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Cognitive Radio Networks (CRN) were introduced as a means to more efficiently reuse the licensed radio frequency 

spectrum. One of their salient features is the ability of unlicensed nodes to dynamically adapt their radio parameters according to 

their needs. This paper investigates the resource allocation problem in CRN by jointly considering power control and bandwidth for 

a set of secondary users (SU) transmitting simultaneously with a set of licensed users (PU), which transmissions must remain 

unaltered. The proposed allocation scheme is based on a Genetic Algorithm (GA) where the chromosome's genes represent the 

reconfigurable interface radio parameters, by defining genetic operations the GA is empowered to find a set of radio parameters that 

maximize the overall network capacity and under the physical interference model enforced to the transmissions of both PU’s and 

SU’s. The numerical results illustrate the prominent effect of adjusting jointly multiple radio parameters on the network capacity. 

Keywords: cognitive radio networks, underlay mode, genetic algorithm, spectrum allocation, greedy algorithm, secondary users, 

shared spectrum, optimization problem 

1. Introduction  

The notion of spectrum scarcity is directly related to the fixed assignment policy management 

employed by governmental and international agencies. In its report of 2002, the Federal Communications 

Commission (FCC) determined that fixed spectrum assignment policies generate non-uniform spectrum 

utilization. For example, in crowded geographical areas or in rush hours, the average utilization of fixed 

bands varies between 15% and 85% (FCC. Spectrum Policy Task Force, 2002). In order to exploit the 

unused portions of spectrum, cognitive radios network, introduced by J. Mitola in (Mitola and Maguire, 

1999), constitutes a promising alternative of spectrum management, where unlicensed users are granted 

the power of dynamically access and allocate underused licensed spectrum. In the so-called underlay 

access model, secondary users may transmit on some frequency bands at the same time as primary users 

provided that these transmissions have no or little impact on those of primary users. A good survey of 

spectrum access models for cognitive radio networks can be found in (Buddhikot, 2007).  

In this work, we present a dynamic resource allocation for cognitive radio networks. We assume 
that unlicensed users are capable of sharing the spectrum licensed bands with licensed users in an 

underlay mode while keeping the interference level, captured through the signal on interference and noise 

ratio (SINR), below an acceptable threshold. To capture the interference between the transmissions on 

different but not necessarily orthogonal spectrum bands, we rely on a channel overlapping factor which 

captures the fraction of energy that leaks into an adjacent channel. Furthermore, we assume that the 

frequency band allocated to each secondary link can be variable depending on its needs. 

To enable an efficient allocation scheme which exploit various radio parameters, we design an 

adjustable genetic algorithm (GA) with has as an objective the maximization of the total network capacity 

or the proportional fairness between competing links. Genetic Algorithm (GA) is an evolutionary 

optimization technique that imitates natural evolution. It tries to reproduce the biological genetic 

operations, such as mutation, crossover, and selection, in order to find a high-quality solution. The major 
benefit of GAs is their ability to make a robust search in large spaces in comparison with other 

optimization solutions (Goldberg, 1989; Holland, 1975). Within the proposed GA framework, the radio 

parameters of each cognitive user are mapped to the chromosome's genes forming a potential solution; 

namely, transmission power, carrier frequency, and channel width (bandwidth). By defining a set of 

genetic operations on these chromosomes, the GA is tailored to search a set of radio parameters that 

maximize the fitness function. 
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To the best of our knowledge, our work is among the firsts in the literature that tackles capacity 

optimization in CRNs by acting jointly on the transmission power and channel assignment with variable 

widths. The rest of the paper is organized as follows. In Section 2, the related works on spectrum 

allocation problems are described. We introduce the system model and state the problem in a formal 

manner in Section 3. The GA-based spectrum allocation model is presented in Section 4. We present 

some experimental results in Section 5 and conclude the paper in Section 6. 

2. Related work 

Power control is a key mechanism to enforce interference constraints of licensed users while 
maximizing the performance of unlicensed users. In the context of CRNs, this problem has received wide 

attention in the literature (Tao and Zhisheng, 2003; Clemens and Rose, 2005). In (Naeem et al., 2014) a 

survey of resource allocation in cooperative CRN is presented with a taxonomy of various objectives and 

protocols defined the literature. More specifically, (Wang et al., 2009) proposed a spectrum sharing 

strategy based on a throughput model in a CRN. An optimization problem in the form of binary integer 

linear programming (BILP) is formulated, where it is assumed that every secondary user (SU) can access 

any available channel with a transmission range than can cover the whole CRN. Note that each SU works 

in a half-duplex manner. A near-optimal directional search (DS) algorithm was also designed. 

A heuristic algorithm is proposed in (Bhardwaj et al., 2016) for resource allocation problems in 

CRNs, where multiple objectives and constraints are considered: sum-rate, fairness, number of active 

SUs, power consumption, and quality of service requirements. A modified NSGA-II evolutionary 

algorithm was used and multiple solutions were obtained, representing different trade-offs between 
conflicting objectives. Authors in (Wang et al., 2015) proposed a fast genetic algorithm (FGA) to solve 

the problem of jointly allocating bits, sub-carriers and power to maximize the total transmit bit rate in an 

OFDM based cognitive radio. They assumed an underlay spectrum sharing model, and the allocation 

problem was formulated as multidimensional knapsack problem (MKP). Also, an evolutionary algorithm 

based on bio-geography optimization for relay assignment, and a greedy power allocation to maximize 

the system throughput in shared bands are presented in (Ashrafinia et al., 2011).  

In (Salehinejad et al., 2010), an approximate non-deterministic ant colony-based algorithm is 

proposed to solve a set of spectrum allocation problems mapped to well-known NP-hard graph colouring 

problems (GCPs). This algorithm was casted as a new approach to spectrum assignment problem versus 

traditional heavy-computational and deterministic methods. Generally speaking, integer and mixed 

integer non-linear resource allocation in cooperative CRN are considered as computationally-intensive 
NP-hard problems, which means that their optimal solutions cannot be obtained in polynomial time. For 

these kinds of problems, generally researchers apply greedy, heuristics or evolutionary algorithms. A 

three stage heuristic algorithm for joint relay and spectrum selection in CRN is considered in (He et al., 

2010), authors mainly focus on the problem of how to allocate resource appropriately to maximize the 

overall system throughput under the QoS requirements in cooperative CRN. The main objective is to 

maximize the sum-rate by jointly determining the relay selection, spectrum allocation and power 

allocation. The authors propose a three-stage heuristic to solve the sum-rate maximization problem.  A 

power allocation scheme using genetic algorithms (GA) is proposed in (Benaya et al., 2016) for a 

multiple-input-multiple-output (MIMO) system in CRN with the aim to maximize the total secondary 

throughput. Under interference constraints of multiple SU pairs coexisting with multiple PUs pairs in an 

underlay spectrum sharing model, the minimal throughput among all SUs is compared with other power 
allocation schemes, namely, maximum-minimum-throughput-based power assignment (MMTPA) and 

equal power assignment (EPA). Results show that the proposed scheme maximizes the secondary 

throughput among all other stated schemes but with additional computational complexity. 

A capacity-aware spectrum allocation scheme for CRNs is presented in (Yousefvand et al., 2015) 

the authors modelled interference constraints relying on the interference temperature model. First, each 

secondary user increases its transmission power until the interference temperature of one neighbour 

exceeds its own interference temperature threshold. Then, based on the SINR and bandwidth of potential 

links, the capacities of the links are calculated using the Shannon formula, taking into account the co-

channel interference between potential links on each channel by using an interference graph. Finally, the 

authors formulated the spectrum assignment problem as a binary integer linear programming to find the 

optimal feasible set of simultaneously active links among all the potential links in the sense of 

maximizing the overall network capacity. 
Our work can be viewed as an extension of these prior contributions. Whereas some works have 

focused on power control and others on channel assignment, we adopt a more general approach where 
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each SU can act simultaneously on the transmission power, the carrier frequency, and the channel width. 

We consider a setting with a high degree of flexibility, where simultaneous and co-channel transmissions 

of both licensed and secondary users are allowed. However, we assume that primary users are unaware of 

any parallel transmission, and hence the received signal must be decoded with the same correctness as if 

no other transmission occurs. 

3. The system model 

This section introduces some mathematical notations used throughout this paper. Our system 

model consists in a CRN composed from a set of primary users Pr and secondary users Sc, as shown in 
Figure 1. We assume that secondary users establish point to point transmission links between them. We 

denote this set of transmission by L. For    ,    and    designate the transmitting and the receiving 

nodes, respectively. 

The network is deployed on a two-dimensional region, where each node      is specified by its 

coordinates        . We assume that each node is equipped with a single radio interface and can 

dynamically configure the power transmission, the carrier frequency and the channel width. For licensed 

communications, we assume the existence inside this region of a primary base station (BS) that transmits  

to a set of primary users disseminated over the cell. This BS is assumed to use a predefined and known 

frequency band and transmission power. With respect to secondary links, the values of the used 
bandwidth and transmission power are taken from the discrete sets, W and P, respectively. 

 

Figure 1. Radio model 

In a general manner, a given radio transmission is considered to be successful (i.e., can be decoded 

correctly at the receiver) if the signal to noise ratio (SNR) is greater than or equal to some minimal 

threshold  . According to the traditional path-loss radio propagation model, the SNR at the receiver of a 

link   can be calculated by: 

     
    

  

  
  , (1) 

where    represents the Euclidean distance between the transmitter and the receiver of link  ,    is the 

power used by the transmitter,   is the path loss exponent, and    is the power of the thermal noise. As a 

corollary, the maximal distance between the two ends of a link is given by: 

      
    

   
 

 

 
. (2) 

Now, let us consider two links   and    transmitting concurrently on channels    and    , where 

each channel is characterized by its carrier frequency and width.      (      ) is a relative measure of the 

transmission power used by link   that interferes with link   . In particular, we have the following two 

extreme values: 

      = 0: there is no channels overlapping between the links   and   ; i.e., the channels    and     
are completely disjoint; 

      = 1: links   and    use the same channel. 
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The facto r    , similar to the I-factor introduced by Mishra et al. (2005), can be obtained in a 

simplified manner by assuming the transmission energy is spread evenly over the used band. It can be 

written as: 

     
    

  
, (3) 

where      represents the width of the overlapping area (in Hertz) between    and    , and    the width 

of channel   . In presence of concurrent secondary transmissions on non-disjoint channels, the ability of a 

primary receiver     to decode successfully the signal coming from the primary BS depends on its SINR 

level,        
. This latter must be greater than or equal to   and can be written as: 

       
 

    
         

                       
     

. (4) 

With          
 represents the propagation gain between the BS and    ,         

  is the 

propagation gain between the BS and the receiving node of the secondary link   ,     is the width of the 

channel used by the BS, and    is the density of the thermal noise (given in Watt/Hz). The propagation 

gains can be further decomposed as follows:          
           

  . Where         
 is the euclidean 

distance between the base station    and the Primary user    , and         
         

  . 

Where         
 is the euclidean distance between the base station    and the receiver of the link  . 

Besides, concurrent secondary transmissions may cause interference between the SU themselves. 

Similarly, the SINR of a secondary receiver of a link   can be written as: 

      
          

                       
                

     
 , (5) 

where the propagation gains         
,          

 and         
 are defined as mentioned above. Relying on this 

system model, our aim is to define an optimization model to allocate efficiently the licensed spectrum to 

the SUs. The spectrum can be divided into partial overlapping channels, in the form of multiple variable 

width blocks, as shown in Figure 2. 

Figure 2. Spectrum usage 

The opportunistic assignment of the channels to secondary users has to achieve some throughput 

objective without degrading the quality level the PU's activity. Thus, SUs must create no or limited 

interference to licensed users and should also kept mutual interference as minimum as possible. To this 

end, we assume that secondary users have full acknowledge of the radio spectrum state (lower/upper 

carrier frequencies, respectively         , and the PUs configurations: locations, carrier frequency, 

transmission power. 

This can be done for example through a centralized spectrum management entity. Secondary links 

compete for   contiguous channels, numbered from 1 to M. The throughput of each link   is calculated 

using the well-known Shannon formula: 

                 . (6) 
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4. Genetic algorithm for spectrum assignment in CRNs 

As stated previously, the reuse of licensed bands provide the ability to increase significantly the 

overall cognitive network throughput through an appropriate configuration of the radio interfaces with 

respect to selected carrier frequency, channel width or transmission power. An appropriate tuning of these 

parameters would increase the throughput of each link while reducing interference to other users in the 

network. But these wide set of possibilities makes at the same time the optimization problem much harder 

than with basic configurations. 

We provide now the details of our genetic algorithm (GA) to maximize the sum of throughputs of 
the set of secondary links. The chromosome's gene represented in Table 1 is a set of parameters which 

define the power transmission, frequency range and bandwidth for each link   . Through a number of 

genetic operations on these chromosomes, the GA is designed to search the set of parameters that 

optimize the spectrum allocation scheme with the aim of maximizing the overall throughput of the 

network, called also the fitness function. 

Table 1. Chromosome representation 

Power Central Frequency Bandwidth 

4.1. Fitness functions 

They play a central role in shaping the GA, it allows measuring the relevance of solution and 

getting the best solution in a large search space. For our problem, we use the following two alternative 
formulations: 

              , (7) 

which maximizes the overall throughput of the set of secondary links; 

                , (8) 

which aims to achieve proportional fairness between the competing secondary links. 

4.2. Chromosome encoding 

Typically, for each link we need to represent the power, the carrier frequency of the channel and 

the bandwidth. Encoding is one of the most critical tasks in the development of a GA; it is used to 

represent a different set of variables in a gene form, giving rise to chromosomes (individuals). In our case, 

we use two alternatives: binary and decimal encoding. Note that the former is the most common used 
method in literature. 

 

 

 
Figure 3. Decimal coding 

 

 

 

Figure 4. Binary coding 

4.3. Population initialization 

GAs needs a set of initial solutions called population. Hence, we generate randomly a set of 

solutions where the parameters of each link     are selected according to the following process: 

 transmission power    is generated randomly from a discrete range of 7 values within the set  ; 

 the carrier frequency    is generated randomly between     
    

 
  and       

    

 
  , 

where      is the minimum bandwidth allocated to a link; 
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 the channel width    is selected randomly such that it is less than or equal to     
       

 
). It 

also verifies    
  

 
 and    

  

 
            . 

The initial population can be represented as a matrix of dimension               where     

the population size. See an example with two links in Figure 5. 

 

 

 

 
 

 

 

 

 

 
Figure 5. Population initialization 

Each row represents a possible spectrum assignment for a set of links. The spectrum assignment 
for PU is generated randomly and fixed during all the genetic process and at this point all individuals 
(feasible solution) must verify the constraint (5) and if an individual does not satisfy the constraint, a new 
random allocation will be done for this individual following the process cited above. 

4.4. Genetic operators 

GAs usually implement the selection, crossover and mutation operators. The fitness values of the 
chromosomes in the initial population are firstly calculated, and depending of the selection method a set 
of chromosomes (individuals) will be selected under a certain percentage. We have implemented two 
selection methods: 

 Random selection: a set of individuals are selected randomly. 

 Elitist selection: individuals with the largest fitness are selected. 

In order to maintain the population diversity, we applied crossover operator. Two individuals are 
randomly selected from the current population and are chosen as parents. Crossover is performed on a 
single point chosen uniformly on the two parents. Then, we swap the remaining two parts of these to 
create two children. Note however that validation phase is necessary to verify that the new individuals 
remain in the space of valid solution. If a child contains a radio configuration for a link violating the radio 
specification, such as a carrier frequency outside the interval          , or a channel width with invalid 
power transmission value, the solution is rejected and an new crossover point must be selected. 

Mutation is another operator where a single point is chosen uniformly from a single individual. To 
accomplish this operation, we select first one gene from the individual, then: 

 The selected gene represents the power transmission: mutation consists on selecting a new 

power transmission value within the set  . 

 The selected gene represents the channel width: mutation consists on selecting a new bandwidth 

within the set   . 
For binary-encoded chromosomes, the mutation consists simply to flip the current value of one bit. 

Mutation may also generate invalid solutions and a verification phase is needed as for the crossover 
operator. 

Figure 6. Crossover 
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As a generational replacement policy, we use the elitist replacement method, where, according to 

the fitness value, the best child replaces the worst parent in the next generation. Finally, as a stopping 

criteria, we define a maximum number of iterations. 

Figure 7. Mutation 

4.5. Greedy heuristic for channel allocation in CRNs 

In order to evaluate the performance of our GA, we designed for comparison purposes, a simple 
greedy algorithm that assigns in a sequential manner the radio parameters. As a heuristic, we sort these 
links from largest to smallest length, as these latter have more allocation possibilities. This algorithm is 
described in below. 

 

Algorithm 1. Greedy Algorithm 

     

   set of secondary links   

Sort links according to their Euclidean length distance from the largest to the smallest ones; 

For     do 

 Select power, carrier frequency and channel width for  , such that: 

   is maximized (                  , where    is the channel width and       is calculated as in (5)); 

              

        (overall throughput of SUs). 

End For 

5. Experimental results 

In this section, we present and discuss various simulation results for the optimization of the 

spectrum allocation in CRNs for secondary users while enforced hard constraints on the interference level 

experienced by primary users.  

Our experiments were conducted using both GA and Greedy algorithm. Each network instance is 

obtained by randomly generating one primary BS which generates downlink traffic, and a number of PU 

and SU nodes over a 1000   1000    area.  

Besides, network parameters are set as follows:     (path loss exponent);          (thermal 

noise power per Hz).    and      are fixed respectively to    MHz and     MHz, the minimum 

bandwidth      equals to 20 MHz, whereas the channel widths are in           MHz, and the power 

levels are in                      mWatt. All the solution approaches were implemented using Java and 

performed on a Intel i5 core with 2.80 GHz CPUs. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison between Elitist and Random selection 
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5.1. Performance of the GA 

As genetic algorithms are non-deterministic methods, we averaged the results of 6 simulations in 

all our experimentations. First, we discuss the impact of varying the selection methods used in our GA 

approach. 

 It appears from the results reported in Figure 8 that random selection is more efficient in term of 

time compared to the elitist method, which may require additional processing such as sorting the initial 

population according to the fitness of the individuals. Although the configuration of the genetic operators 

plays a central role in the generational process, there are no universal rules to set the parameters of GA 

and only experimentations can give an idea of their impact. 

  Following this statement, we can observe that the number of individuals and the size of the initial 

population greatly influence the objective of maximizing the throughput of the SUs as we see on Figure 9. 
This is due to the diversity of the candidate solutions in the initial population. Also, the probability of 

having an individual with the greatest fitness increases proportionally with the initial population size. 

Results shown in Figure 10 demonstrate that the number of iterations in the GA is not a good 

indicator of achieving the high-quality solution. In our case we select as the best solution the individual 

with the best fitness among all the generational process until the last iteration. 

Results given in Figure 11 and Table 2 show the effectiveness of our genetic algorithm based on a 

decimal-coded chromosomes to find solutions as accurate as the standard binary-coded method with a 

considerable gain in term of computational time compared to the binary-coded GA, this can be explained 

by the fact that decimal-coded GA doesn't requires an encoding / decoding mechanism as for the binary 

coding. Figure 12 shows the performance of proposed genetic spectrum assignment algorithm as a 

function of the number of secondary users. We can note that our GA globally achieves the objective of 
maximizing the overall SU throughput using the different system utilities defined in section 4. 

  In some cases, the throughput cannot be maximized as we can see for 14 secondary users and this 

can be explained by the fact that some SUs have not satisfied the SINR constraints. 

Table 2. Comparison between Decimal and Binary coding 

Number of individuals Number of iteration 

Decimal GA 

Thr. (Mbps) 

Binary GA 

Thr. (Mbps) 

20 50 4.43 4.70 

50 50 7.58 7.30 

100 50 8.84 8.51 

300 50 5.54 5.92 

500 50 8.45 8.67 

 

 

Figure 9. Throughput and population size 
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Figure 10. Throughput and number of iterations 

 

Figure 11. Comparing Decimal and Binary coding 

 

Figure 12. System utility with an increased number of SU 
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5.2. Comparing GA with the Greedy algorithm 

Figure 13 shows the throughput performance of the GA algorithms compared to the greedy 

approach. For each problem instance, the overall objective is higher with the GA algorithm. At each step, 

the GA produces a radio assignment for all secondary users and verifies all the constraints with a global 

point of view. Whereas, the greedy algorithm builds a step-by-step solution for the SUs without 

considering a global solution for the entire system network and without reversing its decisions. 

 

 

Figure 13. Throughput performance (GA vs Greedy) 

5.3. Impact of varying multiple radio parameters  

Here we report the results of six experiments, where in each experimentation we used 6 SUs and 2 

PUs trying to transmit on a radio band of 200 Mhz in an underlay mode. We alternatively fix the 

bandwidth and the power transmission of the SUs, and then we compare it to our GA scheme which 

allows variable powers and bandwidth values. The results are shown in Figure 14. We can see that 

varying power transmission and bandwidth offer a more efficient spectrum use with a significant increase 

of SU throughput compared to fixed radio parameter experimentations.  
 

Figure 14. Throughput results with variable radio parameters 
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In Figure 15 we investigate the number of violations (i.e. the number of SUs which did not obtain 

a minimal throughput using fixed power, fixed bandwidth and variable power and bandwidth setting). We 

can see that the allocation scheme with fixed bandwidth at      offers the lowest number of unserved 

SUs.   

Figure 15. Number of violation 

 

However, Figure 16 illustrates that with the same radio model, the joint power and bandwidth 

allocation scheme we obtain the best throughput values. 

Figure 16. Throughput results with variable number of SUs 

6. Conclusion 

We presented in this paper a genetic algorithm for optimizing the capacity and the overall 
throughput of cognitive radio networks in the presence of primary or licensed transmissions. We adopted 

an underlay access scheme under the SINR interference constraints. Our main contribution is to define a 

spectrum assignment model with variable power transmission and variable channel width. The population 

of the GA represents a set of a feasible spectrum allocation solution and can reach acceptable solution in 

reasonable time comparing to a simple greedy allocation algorithm. Numerical results show that network 
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capacity can be significantly increased with varying multiple radio parameters at the same time. Also, 

results showed the superiority of the GA algorithm compared to a greedy algorithm where links are 

configured in a sequential manner. As a future work, we plan to apply our GA in a more realistic. In 

particular, the IEEE 802.11af standard constitutes a very promising solution for exploiting unused TV 

white spaces to provide high throughput network services to mobile users. 
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