
Transport and Telecommunication Vol. 18, no. 2, 2017 

146 

Transport and Telecommunication, 2017, volume 18, no. 2, 146–154 
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia 
DOI 10.1515/ttj-2017-0014 

 
GNSS POSITIONING PERFORMANCE ANALYSIS USING  

PSO-RBF ESTIMATION MODEL 

Meriem Jgouta1, Benayad Nsiri2 

1University Hassan II, Faculty of Sciences 
Casablanca, Morocco, Km 8 Eljadida road, P.B 5366,Maarif 20100 

1 00212667948795, mariam.jgouta@gmail.com 
2 00212663769740, benayad.nsiri@enst-bretagne.fr  

 
 
Positioning solutions need to be more precise and available. The most frequent method used nowadays includes a GPS 

receiver, sometimes supported by other sensors. Generally, GPS and GNSS suffer from spreading perturbations that produce biases 
on pseudo-range measurements. With a view to optimize the use of the satellites received, we offer a positioning algorithm with 
pseudo range error modelling with the contribution of an appropriate filtering process. Extended Kalman Filter, The Rao-
Blackwellized filter are among the most widely used algorithms to predict errors and to filter the high frequency noise. This paper 
describes a new method of estimating the pseudo-range errors based on the PSO-RBF model which achieves an optimal training 
criterion. This model is appropriate of its method to predict the GPS corrections for accurate positioning, it reduce the positioning 
errors at high velocities by more than 50% compared to the RLS or EKF methods. 
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1. Introduction  

The Satellite navigation systems have entered the world of transport. Using the American Global 
Positioning System (GPS) and the traveller information services, tracking containers or fleet management 
is now possible. These services do not require a high demand for neither availability, nor accuracy nor 
integrity. The deployment of these services and the imminent arrival of new global coverage systems 
(Galileo, Beidou or Glonass) encourage the scientific community to develop new services with stronger 
constraints (Santerre et al., 1995). These competing systems contribute to GPS and will increase 
availability as well as improve the security and reliability of supply through information on the signal 
integrity of Galileo. Global Navigation Satellite Systems (GNSS) performance is defined by the 
parameters of the system (measurements and user processing software), they also rely heavily on signal 
propagation environment. However, one of the main drawbacks of GNSS is the capacity to reach the 
Required Navigation Performance in terms of accuracy and availability. 

The traditional filtering methods, such as Kalman filter, are used by the GNSS receiver to lessen 
positioning error. However, the working of these methods can be degraded, because of Non-Line-of-Sight 
(NLOS) reception. Therefore, it is advantageous to study that relative performance between those 
algorithms. A comparative analysis on standard estimation algorithms used in GNSS receiver has been 
shown in (Jgouta and Nsiri, 2015). Mean squared error (MSE) is used as performance measure. Even 
though the methods cited before in (Jgouta and Nsiri, 2015) are used vastly, in most cases they can’t give 
a precise positioning estimate. 

We saw previously that the Rao-Blackwellized Particle Filter (RBPF) reach good results in solving 
the nonlinear and non-Gaussian problems (Jgouta and Nsiri, 2015). Indeed, RBPF could not just 
ameliorate the estimate exactness but also diminish the general computational intricacy. Though, the 
computational burden is even too high for many real-time applications. To get better efficiency than 
RBPF, the particle swarm optimization (PSO) is carried out to take all the particles to the areas where 
their probabilities are high in the nonlinear region. Hence, just a few particles are required to participate 
in the calculation. There are many advantages of using Radial basis function (RBF) networks such as 
surmounting the problem of choosing the neurons number in their concealed layer, as they are generated 
with dynamism during the training process to attain the wanted performance. 

RBF neural network is a type of feed forward neural network. It is an input layer, a nonlinear 
hidden layer and a linear output layer. RBF utilizes basis functions in the hidden layer (Leonard and 
Kramer, 1991) and (Shen et al., 2002). PSO proposed by Kennedy and Eberhart (Cui and Polok, 2005) is 
a member of the broad category of swarm intelligence methods in order to solve nonlinear programming 
issues. Training techniques may be formulated as an optimization which includes the network structure 
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into a set of variables that are used to minimize the prediction error. Furthermore, PSO is used to optimize 
the RBF neural network parameters in this work. 

This paper is organized as follows. First, we will review how to determine the position of a GPS 
receiver. Next, a new approach is suggested to optimize GPS positioning. The procedure makes use of the 
RBF and the PSO techniques, resulting in a system called PSO-RBF, which is used within the navigation 
systems for real-time identification of noise covariance matrices to impede the divergence of the simple 
Kalman filter. Finally, the simulation results and comparison with other methods are presented. 

2.  GNSS Measurement Model 

2.1. Pseudo range measurements 

All GNSS receivers can acquire the position of the satellites that are visible to it from their radio 
navigation signals. In the case of GPS, the signal carries the navigation message. This contains alternative 
information required for positioning. This information is the date of transmission of the signal, the clock 
corrections and ephemeris, an indicator of proper operation of the satellite transmitter and a specific 
indicator for each satellite, the coefficients necessary for ionospheric correction and coefficients for 
calculating time Coordinated Universal time (UTC). 

The basic principle of the navigation based on the known and constant wave velocity (equivalent 
to the speed of light). Therefore, the knowledge of signal propagation time between the transmitter and 
the receiver can determine the distance between the transmitter and this receiver. This time is measured 
by the cross-correlation between the replica of the Pseudo-Random Noise code (PRN), Clear /Acquisition 
code (C/A) or Precision code (P), generated by the receiver and the PRN code transmitted by the satellites 
(Mosavi and Rahemi, 2015). In current propagation conditions, a number of phenomena lead to errors in 
the pseudo range. According to the literature and in Cartesian coordinates, the pseudo range measured on 
the signal from satellite i is as follows: 

	 , (1) 

P  : pseudo-range measurement, ρ : the true range of the satellite from the user receiver, 
		c : the celerity, δt  and δt  : the receiver and satellite clock bias respectively, 
		e : The pseudo-range errors for satellite s. 

	 , (2) 

I  and T  are the ionospheric and tropospheric errors,  
M  is the error caused by signal reflections (multipath errors), and N is the noise receiver. 
 

 

Figure 1. Errors sources of satellite signals (Daehee Won, Precise Positioning, http://smileforday.com/?page_id=84 ) 
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2.2. Modelling state 

We will then use this modelling to perform matrix calculations to estimate positions (Jgouta and 
Nsiri, 2015). However, for the first estimators adapted to the GNSS, this will be possible after 
linearization. Indeed, according to equation (1), the expression of the pseudo-distance is weakly non-
linear compared to unknown (x , y , z ). 

We set ∆t δt δt  and considering ρ f x , y , z  the nonlinear expression of equation (1): 

, , ² .        (3) 

To linearize f, we will use the limited development in Taylor series, this development cannot be 
done only in the locality of a known position (origin or previous position). We need to redefine the 
position estimate based on the known position as follows: 

∆ ,    ∆ ,    ∆ .      (4) 

With ( , , ) is the initial position and (∆ , ∆ , ∆ ) is the update of the position relative to 
the initial position at time . Using Taylor’s series and limiting to the first order the equation (2) and (3) 
can be developed as below: 

, , , , 	
, ,

∆
, ,

∆ 	
, ,

∆ . (5) 

Developing the partial derivative of the equation (4) and putting ,  as the approximation of the 
satellite-receiver distance:  

d , x x y y z z ² . (6) 

The expression of the pseudo range becomes: 

,
,
∆

,
∆

,
∆ ∆  . (7) 

To estimate a position, one pseudo-range measurement is not sufficient. We need a minimum of 
four different measurements to determine a position in 3D. In practice, the receiver takes into 
consideration all of the pseudo-measures disposable to compensate for any perturbation of signals or any 
bad configurations. Therefore, it is necessary to reformulate the equation (7) in matrix form by taking into 
account all disposable pseudo-ranges. This reformulation is given as follows: 

P d ,

⋮
P d ,

, , ,

⋮ ⋮ ⋮

, , ,

c
⋮
c

∆x
∆y
∆z
∆t

 . (8) 

To simplify the notation we put		 , , the matrix representation of (8) is identified as: 

. (9) 

The equation (9) is the matrix form of the observation equation. 

3. Particle Swarm Optimization and Radial Basis Function Network 

3.1. The Particle Swarm Optimization Algorithm 

The principle of PSO was first proposed by J. Kennedy and R. Eberhart in 1995. PSO is an 
evolutionary computing algorithm approach inspired by the social behaviour of birds; it is based on 
repetition and starts with a random matrix as a primary population (Mussi et al., 2009).  
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A swarm based on a set of particles moving around the search space, each one symbolizes a 
potential solution (fitness) (Li, J. and Li, B., 2014). There are two parameters for each particle containing 
positioned velocity of the particle, which are defined by a space vector 	  and a velocity vector		 , 
respectively.  

The position at which the best fitness  met by the particle, and the index of the best particle 
 in the swarm. Every generation, the position of each particle is updated by adding the velocity to the 

position vector (Dehuri and Tripathy, 2011). These particles form a pattern in an n-dimensional space and 
move to the required value. In accordance with the experience from the previous moves, the particles take 
a decision about how to decide the next move. In every iteration, all particles in the n-dimensional 
problem space move to an optimum point. The position and velocity of each particle can be changed 
conferring to the following equations: 

.  

The positions are based on their movement over a discrete time interval ∆t usually set to 1 as 
follows: 

 . 

The parameters and 	are set to positive constant values, which are normally taken as two 
whereas  represent uniformly distributed random values in 0,1 , and 		is called as inertia weight 
that can be constant (Azami et al., 2013), the inertia weight is employed to control the impact of the 
previous history of velocities on the current one. Figure 1 shows the flowchart for the PSO algorithm. 

 

Figure 2. Flowchart for the PSO algorithm 

3.2. The Radial Basis Function neural network 

RBF neural network is a three-layer feed-forward network. The first is the input layer which is 
composed of signal source nodes. The second is the hidden layer which is composed of radial bases 
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function in which the number of hidden units is determined by the described problems. The third is the 
output layer. The inputs of the hidden layer are the linear combinations of scalar weights and the input 
vector , , … ,  where the scalar weights are usually allocated unity values. The output layer 
yields a vector , , … , 	for  outputs by linear combination of the outputs of the hidden nodes 
to produce the final output (Sun et al., 2009). The network output can be obtained by: 

∅ ,																																																																																																																																									 10  

where  is the final output, ∅ .  denotes the radial basis function of the i-th hidden node	  is n-
dimensional input vector; k is the number of hidden units;  is the weight between hidden layer and 
output layer. The Gaussian activation function is used as basis function in this paper, which is given by: 

∅ exp
‖ ‖

2
	,																																																																																																																																								 11  

		is the variance of Gaussian activation function and  is the centre of the Gaussian activation function.  

3.3. The proposed PSO-RBF model 

It is commonly difficult to fix a certain stochastic model for each inertial sensor which works 
efficiently in all environments and reflects the long-term behaviour of sensor errors (Noureldin et al., 
2004). The fact that KF highly depends on predefined dynamics model forms a major disadvantage (Jwo 
and Weng, 2008). If the real model is not reflected by the estimated internal model, the KF estimates may 
not be consistent and a divergence problem may recur. Numerous efforts have been made to ameliorate 
the covariance matrices estimation. The PSO is employed in this suggested model to obtain relevant RBF 
parameters. RBF is used to filter the raised frequency noise and to extract the measurement noise from the 
covariance matrices. 

This method consists in training the network on all points except one and tests the error on this 
point. By repeating this process on all points, we obtain an overall error that is to make minimal. 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The PSO-RBF functional block diagram 

4. Simulation Results  

4.1. Simulations 

Diverse propagation models (within different sorts of environment) distinguish interactions 
between the signal and the considered environment. Receiver performance is also taken into consideration 
in computations. 
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Here, gives simulation results using our expanded package by MATLAB, we calculate the position 
and the pseudo-range error using our algorithms. Accordingly, in the simulation, the reception position is 
well known as well as the pseudo-range error. The number of available satellites varies between 4 and 11 
with an average equal to 9. 

Adjusting the filters consists in selecting values for these process noises and the measurement 
noises that optimize the filter performance. A nominal set of adjusting parameters are in Table 1. 

Table 1. Setting parameters for the GPSTk 

Clock 5 m/sec 

Residual troposphere 0.2 m 

Phase biases 2 e-6 m/sec 

Pseudo-range precision (PR) 5 m 

Doppler precision (Dp) 2 Hz 

 
Multipath is not addressed particularly by the algorithm. Pseudo-range multipath is basically 

detached by the smoothing algorithm presented in (Briers et al., 2010). Phase multipath is minor but in 
theory a source of position error, though averaging over long times should be adequate to minimize it 
strongly. 

The nominal tropospheric delay is eliminated using any of the numerous classical tropospheric 
models, as given in the GPSTk (The GPS Toolkit, http://www.gpstk.org ). The software gets input from 
RINEX format meteorological files for weather data, or, in their nonexistence, uses default values, which 
also might be given by the user. The tropospheric delay situation in the KF justifies any residual delay. 

The ionospheric delay caused by the ionosphere is displaced to first order in the creation of the 
ionosphere-free phase. Higher order ionospheric delays may be 10 centimetres large, thus may be a 
source of error, even though averaging will powerfully lessen their effect. They have not been integrated 
into the filters, although there are plans to do so. 

The C1-P1 bias is a bias linking the C/A and P pseudo-range code on L1, the bias takes pat 
directly to the solution error if C/A code data is used with a similar ephemeris to assess exact positions. In 
this paper, the pseudo-ranges are only used to debias the phase, consequently any residual bias will takes 
part just a small error of the initial phase bias, and this will certainly be explained in the Kalman filter 
state. 

The ephemerides are recovered from FTP servers of international GNSS Service (IGS Data, 
http://sopac.ucsd.edu/dataBrowser.html ) stations and the National Geospatial-Intelligence Agency 
(NGA, http://eartch-info.nga.mil/GandG/Sathtml/) respectively, NGA delivers antenna phase centre 
(APC) satellite orbits and clock data each 15 minutes synchronized to GPS time. All the data are archived 
in receiver independent exchange (RINEX) n-type format, which contains the ephemeris/Clock 
parameters broadcast by the satellite, the pseudorandom noise (PRN) and the transmission time of 
message (TTOM).  

The dataset consisting of 10 days (17-26 October of 2014) at each of three different monitor 
stations. Meteorological information is available for the NGA sites. The NGA (P-code) data was 
assembled by an Ashtech ZY12 with cesium frequency norm at a 30 second rate. 

4.2. Results  

The strategy of the PSO-RBF method is the optimization of RBF parameters via the PSO 
optimization process. To determine the optimal location of the vector particles and the leading particle 
decoding individual series, the best particles receive the corresponding parameters of the RBF network in 
every iteration. To prove the performance determining results of the PSO-RBF network, we did 
simulations under the same condition of PSO, RBF and PSO-RBF network hybrid algorithm then did a 
comparison. 

Measures are the residual of GPS LS data, which are used as the fundament of KF parameter 
adjustment for the PSO-RBF technique. The experiments of simulation were completed to assess the 
performance of the proposed method compared to that of conventional methods for GPS navigation 
processing. Satellite constellation was modelled and the fault origins messed the GPS measurements to 
encompass tropospheric delay, ionospheric delay, receiver noise and multipath. 

Figure 3 shows the PSO-RBF compared to the actual trajectory and the noise corrupted trajectory. 
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Figure 4. PSO-RBF as compared to the actual trajectory and noise corrupted trajectory 

 
Figure 5. Positioning errors with correction 

Figure 4 shows clearly a substantial performance improvement. The fitness function value changes 
in Figure 5 and it shows that PSO-RBF neural network is more precise. It shows as well that relative time 
of application PSO-RBF is shorter than the PSO and that there is higher accuracy under the same set of 
samples. The PSO-RBF algorithm can optimize quickly and can be used for short-term forecasting. 

 

Figure 6. Convergence profile for PSO-RBF 
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The results of simulation model are in Table 2. 

Table 2. Summary table of simulation models 

Model Number of iterations Precision Error 

RBF 2054 0.001 0.02% 

PSO 950 0.001 0.011% 

PSO-RBF 590 0.001 0.0029% 

 

Figure 7. Percentage error of forecasted positioning of a certain day in 24 hours 

From Figure 6 we can note that the PSO-RBF neural network error percentage changes uniformly 
at a rate between 1.5% and 3.4%, consequently the precision of the prediction using the model psoriatic 
RBF is better than that of the traditional PSO and RBF models. 

5. Conclusion  

The GPS is one of the primary systems for navigation aids. However, there are many errors 
associated with the GPS navigation solution. In order to compensate these errors and others (satellite 
clock error, ephemeris error, multi-pathing, tropospheric delays, ionospheric delays, SA error and etc). In 
this paper, RBF reaches positive results by solving the nonlinear and non-Gaussian problems. 
Experimental results reveal that the RBF algorithm is superior to many other particle filtering algorithms. 
The navigation accuracy based on the proposed PSO-RBF method has been compared to the conventional 
EKF method and has proved that substantial amelioration in both navigational accuracy and tracking 
capability. The covariance matrices for both dynamic process and measurement models in the Kalman 
filter have been estimated on-line and the nonlinear dynamics system with faults have been defined in 
order to compensate the modelling error. This combination method is based on RBF neural network, and 
PSO is developed which predicts pseudo-range corrections and compensates the GPS data in real time. 
The algorithm estimates and maintains the accuracy of the pseudo-range predictions. The results using the 
proposed approach have proved significant in positioning performance improvement. 
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