
Transport and Telecommunication Vol. 15, no. 1, 2014

27

Transport and Telecommunication, 2014,volume 15, no 1, 27–41
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia
DOI 10.2478/ttj-2014-0004

PATTERN-ORIENTED ARCHITECTURE DESIGN
OF SOFTWARE FOR LOGISTICS AND TRANSPORT

APPLICATIONS

Sergey Orlov, Andrei Vishnyakov

Transport and Telecommunication Institute
Lomonosova str.1, Riga, LV-1019, Latvia

E-mail: Orlovs.S@tsi.lv, andrei.vishnyakov@gmail.com

Software architecture design plays the key role for logistics and transport software engineering. One of the design
approaches is to reuse the architectural patterns, which express a fundamental structural organization of software systems and its
behaviour. The usage of the proven and tested solutions allows us to increase the software quality and reduce potential risks.

In this paper the technique that allows selecting and evaluating suite of architectural patterns is proposed. It can be used for
logistics and transportation software, which is constructed using Multi-tier architecture. The technique allows us to consistently
evaluate the impact of specific patterns to software characteristics with a given functionality. Effectiveness and efficiency of
the described method is confirmed by a case study.

Keywords: multi-tier architecture, pattern, functional points, coupling and cohesion, logistics and transport software, optimisation, decision

1. Introduction

It's important to construct architecture for logistics and transportation software properly and with

the use of best practices, so we need to pay a lot of attention when building software architecture for such systems.
Architectural design provides an understanding of the system organization. Also it creates

a framework for the proper representation of a system. The creation of architecture is the first and
fundamental step in the software designing. It creates software system representation base that satisfies to
the full range of detailed requirements [1, 2, 3].

As long as there is no effective method for the architecture building we should rely on used
techniques as well as past experience in that area. One of the common approaches is to use architectural
patterns for creation of the software architecture.

Architectural patterns organize the essence of architecture which was used in various software
systems. Today the patterns are widely used during the software development process. They help to reuse
the knowledge and best practice [4, 5, 6].

Architectural patterns can be seen as a generalized description of best practice. The patterns were
tested and proven in a variety of systems and environments, as a result of that, the architectural pattern
describe the system organization which has been successful in previous systems.

It’s obvious what we need to have some technique that allows selecting the optimal suite of
patterns from a number of patterns, also such selection should take into account the specific requirements
for the logistics and transport system.

2. Selection of an Optimal Patterns Suite

To select an optimal patterns suite we need to define a model, choose a set of patterns and examine

their impact on system characteristics.

2.1. Model definition for selection of an optimal patterns suite

Let’s assume that there is a set of patterns which can be separated into groups according to their
corresponded functionality. Also we know numerical values of system characteristics which depend on
used patterns for the given system. So we need to develop a model which helps us to determine
the optimal suite of patterns for logistic and transport system with a given functionality.

Suppose that there is a set of input pattern groups — { 1,..., }.iP i g=
Each group can have different number of patterns, so we can define it as follows:

{ 1,..., ; 1,..., },ij jP i g j m= =

where Pij — i-th pattern from group j, mj — number of pattern in group j which is a variable number.

Transport and Telecommunication Vol. 15, no. 1, 2014

28

Let’s assume that from some groups we aren’t obligated to select a pattern (this is due to the fact
that the selection of some patterns can exclude a whole group of patterns). On the other hand, we can
select several patterns from some of the groups.

Thus the input data for our model makes a complete set of patterns for each group, and such set
can be represented as a multiset.

For simplicity, we reduce the multiset to a uniform set of patterns 1{ ,..., }nP P where we use
special restrictions for partitioning to the groups.

At the output, the model with the specified constrains should select the optimal combination of
patterns which should be used for software development.

The produced restrictions should exclude those combinations of patterns that are logically
inconsistent or interchangeable. In addition, some restriction should allow selection of multiple patterns
from specified group of patterns.

The objective function for finding the optimal suite of pattern defined as follows:

()1 1 2 2() () n nW f P x f P x f P x min= × + × +…+ × → ,

where
f(Pi) — function which reflects a numerical changes of the system characteristics depending on

used pattern Pi;
xi — variable which indicates the usage of the i-th pattern.
It’s obviously that the integrality constrain should be applied for a given variable xi:

{0, 1 1, 2,..., },ix i n= =

where n — number of patterns in the one dimensional set which were transformed from the original
multiset of patterns.

To indicate the fact that we can select only one pattern from the group, let’s introduce
the following restriction:

1,
i end

i
i start

x
=

=

=∑

where
start, end — the start and end indices of patterns in a group.
To take in to account that the selection of the j-th pattern excludes patterns from a different group,

we use the following restrictions:

1.
i end

j i
i start

x x
=

=

+ =∑

If we can select any number of patterns from the group we specify the following constrains:

(1).
i end

i
i start

x end start
=

=

≤ − +∑

On the base of the mentioned definitions and assumptions, we obtain the classical integer
programming problem where we need to find the optimal solution.

We should pay special attention for choosing the function f(Pi). Such selection should be based on
the requirements for a software system.

2.2. The choice of patterns for Multi-tier architecture

According to the statistics on architecture types used for transportation and logistics systems,
which are represented in the global ISBSG database, most of these systems are based on client-server
architecture model [7]. Nowadays the most used subtype of such architecture is Multi-tier architecture.
Therefore, for our case study we select a set of patterns used for transportation and logistics systems’
Multi-tier architectures.

There are patterns that can be divided into the following groups:

Transport and Telecommunication Vol. 15, no. 1, 2014

29

 Domain Logic Patterns. Transaction Script, Domain Model, Table Module, Service Layer.
 Data Source Architectural Patterns. Table Data Gateway, Row Data Gateway, Active

Record, Data Mapper.
 Object-Relational Behavioural Patterns. Unit of Work, Identity Map, Lazy Load.
 Web Presentation Patterns. Model View Controller, Page Controller, Front Controller,

Template View, Transform View, Two-Step View, Application Controller.
 Distribution Patterns. Remote Facade, Data Transfer Object.
 Offline Concurrency Patterns. Optimistic Offline Lock, Pessimistic Offline Lock, Coarse

Grained Lock, Implicit Lock.
Fowler in [6] indicates the steps how to select a pattern from multiple groups taking into account

the requirements for the software. The problem of his approach is that it isn’t formalized enough. Also he
indicates the relationship between groups of patterns, for example, it’s allowed to choice only one pattern
from multiple groups, etc. This selection technique can be represented as follows:

1. Initially we have to select the base pattern for Domain Layer implementation; such pattern
should be selected from Domain Logic Patterns group.

2. Next, we need to select a pattern for Data Source Layer implementation (it should be selected
from Data Source Architectural Patterns group). This choice also depends on the first step (for
example, when we select Domain Model on the first step we can choose only Data Mapper on this
step). Together with patterns from Data Source Layer we can use Object-Relational
Behavioural Patterns, Concurrency Patterns and some other groups of the patterns.

3. In the final step we do select a pattern from Presentation Layer (from Web Presentation Patterns
group).

4. Furthermore, in addition to the selected patterns, we select other patterns from the remaining groups.
Such dependencies are illustrated on Figure 1.

Figure 1. Pattern group’s dependencies

As a result of this technique application, we have obtained the list of patterns listed in Table 1

which we use in our case study.

Table 1. List of patterns used for the case study

Group of patterns Pattern Pattern’s notation

Domain Logic Patterns Transaction Script P11

Domain Model P12
Table Module P13
Service Layer P14

Data Source Architectural Patterns Table Data Gateway P21
Row Data Gateway P22
Active Record P23
Data Mapper P24

Web Presentation Patterns Model View Controller P31
Page Controller P32
Template View P33
Application Controller P34

Distribution Patterns Remote Facade P41
Data Transfer Object P42

Offline Concurrency Patterns Optimistic Offline Lock P51
Pessimistic Offline Lock P52
Coarse Grained Lock P53
Implicit Lock P54

Transport and Telecommunication Vol. 15, no. 1, 2014

30

2.3. The patterns usage restrictions

When we build the model we should take into account the following corresponding constraints:
 restrictions which are applied on pattern groups;
 restrictions applied on patterns compatibility.

For the considered patterns we have the following limitations:
1. We can choose only one pattern from the first three groups as well as from Offline Concurrency

Patterns;
2. We can choose any patterns from the remaining groups (each pattern can be selected only one

time);
3. If Transaction Script is selected from the first group we can choose Table Data Gateway or

Row Data Gateway from the second group;
4. If Table Module is selected from the first group we are allowed to choose only Table Data

Gateway from the second one;
5. If Domain Model is selected from the first group we can choose Active Record or Data

Mapper from the second group.

2.4. Mathematical model building

Applying the above results we obtain the following objective function:

1 2 3 4 5 6 7

8 9 10 33 11 34 12 41 13 42 14

51 15 52 16 53 17 54 18

11 12 13 14 21 22 23

24 31 32

() () () () () () ()

() () () () () () ()

() () () ()

W f P x f P x f P x f P x f P x f P x f P x

f P x f P x f P x f P x f P x f P x f P x

f P x f P x f P x f P x min

= × + × + × + × + × + × + × +

+ × + × + × ×+ + × + × + × +

+ × + × + × + × →

with the following restrictions which came from the patterns usage limitations:

a) We can choose only one pattern from the first three groups:

1 2 3 4 1,x x x x+ + + =

5 6 7 8 1,x x x x+ + + =

9 10 11 12 1,x x x x+ + + =

15 16 17 18 1.x x x x+ + + =

b) We can choose any patterns from the remaining groups (or not to choose a pattern at all):

13 1,x ≤

14 1,x ≤

13 14 2.x x+ ≤

c) If Transaction Script is selected from the first group we can choose Table Data Gateway or Row
Data Gateway from the second group:

1 7 8 1.x x x+ + ≤

d) If Table Module is selected from the first group we are allowed to choose only Table Data
Gateway from the second one:

3 6 7 8 1.x x x x+ + + ≤

e) If Domain Model is selected from the first group we can choose Active Record or Data Mapper
from the second group:

2 5 6 1.x x x+ + ≤

2.5. Selecting of f(Pi) function

Using the above listed patterns we need to build a model for selecting the optimal suite of patterns;

where the requirement for the software should be considered. For doing so we must determine the
patterns impact on specific system characteristics. This means that we need to define the function f(Pi).

Transport and Telecommunication Vol. 15, no. 1, 2014

31

During the architecture design stage we can operate the system requirements as well as make
indirect measures of some system characteristics, so one of the most suitable metric for consideration is
functional point (FP) metric, which indirectly measures software and the cost of its development.
The value of this metric reflects the functional complexity of the product [1, 8]. In addition to the complexity
metric, inner (cohesion) and outer (coupling) relations should be measured [1].

The selection of a pattern affects the overall system characteristics. Therefore, it is necessary that
the metric for such system also reflects this influence. In our case the metric should reflect a change of FP
metric, coupling and cohesion when we use a specific pattern.

In order to combine these three metrics let’s use criterion of efficiency described in the publication
[9]. As long as the calculation of the proposed metrics for coupling and cohesion is quite complicated we
replace these metrics with alternatives which are supported by many tools for metric calculation.
For example, we can use Coupling between Object Classes (CBO) and Lack of Cohesion of Methods
(LCOM) metrics from Chidamber & Kemerer’s metric suite [1, 10].

CBO and LCOM metrics are calculated for specific classes, but we need to evaluate the entire
system. So it’s necessary to make these metrics applicable for a group of classes. We define Coupling
between Object Classes Factor (CBOF) and Lack of Cohesion of Methods Factor (LCOMF) metrics
which could be used in our criterion of efficiency.

CBOF metric is defined as the arithmetic mean of the normalized values of CBO in the system
(the value of this factor varies from 0 to 1):

1

,
,

N
i i CBO

i CBO

CBO

CBO if CBO T
T else

CBOF
T N

=

⎧ < ⎫⎪
⎨ ⎬
⎪ ⎭⎩=

×

∑
,

where
CBO — Coupling Between Object metric from Chidamber & Kemerer’s metric suite;
TCBO — threshold which cut down very large values of CBO. Such limitation is necessary as

the theoretical value of CBO may vary indefinitely;
N — number of classes in the system.

The definition of LCOMF metric is similar, i.e. LCOMF defined as the arithmetic mean of the normalized
values of LCOM in the system:

1

,
,

N
i i LCOM

i LCOM

LCOM

LCOM if LCOM T
T else

LCOMF
T N

=

⎧ < ⎫⎪
⎨ ⎬
⎪ ⎭⎩=

×

∑
,

where
LCOM — Lack Of Cohesion metric from Chidamber & Kemerer'с metric suite;
TLCOM — threshold which cut down very large values of LCOM. Such limitation is necessary as

the theoretical value of LCOM may vary indefinitely;
N — number of classes in the system.
Thus a metric of original architecture efficiency K defined as:

1

2 3

,
(1) (1)

FPK
CBOF LCOMF

α
α α

×
=

− × × − ×

where
α1, α2, α3 – weight coefficients of efficiency indicators;
FP — the value of functional points;
CBOF – the value of Coupling between Object Classes Factor;
LCOMF – the values of Lack of Cohesion of Methods Factor.

Based on listed above, our function which reflects numerical changes of the system characteristics
depending on used pattern Pi defined as follows:

Transport and Telecommunication Vol. 15, no. 1, 2014

32

'
() iP

i

K
f P

K
= ,

where
K — the metric of architecture efficiency;
K'Pi — metric of partial pattern-architecture efficiency (if pattern Pi is used for software

development).
Therefore metric of partial pattern-architecture efficiency K' defined as:

1

2 3

'' ,
(1 ') (1 ')

Pi
Pi

Pi Pi

FPK
CBOF LCOMF

α
α α

×
=

− × × − ×

where
FP'Pi — the value of functional points if pattern Pi is used for software development;
CBOF'Pi – the value of CBOF if pattern Pi is used for software development;
LCOMF'Pi – the value of LCOMF if pattern Pi is used for software development.
FP' is a modification of the original FP and it is calculated as follows:

14

1

' 0.65 0.01 ,i FP
i

FP UFP CF P
=

⎛ ⎞
= × + × +⎜ ⎟

⎝ ⎠
∑

where
UFP – Unadjusted Function Point count;
PFP – the value of functional points for specified pattern implementation;
and CFi defined as follows:

5, 5;
(), ,

i i
i

i i

if c F
CF

round c F otherwise
× >⎧

= ⎨
×⎩

where
СFi — adjusted degree of influence coefficient which corresponds to Fi used in original FP;
ci — pattern influence on i-th system's characteristic.

For getting ci values, first, we need to evaluate a characteristic using the following scale:
 1 — use of a pattern reduces the significance of a system characteristic;
 2 — use of a pattern slightly reduces the significance of a system characteristic;
 3 — no influence;
 4 — use of a pattern slightly actualises a system characteristic;
 5 — use of a pattern actualises a system characteristic (i.e. we must pay more attention to this

characteristic when applying this pattern).

Next, these values are converted into ci using scale conversion rule presented in Table 2.

Table 2. Characteristic’s evaluation scale correspondence to ci value

Score As ci

1 ½
2 ⅔
3 1
4 1½
5 2

CBOF' metric is modification of CBOF and it is defined as:

()' 3PiCBOF CBOF CBOF cα= + × × − ,

where
CBOF – the original value of Coupling between Object Classes Factor;
α – weight coefficient;
cPi – pattern influence on CBOF which is evaluated using scale similar to ci and varies from 1 to 5.

Transport and Telecommunication Vol. 15, no. 1, 2014

33

LCOMF' metric is defined as:

()' 3PiLCOMF LCOMF LCOMF cα= + × × − ,

where
LCOMF – the original value of Lack of Cohesion of Methods Factor;
α – weight coefficient;
cPi – pattern influence on LCOMF which is evaluated using scale similar to ci and varies from 1 to 5.

2.6. Obtaining values of indicators and coefficients

Prior the case study it’s necessary to obtain the values of several indicators and coefficients. In our
case, most of these values were obtained empirically.

Based on our requirements let’s define the weight coefficient vector for metric of efficiency with
the help of an expert evaluation. The weight coefficients of efficiency indicators for the functional points,
coupling and cohesion factors are defined as:

α1 = 0.5, α2 = 0.3, α3 = 0.2.
So, functional points have the greatest weighting coefficient of efficiency indicator and LCOMF

the least.
For obtaining FP' values we need to get the patterns influence coefficients. The Table 3 represents

the patterns influence coefficients ci with the given requirements. These figures are empirical and
intended to demonstrate the proposed technique, so these values might be not optimal. To obtain more
precise values of the coefficients, the values should be calibrated on a number of projects. These values
also might be different for the software of the other domains, i.e. not transportation or logistics.
In addition, the values might vary for systems with other requirements.

Table 3. Values of pattern influence coefficients ci used in FP metric

Group of
patterns

Pattern Pattern’s
notation

c1 c2 c3 c5 c8 c9 c10 c13 c14

Domain Logic
Patterns

Transaction
Script

P11 3 4 1 2 4 2 5 4 5

Domain Model P12 2 2 4 3 1 4 1 2 1
Table Module P13 3 4 3 3 3 3 4 3 4
Service Layer P14 2 1 3 2 2 3 2 2 2

Data Source
Architectural
Patterns

Table Data
Gateway

P21 2 3 2 3 3 2 4 3 3

Row Data
Gateway

P22 3 4 2 2 4 3 5 4 4

Active Record P23 3 3 3 3 3 3 2 2 3
Data Mapper P24 2 2 4 2 2 4 1 2 2

Web
Presentation
Patterns

Model View
Controller

P31 4 2 3 2 3 3 2 2 3

Page Controller P32 2 3 3 3 2 2 3 2 2
Template View P33 4 3 2 2 4 3 3 2 2
Application
Controller

P34 2 4 2 4 3 2 4 3 3

Distribution
Patterns

Remote Facade P41 4 3 3 2 3 3 2 3 3
Data Transfer
Object

P42 4 2 3 3 3 3 3 2 2

Offline
Concurrency
Patterns

Optimistic
Offline Lock

P51 4 2 2 2 4 3 3 3 3

Pessimistic
Offline Lock

P52 3 3 4 4 2 3 3 3 3

Coarse Grained
Lock

P53 3 3 3 3 3 3 3 3 3

Implicit Lock P54 2 3 4 4 2 4 3 3 3

The coefficients ci listed in the table have the following meanings:
 c1 – pattern influence coefficient on system characteristic “Data Communications”;
 c2 – pattern influence coefficient on system characteristic “Distributed Data Processing”;
 c3 – pattern influence coefficient on system characteristic “Performance”;
 c5 – pattern influence coefficient on system characteristic “Transaction Rate”;

Transport and Telecommunication Vol. 15, no. 1, 2014

34

 c8 – pattern influence coefficient on system characteristic “Online Update”;
 c9 – pattern influence coefficient on system characteristic “Complex Processing”;
 c10 – pattern influence coefficient on system characteristic “Reusability”;
 c13 – pattern influence coefficient on system characteristic “Multiple Sites”;
 c14 – pattern influence coefficient on system characteristic “Facilitate Change”.

We consider only these system characteristics, since the described patterns do not affect other
characteristics of the system, i.e. the pattern influence for them is 3.

To obtain the values of FP' we also need to determine the value of FP which is required for each
pattern implementation. The empirically estimated values are shown in Table 4.

In addition to this we also need to evaluate the patterns impact on CBOF and LCOM values, so we
need to obtain values of pattern influence coefficients cCBOF and cLCOMF. The values of pattern influence
coefficients are listed in Table 4.

Table 4. Values of FP required for the patterns implementation and pattern influence coefficients

Pattern’s notation FP cCBOF cLCOMF

P11 0 4 4
P12 20 2 1
P13 10 3 3
P14 30 2 2
P21 0 3 3
P22 0 4 4
P23 10 3 3
P24 20 2 4
P31 20 4 2
P32 10 3 4
P33 10 3 2
P34 0 2 3
P41 10 4 3
P42 10 3 3
P51 20 3 3
P52 10 3 3
P53 30 3 3
P54 0 3 3

With the help of expert evaluation define the weighting coefficient used in for CBOF and LCOMF

metrics as:

α = 0.1.

After analysing all the values of CBO and LCOM for the considered programs the threshold values
for metrics CBOF and LCOMF defined as:

TCBO = 100;
TLCOM = 1000.

3. Case Study

For the proposed technique validation let’s perform a series of experiments using real logistics and

transportation software systems.

3.1. Selection of logistics and transportation systems for case study

Based on the statistics on architecture types used for transportation and logistics systems in
the global ISBSG database we can see that the majority of these applications based on multi-tier
architecture.

For the case study we selected open source applications which are the most representative
according to our requirements. We take into account the application domain (only logistics and
transportation systems), popularity (number of download, ratio), commercial support, etc. As a result,
the systems showed in Table 5 were selected.

Transport and Telecommunication Vol. 15, no. 1, 2014

35

Table 5. Considered software systems

 Name URL Programming language

1 Dolibarr ERP&CRM http://www.dolibarr.org/ PHP
2 ERPNext https://erpnext.com/ Python
3 Bookyt http://bookyt.ch/ Ruby
4 koalixcrm http://www.koalix.org/ Python
5 Vtiger CRM https://www.vtiger.com/crm/ PHP
6 Openbravo ERP http://www.openbravo.com/ Java
7 ADempiere ERP http://www.adempiere.com/ Java
8 GO Gestionale Open http://www.gestionaleopen.org/ Delphi
9 Libertya ERP http://www.libertya.org/ Java
10 favesERP http://www.faves-erp.com/ PHP

In addition we considered a simulation model for decision-making and risk analysis when

releasing a new product on the market [11]. The model is developed in AnyLogic simulation tool using
Java programming language. As long as architecture of this simulation model is different from the client-
server, we will assume that we have to reengineer the program using client-server architecture (since this
is requirement for our technique). Thus, we considered eleven logistics and transportation software
systems.

3.2. Obtaining values of the metrics

As long as we take already existing products we use the conversion table to obtain FP values from
LOC measures [1]. The obtained FP values from LOC measures showed in Table 6.

Table 6. The values of LOC and FP metrics

 Name LOC FP

1 Dolibarr ERP&CRM 371947 11623
2 ERPNext 59959 2855
3 Bookyt 11902 566
4 koalixcrm 5166 246
5 Vtiger CRM 284272 8883
6 Openbravo ERP 637924 7974
7 ADempiere ERP 1138181 14227
8 GO Gestionale Open 739622 25504
9 Libertya ERP 1217125 15214
10 favesERP 744134 23254
11 Simulation Model 17548 219

The presence of program source code allows us to obtain the values of CBO and LCOM for all

available classes, which are used to obtain values of CBOF and LCOMF for each system (Table 7).

Table 7. The obtained values of CBOF and LCOMF

 Name CBOF LCOMF

1 Dolibarr ERP&CRM 0.10 0.38
2 ERPNext 0.05 0.10
3 Bookyt 0.06 0.23
4 koalixcrm 0.07 0.17
5 Vtiger CRM 0.12 0.61
6 Openbravo ERP 0.08 0.13
7 ADempiere ERP 0.07 0.22
8 GO Gestionale Open 0.02 0.43
9 Libertya ERP 0.09 0.10
10 favesERP 0.10 0.53
11 Simulation Model 0.02 0.16

System characteristics for FP metric were determined based on the requirements and existing

implementation of the software systems (Table 8).

Transport and Telecommunication Vol. 15, no. 1, 2014

36

Table 8. The values of the system characteristics used for FP metric

Dolibarr
ERP&
CRM

ERPNext Bookyt koalixcrm Vtiger
CRM

Openbravo
ERP

ADempiere
ERP

GO
Gestionale
Open

Libertya
ERP favesERP Simulation

Model

F1 2 3 5 3 2 3 4 3 3 2 1
F2 1 2 1 2 3 3 2 2 4 1 0
F3 2 5 2 2 2 3 4 3 3 1 2
F4 3 4 2 3 2 3 3 2 4 3 1
F5 2 3 2 2 3 4 2 3 3 2 0
F6 2 3 3 2 4 3 2 4 3 3 1
F7 3 4 2 3 2 4 3 3 4 3 2
F8 2 2 4 3 3 3 3 4 2 3 3
F9 1 4 2 2 1 3 4 2 3 1 5
F10 4 3 4 4 3 5 2 3 4 3 2
F11 2 3 2 3 3 3 3 3 4 3 1
F12 2 2 3 3 2 4 4 3 3 3 2
F13 3 2 3 4 3 4 4 3 5 3 1
F14 2 2 4 3 2 3 2 3 3 2 3

3.3. The solution of integer programming problems

Having value of UFP, Fi, CBOF and LCOMF we can obtain the objective functions for each

considered system.
For example, let’s find the optimal pattern suite for Dolibarr ERP&CRM system. To do so, we

need first of all to obtain the objective function, which requires values of f(Pi); and to get the value of
the function it’s required to have values K and K'Pi.

When obtaining K'Pi we must also define FP', CBOF' and LCOMF' values. Such calculations for
P11 are given below:

11

14

11
1

' 0.65 0.01 12107 (0.65 0.01 0.36) 0 12228,P i
i

FP UFP CF P
=

⎛ ⎞
= × + × + = × + × + =⎜ ⎟

⎝ ⎠
∑

()11 11
' 3 0.07 0.1 0.07 (4 3) 0.077,P PCBOF CBOF CBOF cα= + × × − = + × × − =

()11 11
' 3 0.22 0.1 0.22 (4 3) 0.242.P PLCOMF LCOMF LCOMF cα= + × × − = + × × − =

Thus the values of K and K'P11 for pattern P11 are evaluated as follows:

1

2 3

0.5 11622 6209,
(1) (1) (1 0.3 0.07) (1 0.2 0.22)

FPK
CBOF LCOMF

α
α α

× ×
= = =

− × × − × − × × − ×

11

11

11 11

1

2 3

' 0.5 12228' = 6576.
(1 ') (1 ') (1 0.3 0.077) (1 0.2 0.242)

P
P

P P

FP
K

CBOF LCOMF
α

α α
× ×

= =
− × × − × − × × − ×

Having K and K'P11 values, we can obtain value of function, which reflects numerical changes of

the system characteristics when pattern P11 is used:

f (P11) =
K 'P11

K
=

6576
6209

= 1.06.

After we get all f(Pi) values using the same approach, we can obtain the objective function for
Dolibarr ERP/CRM:

Transport and Telecommunication Vol. 15, no. 1, 2014

37

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

1.06 0.902 1.032 0.907 0.99 1.08 0.98 0.969 0.961 0.987

0.953 1.003 0.998 0.99 1.001 1.011 1.002 1.01 .

W x x x x x x x x x x

x x x x x x x x min

= + + + + + + ++ + +

+ + + + + + + + →

Once the objective function is defined as well as all restrictions, we can find the optimal solution
for this integer programming problem. The optimal solution for Dolibarr ERP&CRM system is formed by
the following values of the variables: x2 = x8 = x11 = x13 = x14 = x15 = 1. Thus, the optimal pattern suite for
our system consists of the following patterns: P12, P24, P33, P41, P42, P51.

In the same way we obtained optimal pattern suites for other systems (Table 9).

Table 9. Optimal pattern suites

Group Dolibarr
ERP&
CRM

ERPNext Bookyt koalixcrm Vtiger
CRM

Openbravo
ERP

ADempiere
ERP

GO
Gestionale

Open

Libertya
ERP favesERP Simulation

Model

1 P12 P14 P12 P12 P14 P14 P14 P12 P14 P12 P11
2 P24 P24 P23 P23 P24 P21 P24 P23 P24 P23 P21
3 P33 P32 P33 P33 P31 P31 P31 P33 P32 P31 P34

4 P41 - P41 - P41 P41 P41 - - - -
P42 P42 P42 P42 P42 P42 P42 P42 P42 P42 P42

5 P51 P51 P54 P54 P51 P53 P51 P51 P51 P53 P54

The distribution of the considered patterns is illustrated on Figure 2.

Figure 2. Distribution of the considered patterns

From these results we can conclude that the most frequently used patterns from the first group are

Domain Model and Service Layer. From the second: Active Record and Data Mapper, which is logical
since there are restrictions on pattern usage combinations from the first and second groups. In the third
group the most frequently used patterns are Model View Controller and Template View. Results showed
that the use of Data Transfer Object pattern is reasonable for the most of cases; and Remote Facade
pattern is noticeably less used. The most preferred pattern for considered systems from the last group is
Optimistic Offline Lock.

3.4. Results and analysis

For the optimal pattern suites (which are obtained as a result of solving integer programming
problems) for considered software systems we can obtain pattern-architecture efficiency metric K'. Before
that we need to find average values of CFi, PFP, cCBOF and cLCOMF. The results of obtained pattern-
architecture efficiency metric K' for considered systems are shown in Table 10.

Transport and Telecommunication Vol. 15, no. 1, 2014

38

Table 10. The optimal pattern suite impact on pattern-architecture efficiency metric

 Name K K' ΔK=K-K' ΔK%
1 Dolibarr ERP&CRM 6310 6092 218 3.45%
2 ERPNext 1513 1487 26 1.72%
3 Bookyt 336 356 -20 -5.95%
4 koalixcrm 141 157 -16 -11.35%
5 Vtiger CRM 4625 4495 130 2.81%
6 Openbravo ERP 4334 4346 -12 -0.28%
7 ADempiere ERP 7532 7305 227 3.01%
8 GO Gestionale Open 15992 15086 906 5.67%
9 Libertya ERP 8417 8015 402 4.78%
10 favesERP 14107 13466 641 4.54%
11 Simulation Model 115 118 -3 -2.61%

Figure 3 shows the relation of original architecture efficiency (K) and pattern-architecture

efficiency metric (K') for all considered systems. Ideally the value of pattern-architecture efficiency
metric (K') must be lower than original architecture efficiency (K), since the values of coupling and
cohesion should became better and the value of FP should be reduced.

Figure 3. The values of architecture efficiency K and K' for the considered systems

Percentage difference between values of the original architecture efficiency and pattern-

architecture efficiency metric is illustrated on Figure 4.

Figure 4. The changes of the architecture efficiency metric in percent

Transport and Telecommunication Vol. 15, no. 1, 2014

39

We can see that for lager system the architecture efficiency in improved by 2–5%, in contrast, it’s
deteriorated for small systems.

The results indicate that the use of optimal pattern suite isn’t appropriate for each considered
system. It can be noted that for systems where the value of FP is smaller than 1000 (i.e. small and
medium software systems) the application of the proposed technique doesn’t improve the architecture
efficiency. The reason is quite simple: the pattern implementation itself requires reasonable effort which
is costly for small systems, so such usage for small systems is overkill. For software system Openbravo
ERP (number 6) we can conclude that the original figures were already close to the optimal. In addition, it
is also possible that expert estimates of some indicators and coefficients aren’t calibrated reasonably
well.

To complete the picture we also need to discuss the changes in FP when using an optimal patterns
suite.

Table 11. The changes of FP when using the optimal patterns suite

 Name FP FP' ΔFP ΔFP%

1 Dolibarr ERP&CRM 11623 11228 395 3.40%
2 ERPNext 2855 2837 18 0.63%
3 Bookyt 566 626 -60 -10.60%
4 koalixcrm 246 281 -35 -14.23%
5 Vtiger CRM 8883 8638 245 2.76%
6 Openbravo ERP 7974 8003 -29 -0.36%
7 ADempiere ERP 14227 13678 549 3.86%
8 GO Gestionale Open 25504 24611 893 3.50%
9 Libertya ERP 15214 15163 51 0.34%
10 favesERP 23254 22632 622 2.67%
11 Simulation Model 219 224 -5 -2.28%

Figure 5 shows the values of function pointer of original architecture (FP) and functional points of

pattern-architecture (FP') for each considered system.

Figure 5. FP and FP' for the considered software systems

Percentage difference between the function pointer of original architecture and the functional

points of pattern-architecture is illustrated on Figure 6.

Transport and Telecommunication Vol. 15, no. 1, 2014

40

Figure 6. The changes of the functional point metric in percent

As we can see the picture is slightly different compared to ΔK%. It could be explained by the fact

that FP is only a part of the architecture efficiency metric.

4. Conclusions

In this paper the technique that allows selecting the optimal suite of architectural patterns for

logistics and transportation software is proposed. This selection technique is reduced to the classical
problem of integer programming where the optimal solution should be found.

As long as the most of the modern logistics and transportation systems are based on Multi-tier
architecture, we’ve considered a set of patterns that are suitable for its creation. The proposed technique is
applied for this set of architectural patterns.

Pattern-architecture efficiency metric is used to measure patterns’ numerical impact on a system.
This metric is based on functional point (FP) metric, which indirectly measures the functional complexity
of software. In addition to the complexity metric, inner (cohesion) and outer (coupling) relations are taken
into account.

For the case study we’ve selected eleven logistics and transportation software systems.
The objective functions are defined for the case study as well as constrains on the use of specific
architectural patterns. The resulting solution reflects the optimal suites of architectural patterns that are
suitable for the development of the systems with the specified requirements.

The quantitative study is given to evaluate the changes in the architectural decisions efficiency by
applying the selected suite of patterns. The analysis of case study results allowed determining the
appropriateness of this technique application, which is dependent on the functional size of the software
system.

According to that, the results indicate that the proposed technique is applicable for solving
problems of optimal architectural patterns’ suite selection when we construct architecture for the large-
scale logistics and transportation systems.

References

1. Orlov, S., Tsilker, B. (2012). Software Engineering: A Textbook for Universities, 4th Ed. SPb.: Piter.

608 p. (In Russian)
2. Bass, L., Clements, P., Kazman, R. (2003). Software Architecture in Practice, 2nd Ed. Addison

Wesley. 560 p.
3. Pressman, R.S. (2010). Software Engineering: A Practitioner's Approach. 7th Ed. McGraw-Hill.

895 p.

Transport and Telecommunication Vol. 15, no. 1, 2014

41

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (1996). Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. Willey. 476 p.

5. Martin, R. C. (2003). Agile Software Development: Principles, Patterns and Practices. Prentice
Hall. 552 p.

6. Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison Wesley. 560 p.
7. Sergeev, V., Grigoriev, M., Uvarov, S. (2008). Logistics. Information systems and technology. Moscow:

Alpha-Press. 608 p. (In Russian)
8. International Function Point Users Group. (1999). Function Point Counting Practices Manual,

International Function Point Users Group, Release 4.1. Westerville, Ohio. 335 p.
9. Orlov, S. Vishnyakov, A. (2010). Pattern-oriented decisions for logistics and transport software.

Transport and Telecommunication, 11(4), 46–58.
10. Chidamber, S. R., Kemerer, C. F. (1994). A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20(6), 476–493.
11. Faingloz, L., Savrasov, M., Fyodorov, S., Leibenzon, B., Sadovnikova, Y. (2009). Use of simulation

modelling for support of decision making for the purpose of introducing new product to the market.
In Proceedings of the Conference ‘Reliability and Statistics in Transportation and Communication
(RelStat’09)’, October 21–24, 2009 (pp. 279–286). Riga, Latvia: TTI.

