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Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling 
effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. 
For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel 
system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We 
develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We 
also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is 
possible to achieve highly accurate estimation and a high rate of positive vehicle classification. 
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1. Introduction  

Transportation of people and goods are a fundamental part of the global economy. With a growing 
world population, demand for an effective transport infrastructure continues to increase at a huge rate, and 
without careful management, the transportation infrastructure would become highly ineffective. Thus, an 
intelligent infrastructure that makes use of sensors, communications technology and data analytics is 
accepted by many to be an enabler for managing an effective transportation system. In terms of the road 
network, this may entail monitoring road usage for purposes of capacity planning, toll charging and 
maintenance. These systems typically consist of a power source, sensors, signal conditioning, 
communications, database and data analytics. There are numerous options for each, influenced by 
environmental factors, performance requirements and technology availability. 

For traffic monitoring, the systems may typically be installed away from a convenient power 
source. Therefore, they are required to operate autonomously for several years including: classifying, 
logging and reporting traffic data to a central data centre. Solutions such as those described in (Haoui et 
al., 2007) and (Cheung et al., 2005) have been designed and investigated. In (Haoui et al., 2007), a single 
magnetic sensor is used to detect and classify vehicles. This approach has been proposed as a low cost 
alternative to using classical inductive loops (Ki and Baik, 2006) and it may be deployed quicker and can 
provide additional detection data not available from inductive loop systems. Signal classification is 
implemented by means of magnetic signature correlation and comparison to reference signatures. Good 
results have been shown in terms of correct classification using a single sensor and this achievement sets 
a benchmark for comparison of the obtained performance reported in this paper. The work reported in 
(Cheung et al., 2005) presents trials of a commercial product developed using the method from (Haoui et 
al., 2007). This product uses magnetic sensors and wireless communications technology for reporting the 
data back to a processing centre. It is shown in (Cheung et al., 2005) that magnetic sensors can provide 
signatures at least as good as those from inductive loop sensors, but may be more easily deployed. 
However, the work in (Cheung et al., 2005) neither provides details of the signal processing techniques 
used nor does it explore the use of multiple sensors. 

In addition, some other notable attempts were made to detect and classify road traffic. In (Haijian 
et al., 2014), classification and regression rate based approach was applied on vehicle magnetic signatures 
for real-time classification with an accuracy rate of 88.9% for two vehicle classes. Furthermore, in 
(Kaewkamnerd et al., 2010), vehicles are classified using a tree algorithm based on signals collected from 
two anisotropic magneto-resistive sensors achieving an accuracy rate of 81.7% for 4 classes. Some related 
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algorithms were developed for road traffic monitoring using different technologies. For instance, vehicle 
classification has been implemented in Pretoria, South Africa, using RFID technology (Mbodila et al., 
2015), whereas axle counting is used in (Ma et al., 2014). Traffic and infrastructure monitoring was 
deployed in (Xue et al., 2015), whereas, in (Collotta et al., 2015), traffic detection was developed for use 
with a traffic light controller. 

In contrast to these approaches, we address vehicle classification with multiple classes and our 
target accuracy rate is higher than the ones achieved by the comparative methods. In collaboration with 
Clearview Traffic, our project partner, we develop a novel system of wireless magnetic sensor network 
and advanced signal classification techniques. We demonstrate that high accuracy of vehicle detection 
and classification can be achieved with only two magnetic sensors, which greatly reduces hardware 
complexity and costs. In particular, we show how a signal edge detection algorithm successfully used in 
other areas of signal processing can improve temporal localisation of vehicle drive-by events. By 
combining magnetic signatures from only two magnetic sensors, the novel proposed method deployed on 
the newly designed system is capable of providing highly accurate vehicle length and speed estimates. 
Furthermore, the method is then extended to determine vehicle classification based on the processed 
magnetic signatures. We evaluate the developed method using a comprehensive database of magnetic 
signatures recorded in a realistic environment. 

The remainder of the paper is organised as follows. In Section 2, we describe the system based on 
the wireless magnetic sensor network. Then, in Sections 3, we explain the method used for edge 
localisation in magnetic signatures, which is exploited in Section 4 for vehicle length and speed estimate. 
In Section 5, we explain the wireless communications protocol. In Section 6, we analyse the obtained 
performance. Finally, we conclude our findings in Section 7. 

2. System Description  

A generalised system for road traffic monitoring and vehicle classification consists of two parts: a 
set of sensors and a base station (BS), as illustrated in Figure 1. Each sensor is equipped with 
magnetometers (x, y and z axes), a microprocessor with reduced computational power and RF transceiver 
with antenna. The sensor is connected to the BS via a wireless channel. The BS plays a role of data sink 
for all the information gathered by the sensors and it deploys an algorithm for vehicle speed estimation 
and classification. 

 
Figure 1. System concept of wireless magnetic sensor network for road traffic monitoring and classification 

The number of magnetic sensors is not fixed, but the adopted approach aims at minimising this 
number to preserve low system costs and simplified installation. For that reason, the target is to have two 
sensors placed along the road at a fixed distance. The position of this pair of sensors is optimised based 
on measurements acquired using a comprehensive database provided by Clearview Traffic, as explained 
in Section 6. 

The system processes the magnetic signatures of each vehicle in a two-fold procedure. First, the 
signatures for each vehicle are captured by the magnetometers in three geometrical axes, i.e. x, y and z. 
These signatures are processed locally by the microprocessor to deploy de-noising and detection of the 
signature beginning and end time-stamps. The signatures are transferred to the BS via a wireless link 
along with the detected time-stamps. Then, the BS deploys a processing algorithm to all gathered data 
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that estimates the speed and length of the vehicles and classifies them. The results may then be 
communicated to users. The design of the system has to be such that it fits within the computational 
resources of the sensors and BS, and within the available energy budget. 

The algorithm used for detecting the beginning and end of vehicle magnetic signatures is based on 
a wavelet multi-scale discontinuity detection method, as explained in the next section. This algorithm is 
used to extract the two time-stamps corresponding to the beginning and end of the vehicle drive-by event. 
This is subsequently used to reduce the amount of information and hence data-rate required for 
communicating and determining vehicle length and speed estimation at the BS. This is explained in detail 
in the following sections. 

3. Wavelet Multi-Scale Discontinuity Detection 

Singularity or discontinuity detection has been an important challenge in many areas of signal 
processing, where precise temporal or spatial localisation of events of interest or key signal characteristics 
plays a fundamental role. 

For instance, in image processing, singularities correspond to edges and contours that are 
important for image understanding and, hence, high popularity of the Canny edge detector (Canny, 1986) 
in computer vision and image processing. Similarly, in speech processing, discontinuity detection is used 
for word boundary segmentation (Scharenburg et al., 2010) or for a voice activity cue (Benyassine et al., 
1997), which contributes to interference reduction in blind acoustic source separation (Quingju et al., 
2014). 

In this work, we exploit multi-scale wavelet discontinuity detection to determine the beginning and 
end of magnetic signatures. The method is used to localise in time the vehicle drive-by events as 
compared to background noise during no-event time. The original theory was developed in (Mallat and 
Hwang, 1992; Mallat and Zhong, 1992), whereas the method was then successfully extended to two-
dimensional signals for image interpolation (Chang et al., 2006). 

This method characterizes signal discontinuities across multiple scales of the wavelet transform, 
where each discontinuity is characterized by amplitude, location and local Lipschitz regularity (Mallat 
and Zhong, 1992). When the wavelet transform is applied to a signal ݂ሺݔሻ with a discontinuity, the 
resulting wavelet coefficients ௦ܹ݂ሺݔሻ at scales ݏ ൌ 1,2, .. contain a footprint that consists of peaks across 
multiple scales. The locations and amplitudes of the peaks, | ௦ܹ|݂ሺݔሻ, exhibit coherence across scales so 
that the locations remain the same, whereas the amplitudes behave as 

KsxfWs ~)( , (1) 

where K is a constant, ߙ is the local Lipshitz regularity of the discontinuity and ~ denotes approximate 
equality. Such a multi-scale coherence of discontinuities is a key feature for providing a robust method to 
distinguish them from the background noise. For that reason, this method is exploited in our system, as 
explained next, and is a distinguishing aspect of our system. 

4. Vehicle Length and Speed Estimates 

The method for estimating both vehicle speed and length can be divided into two parts: distributed 
processing on each sensor microprocessor and centralised processing at the BS. Unlike the BS, the sensor 
hardware is severely constrained in terms of computational and energy resources and hence the system 
design criterion is to reduce the energy required for the magnetometers, computation and wireless 
transmission/reception. First, the wavelet multi-scale discontinuity detection is used to determine the 
magnetic signature beginning and end on each sensor node, and then this information is used for speed 
and length estimation conducted centrally at the BS. The speed estimation method has several possible 
configurations that enable a trade-off between performance and energy efficiency. These are explained in 
detail below. 

4.1. Detection of Signature Beginning and End 

Vehicle length estimation is based on extracting the location of the signature beginning and end 
using the detection approach explained in Section 3. This information is communicated to the BS, which 
performs the final length estimation making use of the estimated speed and sampling frequency fs. The 
method consists of several steps, as follows. 
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The magnetometers measure the incident magnetic field in three geometrical axes providing three 
corresponding components. Since the distribution of the measurements across these three components is 
sensitive to magnetometer orientation, considering each component separately can affect the estimate and 
classification performance in practical implementation. For that reason, the magnetic components are 
processed jointly by computing the magnitudes for each sample as 

222 ][][][][ nznynxnm  , (2) 

where x[n], y[n] and z[n] are the three magnetic components at the time instance n, and m[n] is the 
corresponding magnitude. Typical magnetic signature components x, y and z are shown in Figure 2 
together with the resultant magnitude. 

The magnitude is then transformed using the quadratic spline wavelet transform with the low-pass 
and high-pass filters ݄௅௉ ൌ ሾ1,3,3,1ሿ and ݄ு௉ ൌ ሾ1,െ1ሿ, respectively, following the method from (Chang 
et al., 2006). This filter pair is chosen since it provides a good balance between computational efficiency 
and smoothing, as reported in (Chang et al., 2006), where the same transform was used for image 
interpolation. The number of wavelet decomposition scales, J, in the transform is chosen experimentally 
so that the mean square error of vehicle length estimate for the available dataset (see Section 6) is 
minimised. Increasing J leads to better de-noising performance due to iterated low-pass filtering using 
݄ு௉. However, at the same time, such a smoothing operation results in loss of temporal resolution, which 
deteriorates ability to localise precisely the signature beginning and end. These opposed constraints are 
best balanced for J = 5 for use with the database of vehicle magnetic signatures, as explained in Section 6. 

The beginning of the signature is determined as the most prominent positive magnitude 
discontinuity (i.e. discontinuity with positive amplitude) in the wavelet domain. Similarly, the end of the 
signature is identified as the most prominent negative magnitude discontinuity. Note that using any of the 
three separate magnetic components instead of magnitude would cause ambiguity in polarity of the 
discontinuities since these components are not, unlike the magnitude, constrained to be non-negative. As 
a consequence, the beginning and end of the signature are always featured by positive and negative 
discontinuities, respectively. To extract these discontinuities from noisy signatures, they are examined for 
coherence of the characteristics across wavelet scales given in (1). 

 
Figure 2. Magnetic field signatures taken at fs=400Hz: three components, x, y, z, magnitude m and wavelet scales at J = 4 and J = 5 

Since the resultant magnitude exhibits a high level of noise, the first three wavelet scales, 
ܬ  ൌ 1,2,3, .., are discarded. Recall that the high-pass outputs of the wavelet transform correspond to 
derivatives of the iteratively smoothed versions of the original signal. Thus, a positive (or negative) 
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discontinuity in the signal will generate a local maximum (or minimum) in the wavelet domain. This 
property is exploited in the method following (Chang et al., 2006) so that the locations of all local 
maxima at the scales J = 4 and 5 are first identified and for the ones that preserve the neighbourhood 
locations at J = 4 and J = 5 (i.e. the local maxima remain in proximity at these two scales) are tested 
whether they meet the scaling equation (1) for െ1.5 ൑ ߙ ൑ 1.5. The local maximum with the minimal 
location (left-most in the graphs) occurring earliest in time that satisfies these conditions corresponds to 
the beginning of the signature (denoted in green in Fig. 2). Similarly, the local minimum that satisfies 
these conditions with the maximal location (right-most in the graphs) occurring latest in time corresponds 
to the end of the signature (denoted in red in Fig. 2). The indices of the detected beginning and end, ݊ଵ 
and ݊ଶ are communicated to the BS for further processing. 

4.2. Vehicle Speed Estimate 

Speed estimation is based on measuring a time delay, ∆ݐ, between signatures from at least two 
sensors placed along the road. Knowing the distance, d, between these sensors, we can compute the 
estimated speed, ݒො , as the ratio ݒො ൌ ݐ̂∆/݀ , where ∆̂ݐ is a measured version of ∆ݐ . Note that such an 
approach inherits a measurement error imposed by using a finite sampling frequency ௦݂  because of 
sampling error in measuring ∆ݐ. Assuming the maximal absolute error in measuring ∆ݐ equals a half of 
the sampling interval, 1/2 ௦݂ , then the maximal relative error of the estimated speed is given by  
ሺ1 ൅ 2݀ ௦݂/ݒሻିଵ. For practical implementation presented in Section 6, this error is not constraining the 
quality of speed estimate because the reported obtained errors are slightly larger than the theoretical 
maximal inherited error. 

Since the method requires input from at least two sensors, it is implemented centrally at the BS. 
Note that more accurate speed estimation can be derived by using more than 2 sensors, but since the goal 
is to minimise the system complexity and costs, we are focusing on speed estimation using only 2 sensors. 

Based on the type of input from the sensors and system architecture, we propose three algorithms 
for measuring the time delay, which allow for trade-off between speed estimation accuracy and 
computational complexity. In the first Algorithm A, the entire set of signature magnitudes is quantized 
using ௕ܰ bits-per-sample (bps) and transmitted from each sensor to the BS. The BS then estimates the 
time delay between the two signatures as the time instance of the cross-correlation maximum. The two 
signatures are generated by the same vehicle driving by the two sensors and, thus the shapes of the 
signatures are expected to be highly correlated. In the experiments, this assumption is verified and can be 
efficiently exploited. The highest cross-correlation between the two signatures occurs at the time instance 
equal to the time delay. Fig. 3 shows a typical cross-correlation with a clear peak at the time delay. The 
number of bps, ௕ܰ , enables scaling of the transmission data-rate versus estimation accuracy and, as 
explained in Section 6, we have found that the best results are obtained for ௕ܰ ൌ 5. 

In Algorithm B, the magnitude samples are quantized and transmitted to the BS only for indices 
between the detected beginning and end of the signatures from each sensor separately. The BS then 
computes the cross-correlation in the same way as for Algorithm A. The key feature in Algorithm B is to 
preserve temporal alignment across all used sensors to compute correctly the cross-correlation and this is 
achieved by attaching time-stamps of each signature to the transmission package in the protocol, as 
explained in Section 5. Algorithm B reduces the overall transmission data-rate at the cost of a slight 
performance loss, as analysed below. 

Finally, Algorithm C transmits to the BS only the detected beginning and end indices from each 
sensor. The time delay is estimated as an average difference between the corresponding beginning indices 
and end indices from the sensors divided by the sampling frequency ௦݂. While this algorithm significantly 
reduces the transmission data-rate, it also results in a lower performance, as analysed in Section 6. 

4.3. Vehicle Length Estimate 

Having the beginning and end indices, ݊ଵሺ௜ሻ  and ݊ଶሺ௜ሻ , of signature from the sensor ݅ ൌ 1,2 
transmitted to the BS and the estimated vehicle speed, ݒො, as explained in Section 4.2, length is calculated 
as the mean estimate from each sensor, that is, 
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Since the length estimate method depends on the speed estimate, there are three algorithms 
following their definitions in Section 4.2. Note that from (3), the error of speed estimation is propagated 
to that of length estimation and, thus length estimate accuracy is worse than speed estimate accuracy, as 
also supported by experimentations and presented in Section 6. Thus, the system design should ensure 
speed estimation error is minimised. 

As a summary, Figure 4 illustrates the block diagrams of the three algorithms. 

t

t

 
Figure 3. Magnitudes of the magnetic signature from two sensors, (a) and (b), and their cross-correlation with a clear peak (c) 
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Figure 4. Block diagrams of algorithms A, B and C for vehicle speed and length estimation.  

Box denoted as SENSOR shows the components of the algorithms implemented on sensor before data transmission,  
whereas the box BS depicts deployment at BS after data transmission 

5. Wireless Communication Protocol 

The main goal for the wireless communication protocol is to provide data transfer from multiple 
in-road sensors to a roadside BS in a reliable and timely fashion. Wireless communication is often the 
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dominant source of power consumption in wireless sensing applications; hence, it is important to 
minimize the communication energy costs while meeting the application requirements. While a number 
of energy efficient MAC protocols have been designed in the past (e.g. (Ye et al., 2006; Buettner et al., 
2006)), to the best of our knowledge, none addresses the fact that the communication channel is 
periodically blocked by passing vehicles. This happens because whenever a vehicle is passing over a 
sensor node, it significantly degrades the communication channel between the sensor nodes and the BS, 
causing unnecessary energy wastage on transmission, re-transmission and idle listening. 

The proposed protocol combines Time Division Multiple Access (TDMA) and centralised polling 
to provide robust and energy efficient operation. The key idea of the proposed protocol is to integrate 
vehicle presence information into a wireless channel access scheme. The diagram illustrating the protocol 
operation is shown in Fig. 5, whereas the beacon format is presented in Table 1. 

 
Figure 5. Wireless protocol operation diagram 

The protocol operates as follows. The BS transmits a beacon message periodically, to synchronise 
the nodes and poll the data separately from each sensor. The periodic polling allows the protocol to cope 
with high data-rate scenarios, e.g. due to higher sampling frequency, number of samples or when a large 
number of sensors is deployed, while eliminating the possibility of packet collisions. 

Table 1. Beacon format 

Field Length (bits) 

BS ID 32  

Beacon interval 32 

Sensor-to-poll 32 

Time-stamp 32  

5.1. Initialisation 

Each sensor node enters into standby mode upon start-up, where it searches for beacons by turning 
on its receiver for ௕ܶ௘௔௖௢௡ seconds every ௕ܶ௘௔௖௢௡ ൈ ௦ܰ௞௜௣ seconds. Each beacon contains the duration of a 
beacon interval ௕ܶ௘௔௖௢௡	and a time-stamp indicating the current time at a BS. Once the node receives a 
beacon, it computes the clock offset between the local clock and BS, schedules its wake-up for the next 
beacon and switches into data transfer mode, described below. ௦ܰ௞௜௣ is a fixed parameter based on the 
available energy budget and the maximum latency for a BS discovery. Lower values of ௦ܰ௞௜௣ allow the 
sensor node to discover the BS quicker, at the expense of higher energy consumption. 
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5.2. Data Transfer 

Once the sensor node receives a beacon, it compares the beacon’s Sensor-to-poll field with its own 
ID, and initiates a data transfer if it matches, or sleeps until the next beacon. Reliable data transfer is done 
using a simple ARQ protocol, where each data packet is acknowledged by a BS. No acknowledgement 
indicates either a lost data packet or lost acknowledgement, and since both events are indistinguishable to 
the sender, it retransmits any unacknowledged packet again (up to ௥ܰ௘௧௥௔௡௦  attempts after which the 
transmission is considered failed and the packet is discarded). Each packet contains a sequence number 
incremented upon each successful transmission. The sequence number is used by the BS to detect gaps in 
the stream of packets. 

To take into account the presence of a vehicle, the protocol checks the magnetic sensor reading 
before a transmission begins. Data transfer starts immediately if the measured intensity of the magnetic 
field is less than ܯ௧௛௥௘௦௛. Otherwise, the node assumes there is a vehicle in the proximity, turns off the 
transceiver and waits until the magnetic field intensity drops below ܯ௧௛௥௘௦௛. The vehicle presence can 
also affect the beacon transmission itself, and while this cannot be avoided in some cases, it is mitigated 
by using a higher TX power from the BS, which may be possible due to its higher energy budget. If a 
sensor node does not hear from the BS for more than ௟ܰ௢௦௧  seconds (for example, due to a vehicle 
remaining in the proximity), it switches into an energy-saving standby mode, waking-up periodically to 
detect a beacon from the BS as described in Section 5.1. As soon as the beacon is detected, the node 
switches back into the data transfer mode. 

5.3. Data Processing 

The set of magnetic sensor samples that form a magnetic signature from a vehicle are organised 
into data records of the format shown in Table 2. 

Table 2. Data record format 

Field Length (bits) 

Local time-stamp 32  

Offset 16 

Length 16  

Data … 

Padding 0,…,7 

 
The offset field allows splitting long data records across several packets. The overall packet 

contains several records and has the format detailed in Table 3. 

Table 3. Packet format 

Field Length (bits) 

Source address 32 

Destination address 32 

Sequence number 8  

Local time-stamp 32 

Flags 8 

Data length 16 

Checksum 16 

Record #1  

Record #2  

…  

Record #N  

 
The sequence number is incremented upon each successful transmission and is used by the BS to 

detect missing packets. 
The BS receives the packets and performs the actions listed in Table 4. 



Transport and Telecommunication Vol. 17, no. 4, 2016 

282 

Table 4. BS actions 

Step Action 

1. Send an acknowledgement immediately. 

2. Use packet sequence numbers to discard repetitive data. Duplicated packets with the same sequence number occur when 
the acknowledgement is lost and the sensor node retransmits the packet. 

3. Use packet sequence number to detect missing data. In case a missing packet is detected, it discards relevant fragments 
from the same node and the relevant samples from other nodes. 

4. Convert the event local time-stamps within the packet to a global time reference. 

5. Re-assembles long records that are split among several packets. 

6. Re-assembles complete events (samples from several nodes that belong to the same event) based on these time-stamps. 

7. Passes on the complete event to a vehicle classification module. 

6. Performance Analysis 

Experimentation and performance evaluation were carried out in collaboration with Clearview 
Traffic. A set of 32 magnetometer sensor nodes was deployed on a public road B-4100 in the area of 
Bicester, Oxfordshire, UK, to collect vehicle magnetic signatures, as illustrated in Fig. 6(a). These sensors 
collected samples from 930 vehicles classified into 8 types according to the classification given in Table 
5. Each signature is annotated with the type of vehicle identified visually from the associated video record 
and with ground-truth speed and length obtained from a magnetic loop device installed for benchmarking 
in parallel to the sensor network. Next, we show how the best pair of sensors is selected and we 
demonstrate accuracy rates of the speed and length estimate and the vehicle classification. 

Table 5. Vehicle classification and number of vehicles in each category according to the video data 

Class Description Actual number of vehicles 

(1) Motorbikes 5 

(2) Car or light van 713 

(3) Car or light van plus trailer 10 

(4) Heavy van or minibus 111 

(5) Rigid (LGV) 31 

(6) Rigid (MGV) 25 

(7) Rigid plus trailer 20 

(8) Bus or coach 15 

Total 930 

6.1. Selection of the best pair of sensors 

The 32 sensors were installed in two linear arrays with 16 sensors in each row separated by a 
distance of ݀ ൌ ݀ଵ ൌ 3݉. Since the goal is to keep only 2 sensors, we select the best pair of sensors 
aligned with the road direction based on the criterion of highest average Signal-to-Noise-Ratio (SNR) of 
the magnetic signatures for the vehicles in the collected database. The SNR for different sensors depends 
mostly on the sensor location across the road – if vehicles are driven close to the sensor, the SNR will be 
higher and the signature will be clearer. Thus, we compute the average SNR (the mean between the SNRs 
obtained from the two sensors for each pair) for all 16 pairs of sensors and select the strongest SNR. Fig. 
6(b) shows the SNRs for these 16 combinations with the pair (6-22) being the best one. Hence, we 
process further only the signatures from these two sensors. 

6.2. Speed and length estimation accuracy 

The acquired database of vehicle magnetic signatures has been captured at the sampling frequency 
௦݂ ൌ  For the purpose of a more detailed performance analysis, we will analyse speed and length .ݖܪ	400

estimation accuracy for four different sampling frequencies, ௦݂ ∈ ሼ400,200,133,100ሽHz, obtained by 
subsampling the original signatures. 

The signatures are quantized using 2 ൑ ௕ܰ ൑ 6 bps so that the range between zero and maximal 
magnitude in the signature is divided in 2ே್  uniform quantization intervals. Note that such an adaptive 
quantization approach requires transmitting the maximal magnitude to the receiver for successful 
reconstruction of the quantized samples. 
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(a) 

 
(b) 

Figure 6. (a) Layout of 32 magnetometer sensors deployed on a public road.  
(b) Average SNR for each of 16 sensor pairs obtained as the mean for two SNRs from each sensor in the pair.  

The sensor pair #6 exhibits the highest SNR and is selected for further processing 

Accuracy of the speed and length estimation is now determined for the three algorithms A, B and 
C, as described in Section 4. The obtained performance is compared in terms of two accuracy metrics: 
Mean-Relative-Error (MRE) and Mean-Absolute-Error (MAE). For speed estimation, the MRE is defined 
as ܧܴܯ௩ ൌ ොݒ| െ ௩ܧܣܯ തതതതതതതതതതതത, whereas the MAE is defined asݒ/|ݒ ൌ ොݒ| െ  തതതതതതതതത, where the ground-truth values|ݒ
are obtained using the annotation in the database acquired using the magnetic loop system. The metrics 
for length estimate accuracy, ܧܴܯ௟  and ܧܣܯ௟  are obtained in a similar way to the ones for speed 
estimation. All the metric values are shown in Table 6, where MRE is expressed in terms of %, ܧܣܯ௩ as 
km/h and ܧܣܯ௟ as cm. Note that quantization is not used in Algorithm C and, thus, ௕ܰ does not affect the 
performance in the right-hand side columns. Note also that Algorithm A has the best performance for 
speed estimate and remains stable for a range of ௕ܰ and ௦݂. For length estimation, Algorithms A and B 
have comparable performance. Algorithm C is inferior to the other two in all cases, which is expected 
since it operates at a significantly reduced transmission data-rate, but also has lower resulting power 
requirements, as analysed below. 
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Figure 7(a) shows the speed estimation performance of Algorithm A in the case of ௦݂ ൌ 200 Hz 
and ௕ܰ ൌ 5 bps. The graph differentiates the performance for each class of vehicles, as listed in Table 5. 
Similarly, Figure 7(b) illustrates the length estimate performance for the same case. Note that separation 
of classes using length is quite clearly visible in Figure 7(b), which is exploited for vehicle classification, 
as explained in Section 6.3. 

Table 6. Speed and length accuracy evaluation. The metrics ܧܴܯ௩ (in terms of %), ܧܣܯ௩ (km/h),	ܧܴܯ௟ (%) and ܧܣܯ௟ (cm) are 
shown for several values of the sampling frequency fs and number of quantization bps Nb. The values for MRE are expressed in 
terms of %, whereas the ones for MAE are given in km/h and cm for speed and length, respectively 

fs 
(Hz) 

Nb 
(bps) 

Algorithm A Algorithm B Algorithm C 

MREv MAEv MREl MAEl MREv MAEv MREl MAEl MREv MAEv MREl MAEl 

100 2 6.80 6.50 28.62 137.02 13.32 12.31 32.11 154.84 14.91 13.88 31.47 155.67 

3 6.52 6.24 28.50 135.69 11.78 10.93 29.78 144.04 

4 6.55 6.27 28.50 135.49 11.56 10.74 29.53 143.07 

5 6.54 6.25 28.55 135.68 11.80 10.96 29.62 143.73 

6 6.51 6.23 28.62 136.08 11.87 11.04 29.70 144.11 

133 2 6.69 6.34 21.79 105.06 10.16 9.39 20.74 106.04 11.87 10.95 20.52 110.54 

3 6.29 5.96 21.66 104.33 9.48 8.76 20.04 103.19 

4 6.06 5.78 21.38 103.22 9.59 8.83 20.08 103.42 

5 6.09 5.82 21.39 103.24 9.60 8.82 19.82 102.63 

6 6.03 5.75 21.33 102.84 9.56 8.79 19.97 102.98 

200 2 6.74 6.40 18.00 92.84 7.89 7.36 18.79 96.42 8.90 8.41 19.13 98.56 

3 6.32 6.00 17.81 91.71 7.58 7.02 18.48 94.63 

4 6.06 5.80 17.54 90.43 7.36 6.87 18.23 93.58 

5 6.05 5.78 17.56 90.46 7.19 6.71 18.31 93.94 

6 6.07 5.80 17.58 90.51 7.20 6.73 18.33 94.05 

400 2 6.50 6.15 14.41 76.04 6.57 6.22 14.38 75.67 7.85 7.38 15.05 82.81 

3 6.13 5.82 14.12 74.53 6.28 5.95 14.14 74.68 

4 5.87 5.61 13.90 73.46 6.05 5.78 13.96 73.90 

5 5.87 5.61 13.87 73.34 6.07 5.79 13.91 73.65 

6 5.86 5.60 13.87 73.30 6.05 5.77 13.92 73.69 

Table 7. Comparison of transmission data-rates and computational loads on sensor microprocessor for Algorithms A, B and C. Both 
metrics are expressed per signature and sensor. Number of mathematical operations is approximatively independent of Nb 

fs (Hz) Nb 
(bps) 

Algorithm A Algorithm B Algorithm C 
bits per sign-
sensor 

# comp per 
sign-sensor 

bits per sign-
sensor 

# comp per 
sign-sensor 

bits per sign-
sensor 

# comp per 
sign-sensor 

100 2 482 ~ 6757 86 ~ 6757 32 ~ 6524 
3 716 113 
4 949 140 
5 1182 168 
6 1415 195 

133 2 638 ~ 9019 99 ~ 9019 32 ~ 8708 
3 949 132 
4 1259 166 
5 1570 199 
6 1881 233 

200 2 948 ~ 13514 127 ~ 13514 32 ~ 13048 
3 1414 174 
4 1881 222 
5 2347 269 
6 2813 317 

400 2 1880 ~ 27028 218 ~ 27028 32 ~ 26096 
3 2812 310 
4 3744 403 
5 4676 496 
6 5608 589 
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(a) 

 
(b) 

Figure 7. (a) Speed estimate performance of Algorithm A for each vehicle class for fs=200Hz and Nb=5bps.  
The estimated speed takes discrete values because of a finite resolution of cross-correlation.  

(b) Length estimate performance in the same case 

Algorithms A, B and C differ significantly in terms of required transmission data-rate and 
computational load on the sensor microprocessors. Table 7 shows an overview of these two metrics for all 
three algorithms. It can be observed from Tables 6 and 7 that performance may be traded-off for resource 
usage (transmission data-rate and computational load) at very fine granularity by choosing different 
algorithms and parameters ௦݂ and ௕ܰ. 
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6.3. Vehicle classification accuracy  

Our vehicle classification method presented in this section is based solely on estimated vehicle 
lengths using thresholding as the classification criterion due to the need to preserve low computational 
complexity. We leave investigation of the application of more sophisticated classification methods for the 
future work. 

Given a respectable database size, list of classes in Table 5 and vehicle lengths shown in Figure 7, 
we consider classification without using Class (3) because the vehicles from this class are scattered in 
both real and estimated length, thus mixing with other classes. For similar reasons, we consider Classes 
(7) and (8) together as a joint class of lengthy vehicles and Classes (1) and (2) as motorbike-car joint class 
due to a small number of recorded motorbikes. Therefore, 5 separate classes are used for the evaluation 
purposes delimited by 4 thresholds. The histogram of vehicle lengths belonging to the 5 classes is 
graphically shown in Figure 8. 

Classification performance is evaluated by comparing the true-positive-rate (TPR) for various 
cases. The TPR is obtained as a ratio between correct vehicle classification occurrences and total number 
of vehicles and, hence, it is upper-bounded by 100%. The process of classification into 5 classes in each 
case is optimised so that the 4 corresponding length delimiter thresholds are chosen based on estimated 
lengths such that the TPR is maximised. In parallel, classification based on real lengths is deployed to 
produce a benchmark TPR. Table 8 shows the TPRs for all three algorithms and a range of ௦݂ and ௕ܰ and 
it compares them to the benchmark TPR. Note that the achieved classification results are close to the 
benchmark TPR even though only a simple comparison of estimated length is used as the classification 
core engine. 

In addition, we compare this performance to the achievements reported in (Cheung et al., 2005). 
Unfortunately, not enough technical details of the corresponding method are provided in the relevant 
publication and we have not been able to apply the method to our database. However, the reported 
quantitative performance metric in (Cheung et al., 2005) shows that for the database of 37 vehicles only 
65% of vehicles (24) were classified correctly using 5 vehicle classes and that rate raised to 83% (31 
vehicles) when using 3 classes. While these rates may be acceptable in some applications, our proposed 
methods exhibit a higher classification performance that remains robust and stable for a much larger 
vehicle database. 

 

 
Figure 8. Optimal delimiter thresholds for vehicles classification into 5 classes based on measured lengths.  

The optimal length delimiter thresholds are as follows: {520, 726, 886, 1358} cm 
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Table 8. TPRs for a range of	݂
ݏ
 and ܾܰ and for all three algorithms. The benchmark TPR obtained using real length is shown for 

comparison 

fs (Hz) Nb (bps) Benchmark TPR = 99.24% 

Algorithm A Algorithm B Algorithm C 

100 2 82.50% 80.43% 81.96% 

3 82.72% 82.07% 

4 82.61% 82.39% 

5 82.83% 83.15% 

6 82.83% 82.93% 

133 2 84.67% 84.46% 84.02% 

3 85.33% 85.11% 

4 85.22% 85.00% 

5 85.43% 85.11% 

6 85.43% 84.89% 

200 2 87.28% 87.07% 85.54% 

3 86.96% 86.74% 

4 87.07% 86.85% 

5 86.96% 86.96% 

6 86.96% 86.96% 

400 2 87.93% 88.15% 86.63% 

3 87.83% 88.15% 

4 88.37% 88.26% 

5 88.04% 88.37% 

6 87.93% 88.37% 

7. Conclusions 

Automatic monitoring and analysis of road traffic is essential for effective planning of 
transportation networks. While classical systems based on magnetic loop technology can provide reliable 
traffic data, they are cost ineffective and complicated to install and maintain. For that reason, we have 
proposed a novel system that uses a pair of wireless magnetic sensors to measure the magnetic signatures 
generated by passing vehicles. Furthermore, we develop novel algorithms for vehicle speed and length 
estimation and classification using these signatures. We demonstrate that it is possible to achieve reliable 
estimation and classification using a reduced-cost system and energy-efficient processing, which is 
supported by extensive experimentation using a comprehensive database gathered in a realistic scenario. 
Our system was shown to achieve classification accuracy rate of 88.37% with 5 vehicle classes when 
processing a large realistic dataset, which outperforms relevant competitive methods, such as (Cheung et 
al., 2005) (65%) and (Kaewkamnerd et al., 2010) (81.7%). In addition, our system exhibits a similar 
performance as that of the method proposed in (Haijian et al., 2014) (88.9%), which is constrained to 
work with only 2 vehicle classes. Finally, unlike the competitive methods, our system design enables 
efficient trading of estimation accuracy for computational complexity and transmission data-rate. 

While the achieved accuracy rates are competitive, we envisage that they can be pushed further up 
by deploying more sophisticated classification algorithms in cases when power constraints are less severe. 
For instance, classification based on support-vector-machine has a superior performance and can work 
efficiently with multiple classes. Furthermore, relaxing the system complexity constraint would allow for 
improved performance by installing more magnetic sensors, where optimisation of the sensor layout 
might play an important role on the vehicle detection and classification. We leave these points for the 
future consideration. 
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