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Road traffic accidents (RTAs) rank in the top ten causes of the global burden of disease and injury, and Iran has one of the 

highest road traffic mortality rates in the world. This paper presents a spatiotemporal analysis of intra-urban traffic accidents data in 
metropolitan Shiraz, Iran during the period 2011–2012. It is tried to identify the accident prone zones and sensitive hours using 
Geographic Information Systems (GIS)-based spatio-temporal visualization techniques. The analysis aimed at the identification of 
high-rate accident locations and safety deficient area using Kernel Estimation Density (KED) method. The investigation indicates 
that the majority of occurrences of traffic accidents were on the main roads, which play a meta-region functional role and act as a 
linkage between main destinations with high trip generation rate. According to the temporal distribution of car crashes, the peak of 
traffic accidents incident is simultaneous with the traffic congestion peak hours on arterial roads. The accident-prone locations are 
mostly located in districts with higher speed and traffic volume, therefore, they should be considered as the priority investigation 
locations to safety promotion programs.  
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1. Introduction  

Road Traffic Accidents (RTAs) have been and are continuing to be a major contributor of human 
and economic costs to requiring concerted multi-disciplinary efforts for sustainable effective prevention. 
RTAs rank in the top ten causes of the global burden of disease and injury, and will probably be in third 
place by 2020, when measured in disability-adjusted life years lost (WHO, 2013). With only 25 percent of 
all motorized vehicles, developing countries account for 86 percent of all road traffic deaths (Lagarde, 
2011). Approximately 1.24 million people die every year on the world’s roads (WHO, 2013), and  
the estimated costs of $518 billion (Ivers, Stevenson, Norton, & Yu, 2008) and another 20 to 50 million 
sustain non-fatal injuries as a result of RTAs. Early in this decade, some 20 to 50 million people in the 
world became totally or partially incapacitated due to injuries caused by traffic accidents. Injured and 
trauma victims took 10 per cent of all hospital beds that year (Ivers, Stevenson, Norton, & Yu, 2008). 
Current trends suggest that by 2030 road traffic deaths will become the fifth leading cause of death unless 
urgent action is taken (WHO, 2013). A great number of patients are transported to the emergency ward 
due to traffic accident injuries. These cases are a daily challenge for the teams working in pre and intra-
hospital settings, especially due to the severity of the injuries and to the time it takes to reach the hospital 
and forward patients to surgery (Calil et al., 2009). Unless appropriate action is taken urgently, the 
problem will worsen globally. This will particularly be the case in those developing countries where rapid 
motorization is likely to occur over the next two decades (Mohammadi, 2013). The main reasons behind 
the dramatic increases of the number of RTAs can be listed as an insufficient road system, a rapid 
increase in the number of motorized vehicles, inadequacy of road safety policies, reckless driving and 
poor emergency services (Akgüngör, 2007). 

Iran has one of the highest road traffic mortality rates in the world. Motor vehicle–related accidents 
account for more than 1’300’000 years of lost life around the country each year (Tavafian, Aghamolaei, 
Gregory, & Madani, 2011). The mortality rate due to traffic injuries has become considerable particularly 
during the last decade along with the industrialization process (Bahadorimonfared, et al., 2013).  

The primary objective of this paper is to determinate hotspots location and sensitive times for 
Shiraz. It provides a manifest to policies assembling and implementation plan in urban road safety planning. 
The rest of this paper is structured as follows. In the second section, the relevant literature and methodology are 
reviewed. In Section three, the case study area and traffic accidents data are described. Section four 
discusses estimation methodologies, and presents the empirical results. The last section concludes. 
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2. Literature Review 

RTAs result in injuries and death, but many are preventable, however they are commonly 
anticipated to form clusters in the geographic space and over time for the reason that their occurrence is 
tied to traffic volumes (Yamada & Thill, 2004). To developing strategies to prevent them, reducing traffic 
accidents, and improving road safety, an imperative need to understand how, where and when RTAs 
occurred and distributed across space and time (Brunsdon, Cocoran, & Higgs, 2007; Xie & Yan, 2008; 
Plug, Xia, & Caulfield, 2011), and utilize spatiotemporal patterns in road safety policy capturing.  
The importance of having a comprehensive crash map has been highlighted as a significant component of 
safety data management in strategic highway safety plans (Qin, Parker, Liu, Graettinger, & Forde, 2013). 
Injuries due to RTA depend upon a number of factors-human, vehicle and environmental factors play 
vital roles before, during and after a serious RTA. The significant factors are human errors, driver fatigue, 
poor traffic sense, poor condition of vehicle, speeding and overtaking violation of traffic rules, poor road 
infrastructure, traffic congestion, and road encroachment. In terms of severity of accident, driving speeds 
are of major importance as well. Environmental factors include the condition of the road network, road 
type and design, spatial context (e.g. density and land-use; plantation etc.), temporal context (e.g., 
darkness) and transport context (traffic density, speed and behaviour of other transport users). Social and 
psychological factors include socio-demographic and socio-economic structures, risk attitudes, lifestyles 
and 'mobility styles' and associated behaviour (Holz-Rau and Scheiner, 2013).   

Identifying accident hotspots and appending value added data to understand the processes 
happening in these hotspots are important for the appropriate allocation of resources for safety 
improvements. By identifying road accident, a more robust understanding can be gained, with regards to 
indicators of casual effects (Anderson, 2009). In order to conduct a reliable analysis of the RTAs develop 
control strategies, it is required to investigate firstly how the accidents are geographically distributed, 
secondly regions where accident is observed more dense, and thirdly their geo-statistical aspects (Ozkan, 
Tarhan, Eser, Yakut, & Saygin, 2013). An improved understanding of the spatial patterns of RTAs can 
make accident reduction efforts more effective (Xie & Yan, 2008). Spatiotemporal GIS analysis 
complements and adds value to the traditional methods of identifying accidents patterns in time and space 
(Asgary, Ghaffari, & Levy, 2010). There are some important factors that may impact the distribution of 
traffic accidents, including natural and environmental characteristics such as physical environment (steep 
slope, sharp turn), weather (rain, snow, wind, and fog), configuration of highway networks such as  
the locations of access and egress points, deficient design and maintenance of highways, etc. All of these 
factors more or less are associated with distinct spatial patterns as well (Xie & Yan, 2008). 

Currently, three major spatiotemporal pattern analyses and visualization techniques have been applied 
in vehicle crash research: map animation, iso-surface method and co-map (Asgary, Ghaffari, & Levy, 2010). 
The co-map method is useful for highlighting differences in a crash pattern using ‘small multiples’ of 
diagrams (Brunsdon, Cocoran, & Higgs, 2007). A time period, as a third dimension, is broken down into 
a series of time intervals and a spatial pattern can then be analyzed and illustrated for each time interval 
(Plug, Xia, & Caulfield, 2011). This paper amplified one of the visualization techniques to investigate 
spatiotemporal structures of RTAs. First, for spatial analysis of RTAs, the Kernel Density Estimation 
(KDE) in a GIS environment is used to determinate critical areas with high RTAs risk. 

There are a variety of spatial tools developed to assist the understanding of the changing 
geographies of point patterns. The most promising of these tools is KDE. The KDE is one of the most 
common and well-established methods in identifying spatial patterns, and a non-parametric method that 
involves introducing a symmetrical surface over each point feature, assessing the distance from the point 
to a reference location based on a mathematical function, and subsequently, adding the value of all  
the surfaces for that reference location (Blazquez & Celis, 2013). The main benefit of this approach lies in 
recognizing the risk spread of an accident (Anderson, 2009). KDE calculates the density of events in  
a neighbourhood around those events. KDE allows some events to weigh more heavily than others, 
depending on their meaning, or to allow one event to represent several observations (Asgary, Ghaffari, & 
Levy, 2010).  

The spread of risk can be defined as the area around a defined cluster in which there is  
an increased probability for an accident to happen based on spatial dependency. Secondly by using this 
density measure, an arbitrary spatial unit of analysis can be defined and be homogenous for the whole 
area which makes comparison and ultimately a taxonomy possible (Anderson, 2009). 

KDE includes placing a symmetrical surface over each point and then measuring the distance from 
the point to a reference location based on a mathematical function and then summing the value for all  
the surfaces for that reference location. This procedure is repeated for successive points. This therefore 
allows us to place a Kernel over each observation, and summing these individual Kernels gives us  
the density estimate for the distribution of accident points (Eq. 1) (Fotheringham, Brunsdon, & Charlton, 
2000; Anderson, 2009). 
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where  f(x, y) is the density estimate at the location (x, y); n is the number of observations, h is the 
bandwidth or kernel size, k is the kernel function, and di is the distance between the location (x, y) and the 
location of the ith observation. The effect of placing these humps or kernels over the points is to create a 
smooth and continuous surface. The method is known as KDE because around each point at which the 
indicator is observed a circular area (the Kernel) of defined bandwidth is created. This takes the value of 
the indicator at that point spread into it according to some appropriate function. Summing all of these 
values at all places, including those at which no incidences of the indicator variable were recorded, gives 
a surface of density estimates (Silverman, 1986).  

Kernel Density may also be used for calculating the density of linear features in the neighbourhood 
of each output cell. A smoothly curved surface is conceptually fitted over each line. Its value is biggest on 
the line and diminishes as you move away from the line, reaching zero at the specified search radius 
distance from the line. The surface is defined so the volume under the surface equals the product of line 
length and the population field value. The density at each output raster cell is calculated by adding  
the values of all the kernel surfaces where they overlay the raster cell centre (Silverman, 1986). 

3. The Study Area and Data 

Metropolitan Shiraz located in the southwest of Iran and is the capital city of Fars Province. 
According to the report from Iranian Bureau of Statistics (IBS, 2013), the population of the metropolitan 
area is about 1’460’000. Due to a long historical background and rich cultural adventure, Shiraz has been 
one of the most attractive destinations for seasonal domestic holiday-makers. However, Shiraz has 
suffered from intra-urban traffic accidents due to a considerable increase of vehicle ownership and private 
car users (Soltani, Zargari and Esmaeili, 2013). Essentially, one of the main factors contributing to the 
increase in intra-urban traffic accidents is the improving of social welfare in recent years. 

Intra-urban traffic accidents data were collected using the secondary database of the Road Police 
Department, Shiraz Branch. These data was originally recorded by police officers from March 2011 to 
March 2012. The information on street network was obtained in a GIS format from the Municipality of 
Shiraz, Department of Traffic.  

Table 1 details the frequencies of different types of crash. The majority of accidents occurred as 
crashing a car with another car (73 per cent) followed by a car hitting an object (5 per cent) and a car 
hitting a pedestrian passing through (5 per cent). 

Table 1. The distribution of the intra-urban traffic accidents based on the type of crash 

Crash Types Damaged Injured Death Total Accidents Share 

Car with motorcycle 403 2414 11 2828 10% 

Car with bicycle 16 36 0 52 0.2% 

Car with another car 19091 947 9 20047 73% 

Car with other cars 927 168 9 1104 4.0% 

Car hitting a parked car 56 23 2 81 0.3% 

Car hitting a pedestrian 18 1198 18 1234 5% 

Car hitting an object 1150 144 5 1299 5% 

Rollover 117 69 3 189 0.7% 

Motorcycle hitting a pedestrian 1 63 1 65 0.2% 

Motorcycle with motorcycle 1 63 1 65 0.2% 

Motorcycle hitting a bicycling 5 9 0 14 0.1% 

Other 330 32 1 363 1% 

Total 22115 5166 60 27341 100% 
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continuous model of accident hotspot patterns, over space and time. The findings of this paper propose 
that RTAs trends differ according to incident type and can provide important exploratory analysis prior to 
more detailed investigations including the use of contextual data (e.g., land use, type of road). The results 
of this paper presumably have important implications for RTAs prevention planning, and RTAs 
intervention policies, including the identification of hotspots, which geographically define acute problem 
areas. Within these hotspots, traffic and police departments could focus on regions that are statistically 
likely to have higher levels of the repeated road traffic accidents. This study can be developed further by 
investigating the potential causes of traffic occurrence throughout the metropolitan area.  
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