
the stops for access, egress and transfer, while the extension to multimodal transport and shared mobility 
(like park & ride, car sharing and ride pooling) is out of the scope of this paper. 

Hence, the focus is on public transport, which is perceived from passengers as one single mode 
composed of a variety of physical systems (such as metro, train, bus, and sidewalks). 

The directed graph (N, A) adopted to model the transit network is articulated in sub-networks, 
consisting of separate layers of arcs and nodes that represent specific transport systems, where each arc 

represents a specific trip phases. Figure 3.1 depicts the graph elements of the generic stop sSℓ of line ℓL. 

 

 

Figure 3.1. Topology of the transit network for a generic line ℓL and its generic stop sSℓ 

More specifically, the transit network is composed of: 

 the pedestrian network, which is the portion of the base (infrastructural) network where 
passengers can walk, including the connectors to the zone centroids; 

 the network of each line ℓL, which represents riding, dwelling, boarding and alighting 
vehicles, and it is duplicated into seating and standing to better reproduce these two different 
comfort conditions; 

 stop arcs that connect the pedestrian network to the line networks. 
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Thus, the graph is composed of the following types of nodes and links:  

 base nodes Nbase, including the zone  

centroids Z and the base stops Bs, 

 stop nodes S, 

 line nodes Nℓ, including the placing  

nodes P, 

 running arcs Arun, 

 

 base arcs Abase , 

 stop arcs Astop , 

 waiting arcs Await , 

 placing arcs Aplace , 

 alighting arcs Aalight , 

 dwelling arcs Adwell . 

 

Passengers are subjected to unpredictable events at particular nodes. More precisely, at stops 

passengers wait for service and are subject to random vehicle arrivals; at placing nodes, mingling 

passengers try to board the vehicle and seat but are subject to a failing probability, which depends on the 

ratio between available capacity and request flow. 

A key innovation of this model, with respect to the transit assignment models available in the most 

used software packages for transport network simulation, is that different congestion phenomena can be 

simulated through the introduction of non-separable arc cost functions, which will be presented in the 

following. 

3.2. Arc costs 

The generalized cost cag of arc aA for user of class gG is the sum of a non-temporal cost ag, 

which is not affected by congestion, and a temporal cost, given by the value of time γag multiplied by the 

travel time ta : 

ag ag ag ac t    . (3.1) 

The non-temporal cost is in general a weighted sum of arc attributes na
k
 (transit fares, link length, 

stop and on-board facilities, etc.) multiplied by attribute coefficients γg
k
 that express the route choice 

preferences of the class: 

k k
ag a g

k

n   . (3.2) 

A random utility model for route choice should be calibrated to set the values of these coefficients. 

The specific value of time of each arc can be computed by multiplying the base value of time γg
vot

 

of the class for different discomfort coefficients ag which change according to the arc type and flows: 

vot
ag g ag    .  (3.3) 

Null cost is assumed for stop and placing arcs. 

3.3. Pedestrian arcs 

Pedestrian arcs represent passengers walking on sidewalks. 

The travel time of the generic base arc aAbase is usually given by the link length divided by the 

walking speed. When pedestrian congestion is an issue a BPR function like the following can be adopted: 

1 , ,

walk

walka a
a basewalk walk

a

l q
t a A

v k w




  
      
   

 (3.4) 

where: 

 la is the link length, 

 v
walk

 is the walking speed, 

 k
walk

 is the capacity per unit width of sidewalks, 

 wa is the width of the sidewalk (if null, time is assumed as infinite, 

 α
walk

 and β
walk

 are the BPR parameters. 

 

The non-temporal cost can be obtained by considering among the relevant arc attributes the 

number of shops and other points of interest, the slope, the presence of public lights and other safety and 

security features. However, in most transit applications pedestrian flows are not a critical outcome, thus 
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the above qualitative characteristics are often disregarded despite their relevance (i,e, the non-temporal 

cost is simply assumed equal to the travel time). 

Finally, a constant discomfort coefficient g
walk

 is considered. 

3.4. Running arcs 

The generic running arc aArun represents passengers sitting or standing on-board of a vehicle of 

line ℓL travelling from one stop sSℓ to the successive stop s+1. 

For what concerns travel time, in case a timetable exists for line ℓ then it is computed as the 

average, over all runs rRℓ, of the difference between the head stop arrival time and the tail stop 

departure time:  

 

 

1
1

1

,
, .

,

s s

s s

d seat a seatr s rs

r R

a
d stand a stand

N N
t a

R N N

 


 



 


 


  



,  (3.5) 

where:  

 τrsℓ is the arrival time of line ℓ at stop s, 

 θrsℓ  is the arrival time of line ℓ at stop s. 

 

The non-temporal cost is obtained multiplying the length of the link la by the kilometric fee cℓ
kfee

 

for the corresponding line and by a possible fee multiplier γg
mfee

 for the class. It may further take into 

account a large set of attributes that describe the quality of service onboard the vehicle, e.g. air 

conditioning, seat ergonometry, passenger entertainment and information, etc. 

Otherwise, the commercial speed vb
line

 of the support edges bAℓs of the line segment is 

considered: 

 

 

1

1

,
, .

,s

d seat a seat

b
a line d stand a stand

b A b

s s

s s

N Nl
t a

v N N

 

 









  


 . (3.6) 

The non-temporal cost or the running arc may consider a large set of attributes that describe the 

quality of service onboard the vehicle, e.g. air conditioning, seat ergonometry, passenger entertainment 

and information, etc. 

Finally, the discomfort coefficient assumes two different values g
stand

 and g
seat

 depending on the 

arc type under consideration. 

3.5. Dwelling arc 

The generic dwelling arc aAdwell represents a vehicle of line ℓL still at stop sSℓ to allow 

passengers alighting and boarding. Dwelling is a sequence of operations: 1) doors opening after the 

vehicle is safely positioned at the stop; 2) passenger alighting and boarding; 3) doors remaining open 

without passenger flow (if necessary); 4) doors closing and safety control before vehicle departure. 

In case a timetable exists for line ℓ, then the travel time is computed as the average, over all runs 

rRℓ, of the difference between the departure time and the arrival time at that stop:  

 

 

,
, .

,

s s
a seat d seatrs rs

r R

s s

a
a stand p dwell

N N
t a

R N N

   



 

 


  



 (3.7) 

Otherwise, we assume the following. The first and last operations are independent of passenger 

flows and require a fixed door manoeuvre time tℓ
doors

. The second operation is associated to the passenger 

alighting and boarding time ta
ab

. The third operation is done only if the minimum dwelling time tℓ
dwell

 is 

not yet passed. Thus, it is: 

 
 

 
,

,
.

,
,

a seat d seat

dwell ab

a stand p dwell

s s
doors

a a

s s

t Max t
N

N N
t

N
at

 

 




 


   (3.8) 
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The time required for passenger alighting and boarding is computed differently according to 

whether doors are dedicated or not:  

 

 

 

 

 

, not dedicated doors

, , dedicated doors

,

,

, , ,

,

,

a seat d seat

a stand p dwell

ab p b

s s

d e b s s
alight board

a s

d e b

alight board
s s

s

oard
s

a seat

a sta
s

nd

N N
a

N N

b s N

d N B

q q q

k k
t h

q q q
Max

k k

e N B

 

 











  

 
 
 




 








 (3.9) 

where:  

 hℓs is the expected headway of line ℓL at stop sSℓ; 

 kℓ
alight

 and kℓ
board

 are, respectively, the alighting and boarding capacity of vehicles serving line ℓ. 

Moreover, this time may be multiplied by a BPR factor to represent overcrowding congestion as 

explained later. 

For simplicity, the non-temporal cost of dwelling arcs is null, while the discomfort coefficient is 

just the base value of time. 

3.6. Alighting arcs 

The alighting arc aAalight represents passengers getting off a vehicle of line ℓL at stop sSℓ. 

The travel time of alighting arcs is assumed null. 

The non-temporal cost is given by the transfer cost cg
tran

 for the user class gG and represents 

different aspects of transfer disutility, not necessarily connected with a measurable delay (e.g. 

psychological stress of changing line, additional travel time variance induced by random vehicle 

departures, etc.). 

A specific boarding fee cℓ
bfee

 for line ℓ multiplied by the fee multiplier γg
mfee

 for the class may be 

added to the non-temporal cost.  

3.7. Waiting arcs 

The waiting arc aAwait represents passengers waiting to board a vehicle of line ℓL at stop sSℓ. 

In case of frequency-based services, the free flow time is the expected waiting time: 
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where:  

 ℓs is the variation coefficient of the headway distribution, that represents the service 

irregularity of line ℓL at stop sSℓ and is given by the ratio between the headway standard 

deviation and its expected value hℓs. 

 

If actual realizations of departure times are available (e.g. from AVM), it is possible to compute 

the above as follows: 
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In case of schedule-based services, the free flow time is instead given by the most convenient 

option between waiting at the stop for half of the expected headway on average, or only for a boarding 

time tℓ
board

 of line ℓL associated to a safety margin: 
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To represent queuing congestion, the free flow waiting time may be multiplied by a BPR factor as 

it will be explained in section 3.11. 

The non-temporal cost of waiting arcs may take into account a large set of attributes that describe 

the quality of service at the stop, e.g. shelter, seats, passenger information, shops, etc. 

A discomfort coefficient g
wait

 is also considered, which may be multiplied by a BPR factor in case 

of overcrowding congestion as it will be explained in section 3.9. 

3.8. Placing arcs 

Passengers travelling on transit services experience more discomfort by standing versus sitting. 

Passengers are subjected to the random process of finding a seat on-board of line ℓL at stop sSℓ at two 

different placing nodes of the graph: Nℓs
p-dwell

 and Nℓs
p-board

. 

Passengers arriving at a stop with a seat have guaranteed a seat for the next line segment, so that 

they either alight or remain seated. Passengers arriving at a stop standing who do not alight have priority 

over the passengers newly boarding, in the sense that they have an earlier chance to occupy any seat that 

might become vacant thanks to alighting passengers. 

The probability of seating depends on the ratio between the remaining seats and the passengers 

attempting to sit. The remaining seats are in turn obtained by subtracting to the nominal vehicle capacity 

of seats kℓ
seat

 the number of passengers already seated. Hence, the placing probability is anyhow bounded 

between 0 and 1.  

The probability of standing can be computed as the complement to one of the other placing 

probabilities. At node Nℓs
p-board

 these may include the fail-to board probability. However, for what 

concerns the expected cost of reaching the destination, the fail-to-board arc is not considered in the 

weighted average, while the cost of failing is directly added to the waiting arc (see section 3.11). 

At node Nℓs
p-dwell

 the sitting probability is: 
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At node Nℓs
p-board

 the sitting probability is: 
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The node expected cost is the average cost of sitting and standing, weighted by the sitting and fail-

to-sit probability. In turn, the cost of standing includes the possibility of sitting at next stops. 

The alighting decision is not predetermined anymore. Indeed, passengers who have obtained a seat 

might prefer to transfer later, whereas standing passengers are more likely to transfer earlier.  

3.9. Overcrowding congestion 

The more passengers standing on crowded vehicles and platforms are physically packed, the more 

they perceive travelling as uncomfortable and stressful. For medium densities, crowding discomfort is due 

to the close physical distance with other passengers; for higher densities, it is due to contact and pressure 

of other passengers. The discomfort is then assumed to increase exponentially with the saturation rate, i.e. 

the number of passengers divided by the capacity.  
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Only for passengers standing on-board a vehicle (seated passengers are not affected), the 

discomfort coefficient of running arc aArun of line ℓL at stop sSℓ is multiplied by the following BPR-

type factor: 
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where:  

 kℓ
stand

 is the standing capacity of vehicles serving line ℓ; 

 α
crowd

 and β
crowd

 are the BPR parameters (typical values are respectively 1 and 2). 
 

Similarly, the discomfort coefficient of waiting arc aAwait for all passengers standing at stop sSℓ 

is multiplied by the following BPR-type factor: 
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where:  

 ks is the platform capacity of stop s, 

 the sum of products between the passenger flow of each waiting arc exiting from the stop qb and 

its time tb yields the average number of passengers waiting at the stop s. 
 

It can be observed that the crowding discomfort for onboard passengers depends only on the flow 

of standing passengers (separable congestion), while the crowding discomfort for passengers at stop 

depends on several arc flows (non-separable). 

3.10. Dwelling delay 

The nominal capacity of doors, introduced in section 3.5, can be reduced by on-board 

overcrowding due to the difficulty of moving inside the carrier, so that boarding/alighting passengers take 

more time to access/egress the vehicle. 

To simulate this effect, the time required for passenger alighting and boarding ta
ab

 of the generic 

dwelling arc aAdwell is multiplied by the following BPR factor causing an additional dwelling delay: 
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where α
dwell

 and β
dwell 

 are the BPR parameters (typical values are respectively 1 and 2). 

3.11. Queuing congestion 

When overcrowding is severe, and the crush capacity is reached on-board, no further passenger 

can get on the vehicle and stand. Then, an over-saturation queue of passengers waiting at the stop is 

formed, increasing the expected waiting time. Clearly, this phenomenon does not affect the passengers 

that are already on-board, but only those willing to board. 

The queuing process may follow different regimes depending on the stop layout. In stations with 

large platforms passengers do mingling, while at urban bus stops they tend to respect the boarding priority 

of anybody who has arrived before them. In any case, the additional wait time due to the lack of space on-

board increases not only with the number of passengers wishing to board but also with the number of 

dwelling passengers that are already on-board. 

Two main modelling approaches may be adopted to represent queuing congestion:  

 soft capacity constraints, through effective frequencies; 

 strict capacity constraints, through fail-to-board probabilities. 
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In the first case, the vehicle capacity can be exceeded by the number of on-board passengers. 

Congestion affects the cost pattern through the so-called effective frequency (De Cea and Fernandez, 

1993), inducing additional impedance on waiting arcs by decreasing the nominal frequency of the line.  

Despite the route choice model will indirectly tend to lower the on-board flow exceeding the line 

capacity, relevant capacity violations can result at the equilibrium when no alternative route is available. 

In our model, capacity violations are allowed only for standing passengers, as it is assumed that they can 

squeeze, contrarily to sitting passengers. The method may result in travel times that are unrealistically 

high as static assignment models are not able to reproduce the capacity accumulation of the network.  

The fundamental idea behind this approach is that, when passengers mingle at stops, the 

probability to succeed in boarding the approaching vehicle is related to the standing saturation rate of the 

next line segment (running arc d), where the waiting flow and the dwelling flow merge. Therefore, the 

effective frequency is here implemented by multiplying the free flow time of the generic waiting arc 

aAwait by the following BPR factor: 
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where α
queue

 and β
queue 

are the BPR parameters (typical values are respectively 1 and 4). 

 

In the second case (i.e. strict capacity constraints), the vehicle capacity will never be exceeded by 

the number of on-board passengers. The fail-to-board probability method (Kurauchi et al., 2003) removes 

the flow in excess from the waiting arc and ideally injects it in the following temporal layer of a quasi-

dynamic assignment (e.g. next hour) through the introduction of specific dummy arcs. 

The fail-to-board probability approach is based on the idea that, when mingling queues of 

passengers occur at the stop, the probability to succeed in boarding the next approaching vehicle depends 

on the ratio between the remaining vehicle capacity and the passengers wishing to board (waiting arc b). 

The remaining capacity is in turn obtained by subtracting to the nominal capacities for seating and 

standing the number of dwelling passengers seating and standing (dwelling arcs e and d, respectively). 

The placing probability of the generic failing arc aAfail that represents passengers failing to board 

a vehicle of line ℓL at stop sSℓ is then given by: 
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Hence, when there is not enough remaining capacity on board, some travellers will fail to board. In 

practice, as a static assignment is performed, the passengers who failed to board are eliminated from the 

model. This is a relevant drawback for planning purposes; therefore, the model has mainly an operational 

validity. 

Furthermore, all waiting passengers suffer from a supplementary time cbg
fail

 due to the risk of 

failing-to-board, which is additional to the temporal cost of the waiting arc bAwait and is proportional to: 

 the value of waiting time 

 the risk-averseness coefficient g
risk

 of the class towards abnormal delays 

 the probability of failing a
fail

 

 the additional waiting time in case of failing, which is given by the headway multiplied by the 

expected number of vehicle arrivals before successful boarding 
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Thus, the failing cost tends to infinity as the fail to board probability goes to one. The number of 

passengers who will accept the risk of failing is a result of the equilibrium mechanism. 
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4. Strategies and hyperpaths 

4.1. Route alternatives on transit networks 

In transport modelling, a strategy can be defined as the plan users adopt to reach their destination.  

In presence of unpredictable events, such as random departures of vehicles from stops and failing 
probabilities at placing nodes, it may be not convenient or simply impossible to choose and follow a 
specific path on the graph to accomplish a given trip. For example, it could be better to board a slower 
line that is arriving earlier than to wait for a faster line that will arrive later, where slow and fast is 
intended in term of expected travel time to reach the destination once boarded the line. On the other hand, 
an unlucky passenger who was not able to sit, shall necessarily ride the next line segment standing 
onboard the vehicle. 

Thus, passengers must cope with a more complex definition of route to travel on transit networks, 
as they have to identify how to follow their trip toward the destination for each local alternative of 
random diversions they encounter en-trip. Placing and stops are nodes where passengers acquire 
information about variables that are preventively seen as random unknowns, and on this base can make 
en-route decisions on how to proceed toward the destination. 

Among all the available strategies, it is assumed that passengers choose one with minimum 
expected cost before starting the trip. For example, passengers choose at home the set of attractive lines 
they can board at a given stop (this is a strategic choice). Once at the stop, they will discover which line to 
take as the outcome of an event, i.e. which is the first vehicle of an attractive line approaching the stop. 
Clearly, the journey will follow a different path depending on which event has happened. The case of 
placing nodes with sitting probabilities is slightly different, because the passenger cannot make any 
strategic choice there, and must simply accept the outcome of the event hoping to be lucky enough to find 
a seat; in this case the route choice is made at earlier nodes. 

4.2. Hyperpath topology 

From a topological point of view, strategies on transit networks are formalized with hyperarcs and 
hyperpaths.  

By definition, a hyperarc ǎ is a non-empty set of arcs exiting from a diversion node iDN, i.e. a 
subset of its forward star Ai

+
. Note that not all combinations of such exiting arcs make a valid hyperarc, 

i.e. the set of hyperarcs H must be specified. Each branch aǎ of the hyperarc is characterized by the 
diversion probability pa|ǎ and by a conditional cost ca|ǎ

g
 .  

The generic hyperpath k is a bush of arcs, i.e. an acyclic sub graph that connects an origin to a 
destination with one successor arc for each one of its nodes and one hyperarc for each one of its 
diversions, except for the destination which has none. Its cost is defined as the sum of the arc costs and of 
the hyperarc branch costs, multiplied by the probability of using them. 

4.3. Hyperarcs at stops and placing nodes 

In the proposed model two types of diversion nodes have been introduced: stop nodes and placing 
nodes. 

The hyperarcs exiting from a stop node are all possible sets of waiting arcs, i.e. all the 
combinations of available lines. Among such waiting hyperarcs, the passenger directed towards a given 
destination can choose the so called attractive set of lines. For a given waiting hyperarc, the diversion 
probability of each branch is given by the frequency divided by the combined frequency, while the 
conditional cost is equal to the inverse of the combined frequency. Because the line frequency is the 
inverse of the headway and the latter is proportional to the waiting arc cost presented in section 3.7, the 
following is obtained: 
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The above model is valid only if the headways are distributed as independent exponentials. 

 

There is only one hyperarc exiting from each placing node that is given by the set of all placing 

and failing arcs. Noteworthy, for seating hyperarcs there is no choice to be made. The diversion 

probabilities are given by the placing probabilities while the conditional cost is null. 

4.4. Shortest hyperpaths and absorbing cycles 

The route choice model introduced in section 2.2 is a sequential one based on implicit enumeration 

of routes. Users reach their destination through a sequence of local choices at nodes and probabilistic 

events at diversions, where the local alternatives are the arcs of the forward star. The conditional 

probabilities depend on the arc costs and on the placing probabilities provided by the congestion model. 

There was no need of explicitly introducing hyperarcs and hyperpaths, but this simplification came 

together with two relevant assumption: only efficient arcs are used and the attractive set at stops is 

implicitly predetermined by the given topological order. 

In this section we extend the model to remove these two limiting assumptions.  

The minimum strategy cost from each node iN to destination dZ can be obtained through an 

extension of Dijkstra algorithm (Dijkstra, 1959) that computes a shortest hypertree which repeatedly 

applies the following Bellman relation until no improvement is possible: 
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The method starts from infinite node costs except for the destination which has null cost.  

When a topological order is given and only efficient arcs are used, the application of the above 

schema is trivial. Otherwise, head nodes can be extracted from a list in order of cost and their backward 

star is visited; in case of improvement, the updated tail node is inserted in the list. This Dijkstra schema 

holds if we apply the first of (4.3) only to hyperarcs whose other heads have been already visited. The 

resulting algorithm is label setting (nodes are visited only once) if the updated tail node has a higher cost 

than the extracted head node. 

In the case of stop nodes, this is the case. The attractive set is computed with a Greedy algorithm, 

which exploits the order of lines in terms of remaining costs to reach the destination once boarded. Lines 

are added to the attractive set (initially empty) in increasing order of remaining cost. The algorithm stops 

when the remaining cost of the next line is higher than the current value of the expected cost. 

As congestion increases, more (and hence slower) lines are included in the attractive set. 

Moreover, if all lines are congested, some passengers would rather walk than continue to wait. 

Casting the model 4.1, 4.2 into equation 4.4 we reobtain equation 2.5. 

Unfortunately, in the case of placing nodes this is not the case, because the cost of the updated 

placing node is a weighted average of the extracted standing node which has a higher cost than the other 

seating node. This compromises the label setting approach of the Dijkstra algorithm. Indeed, nodes with 

lower cost could be extracted after nodes with a higher cost, so that a node already extracted can be 

further optimized (and can be visited more than once). 

As a consequence of the presence of head costs higher than tail ones, the optimal strategy can 

involve so-called absorbing cycles. For example, an unlucky boarding passenger unable to seat, who then 

alights at next stop may walk back to wait again for the line at the previous stop, thus gaining another 

chance of sitting on-board). This is not only inconsistent with the definition of hyperpath as a bush (which 

is by definition acyclic), but also presumes a non-realistic behaviour.  

To avoid this kind of paradoxes, we accept the label correcting except for alighting arcs, where a 

label setting approach is imposed. This ensures the acyclicity of the solution, although it may lead to non-

optimal hypertrees. In practice we did not notice difficulties in convergence to equilibrium. 

4.5. Gradient projection and implicit enumeration of hyperarc  

The drawback of fixed-point problems with respect to more classical optimization models (e.g. 

where the objective function is the sum of cost integrals) is the lack of rapidly convergent algorithms, 

which prevents precise calculations of the equilibrium.  
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The Method of Successive Averages (MSA) is one of the most used approaches to solve fixed-

point problems and is shown to converge to equilibrium under Blum theorem conditions (see Cascetta 

2009, Appendix A). MSA is a very simple method: the new iterate is the average of all network loading 

results of previous iterations (usually, an All-Or-Nothing assignment to shortest routes implements each 

network loading). But MSA does not give high convergence precision. It usually tails badly after few 

iterations because the step size becomes smaller at each iteration. 

To overcome MSA drawbacks, the solution algorithm implements a reduced gradient projection 

(RGP) method over implicit hyperarcs. RGP is a variant of Gradient Projection (GP) methods, which 

consist in iterative optimization algorithms for constrained functions that project the search direction on 

the active constraints (Rosen, 1960).  

The implemented RGP is an innovative one, as it performs convergence search over arcs, avoiding 

the enumeration of hyperarcs (RGP on implicit hyperarcs). The implicit definition of hyperarcs is an 

important goal achieved, as enumerating them would be costly in terms of computational time. Indeed, 

transit networks usually consists in large-scale instances and the total number of possible hyperarcs is 

usually huge (e.g. considering a small network composed of three stops and three lines serving those 

stops, there are already 16 hyperarcs: 7 waiting hyperarcs and 9 seating hyperarcs). 

In general, GP algorithms for UE computation find the optimal set of alternatives and flows, 

solving the convex cost optimization problem (Gentile, 2016), where alternatives can be either hyperpaths 

connecting the OD pairs or arcs exiting a node towards the destinations. 

5. Conclusions 

5.1. Main achievements 

Governments continue to invest significantly on public transport. hence anticipating its 

development and performances will continue to play a central role in the future in urban planning. 

The ability of public transport systems to attract demand from private transport represents a key 

success factor. But congestion and discomfort may negatively affect user experience, and, in turn, 

passenger choices are often influenced by their severity. 

Careful strategic and tactical planning decisions supported by transport modelling solutions can 

help increasing the level of service, hence public transport ridership. It is of paramount importance that 

models comprehensively represent all the relevant phenomena. Different types of models for public 

transport have been proposed and implemented in the past 50 years. However, examples of practical 

implementations that include passenger congestion phenomena, despite their importance, are still very 

limited. Moreover, the existing simulation models require high computational burden.  

Through a practical implementation of the equilibrium model and a detailed discussion of its 

supply side, this paper presents a deterministic static assignment method using a frequency-based 

approach for the simulation of transit networks, which is capable of representing several congestion 

phenomena such as overcrowding congestion, queuing congestion, and dwelling delay. Moreover, with an 

efficient gradient projection algorithm we can obtain User Equilibrium for large-scale networks with high 

computation performance. In addition, the model represents other phenomena, such as the availability of 

seats (both for boarding passengers and dwelling passengers) and the waiting process at stops.  

Further, the adopted assignment algorithm computes a strategy-based user equilibrium with 

implicit hyperpath enumeration by solving a fixed-point formulation, through a reduced gradient 

projection method, which highly improves convergence performance. The implicit definition of hyperarcs 

is another important goal achieved, as this would add significant computational time. 

Finally, the model has been implemented in .net which interfaces with PTV Visum as I/O source. 

Simulations and validation are focused on the analysis of the various transit phenomena which are tested 

singularly. The numerical results will be presented in a following paper. 

5.2. Further developments 

Congestion and overcrowding are not only determined by wrong planning decisions but also by 

the lack of operational and real-time planning. And yet, a system which can predict the network response 

to incidents and propose a solution to keep congestion levels acceptable does not yet exist.  

Indeed, to mitigate congestion events and keep the level of service high, public transport operators 

should employ a system able to predict congestion development and guide users’ choices. However, a 

software fast enough to forecast real-time passengers’ congestion in public transport networks while 

considering a wide range of congestion phenomena, does not exist yet.  
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The model presented in this paper is not suitable for real-time simulation and incident 

management, as it performs a static assignment which implies steady state setting (constant flows and 

performances during the assignment period), allowing only an average evaluation of network 

performances during the analysis period.  

However, this paper can be seen as preparatory for the implementation of a real-time incident 

management software for public transport networks. In fact, the outcomes of this model can be used as 

inputs of the Transit Link Transmission Model (Gentile, 2017), which is a fast-macroscopic model that 

performs a dynamic network loading from the results of a static assignment in combination with the 

available demand, supply and service features. 
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