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A problem of distinguishing between frontier heterogeneity and inefficiency is widely acknowledged in benchmarking.  
A special type of heterogeneity, based on the spatial structure, can significantly affect performance estimates in the airport industry. 
In this research we presented a general specification of the spatial stochastic frontier model, which includes spatial lags, spatial 
autoregressive disturbances and spatial autoregressive inefficiencies. Maximum likelihood estimator has been derived for this model. 
Applying the suggested model specification to the European airports dataset, we discovered presence of significant spatial 
heterogeneity, which leads to biased estimates of efficiency, received using classical models. 
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Introduction 

 
Airport benchmarking attracted significant scientific attention after industry liberalisation in the 

nineties [1], [2]. There are more than a hundred research papers, published during last two decades, and 
devoted to airports efficiency estimation. The most significant reports are the Global Airport Performance 
Benchmarking Reports produced by Air Transport Research Society [3], the Airport Performance 
Indicators and Review of Airport Charges reports by Jacobs Consulting, the Airport Service Quality 
programme by Airports Council International. Some local authorities, which control the airport sector, 
also provide their own benchmarking reports, e.g. Civil Aviation Authority (UK) [4], and others. Many 
related researches are also executed within the bounds of the German Airport Performance research 
project, a joint study between three German universities.  

Despite intensified research of efficiency in the airport industry and obvious locational issues, 
spatial effects are rarely included into consideration. Spatial interactions between European airports and 
spatial heterogeneity of the industry structure are widely acknowledged [2] and should be included into 
airport benchmarking techniques [5–7]. 

Spatial relationship is usually presented in a form of spatial competition. Theory of spatial 
competition is well developed, but rarely applied to airports. Taking spatial interactions between airports 
into models is critically important for estimation of airports efficiency levels. A wide range of instruments 
like overlapping catchment areas, a network connectivity index and other were suggested, but the spatial 
econometric models can be highlighted as the most theoretically supported methodology. 

Spatial heterogeneity is also a very important drawback in airport efficiency research. Region-
specific settings can significantly affect airports activity, but their inclusion into a model is not straightforward. 
There are some sources of regional heterogeneity of airport activity: 

- Climate. Airport activity can be significantly affected by a climate. For example, snow-belt 
airports have to spend additional efforts on runway service, which reduce their production in 
relation with airports located in a region with softer weather conditions. Mapping this 
difference out the model will lead to underestimated values of snow-belt airports’ efficiency.  

- Economics. Economic situation in European countries is very heterogeneous. Significantly 
different income per capita and price levels define different demand to air transport.  

- Region attractiveness. Regions also are not equal in relation to their demand for air transport. 
Business activities, required air flights, tourism attractiveness significantly vary across Europe.  

A standard approach to include these factors into the model is based on a set of region-specific 
dummy variables, and looks weak in case of a complex spatial structure. Spatial effects are usually not 
limited with country borders, so using of an administrative division in this case is not well-grounded. 
Nevertheless, spatial structure should be included into efficiency estimation to prevent a bias in efficiency 
estimates. 
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The most commonly used parametric approach to estimate efficiency levels is based on the 
stochastic frontier [8]. Classical specification of the stochastic frontier represents an optimal ratio of a set 
of used resources to produced outputs. This approach considers all deviations from the frontier as unit 
inefficiency and doesn’t take possible heterogeneity into account.  

There are a number of different methods proposed to distinguish heterogeneity and inefficiency 
within the stochastic frontier models. The most frequently used approach is based on inclusion of 
variables, describing heterogeneity into the model (observed heterogeneity). For airports it can be 
geographical regions, ownership [9], [10], government regulation [11], and others. Another possible way 
to distinguish heterogeneity and performance relies on the time factor and assume that heterogeneity is 
more stable over time than inefficiency [12].  

Despite a significant number of empirical applications, given methods have a number of shortcomings, 
generally related with their insufficient flexibility and requirements for initial assumptions. Spatial 
proximity is rarely used in such models, which generally leads to lose of information in case the spatial 
structure plays a role. Development of spatial econometrics [13] allows including spatial heterogeneity 
and spatial relationships into parametric models in a undisguised and flexible way. However spatial 
specification of the stochastic frontier model is insufficiently researched. In this research we consider  
a general form of the spatial stochastic frontier model with all types of spatial components – spatial lags, 
spatial autoregressive disturbances and spatial autoregressive inefficiencies.  

A set of popular econometric techniques (maximum likelihood, two-step least squares, general 
method of moments) can be adapted estimation of this model. We develop a maximum likelihood 
estimator for different forms of the stochastic frontier model. Applying the developed estimator to a data 
set of European airports, we analysed an influence of spatial components on estimated airport efficiency. 
 
Specifications of a Spatial Stochastic Frontier Model 

 
A classical stochastic frontier model is usually presented in a matrix form as [8]: 
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where  

y is an (n x 1) vector of a dependent variable, output (n is a size of the sample);  
X is an (n x k + 1) matrix of explanatory variables, inputs (k is a number of explanatory variables);  
β is a (1 x k + 1) vector of unknown coefficients (model parameters); 
ε is an (n x 1) vector of composite error terms; 
v is an (n x 1) vector of independent identically distributed (i.i.d.) error terms; 
u is an (n x 1) vector of inefficiency terms with non-negative values. 

 

The classical stochastic frontier model doesn’t include any spatial dependencies and assumes that 
all objects in a sample are independent. This assumption is too restrictive in some practical cases. Spatial 
effects can be presented almost in all components of the classical model: 

- spatial influence of neighbours’  output values on a given unit’s output (spatial lags); 
- spatial influence of neighbours’  input values on a given unit’s output; 
- spatial relationship between neighbour unit’s error terms (spatial heterogeneity); 
- spatial correlation between efficiency of neighbour units. 
We define a general spatial stochastic frontier model, including all these effects into the classical 

stochastic frontier model specification:  
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where  
W1y is a spatial lag vector of output values (with a coefficient ρ); 
W2X is a spatial inputs-output lag vector (with a coefficient γ); 
W3v are spatial errors (with a coefficient ξ); 
W4u are spatial inefficiency lags (with a coefficient η). 

Matrices W1, W2, W3, and W4 represent levels of spatial dependency between units (spatial weights) 
and can be different for every spatial component. All spatial weights matrices have zero values on the 
main diagonal (to prevent self-dependency). Construction of these matrices is usually research-specific 
and can be based on geographical distances, travel times, etc. 

Estimation of the general spatial stochastic frontier model’s parameters is a complicated task, which 
is related with identification problems, computation performance issues and requires a significant volume 
of data. In this research we consider two special cases of the general spatial stochastic frontier model. 

Let’s apply the following constraints on the general spatial stochastic frontier model: 

,0=γ  (3) 

,0=ξ  (4) 

.0=η  (5) 

Under these constraints the model includes only spatial lags for unit’s outputs, all other spatial 
effects are excluded:  

.0,~
,~

,
,1

≥=
=

−=
++=

uuu
vv

uv
XyWy

ε
εβρ

 (6) 

Following LeSage [14] notation for naming of spatial models, this model is a mixed first-order 
spatial autoregressive-regressive stochastic frontier model. We will refer this model as a spatial 
autoregressive stochastic frontier (SARSF) model. 

Another model we consider in this research includes spatial relationship of a symmetric error term 
v as well as spatial lags. Suppressing the constraint (4), we obtain the following model specification: 
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We will refer this model as a mixed first-order spatial autoregressive-regressive stochastic frontier 
model with spatial autoregressive disturbances (SARARSF). 

 
Maximum Likelihood Estimator for Spatial Stochastic Frontier Models 

 
A wide range of statistical methods is used for estimation of spatial model parameters. The most 

popular are maximum likelihood estimator [13], [14], two-step least squares [15], and generalised method 
of moments [16], [17]. In this research we derive maximum likelihood estimators for SARSF and 
SARARSF models1. 

The maximum likelihood estimator requires an assumption about distributions of error and 
inefficiency components. The distribution of the symmetric error term v is usually set to normal, and the 
distribution of the non-negative inefficiency term u is selected from half-normal [19], truncated normal 
[20], or gamma [21]. We consider the simplest normal-half-normal type of the composite error term ε: 

                                                           
1 Derived estimators are presented and discussed on the 12th International Conference “Reliability and 

Statistics in Transportation and Communication” (RelStat'12) [18] 
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The probability density function for this case is well known: 
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φ and Φ are standard normal probability density and cumulative distribution functions accordingly. 
 
Maximum Likelihood Estimator for the SARSF Model  

 
Derivation of the maximum likelihood estimator formula for the SARSF model (6) is quite 

straightforward. According to the model specification, the composite error terms vector can be expressed as: 
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Using the multivariate change of variables formula and the Jacobian matrix, we can produce  
the probability density function for y: 
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Now the log-likelihood function can be easily obtained: 
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Maximum Likelihood Estimator for the SARARSF Model  

 
We follow the procedure, described in Kumbhakar and Lovell [8] to produce the probability 

density function and likelihood function for the SARARSF model (7). 
Initial model specification includes the distribution of the error term in an implicit form: 
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So the error term has a multivariate normal distribution with a covariance matrix Σ and its 
respective probability density function is given as:  
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The half-normal probability density function is given as: 
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Assuming u and v components are independent, the joint normal-half-normal probability density 
function is a product of functions (13) and (14):  
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Since ε = v – u: 
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Straightforward transformations give a simplified form of the joint probability density function: 
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The marginal density of ε is obtained by integrating u out of f(u, ε):  
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where φ(x, mean, covariance) and Φ(x, mean, covariance) are multivariate probability density and 
cumulative distribution functions with a mean vector mean and a covariance matrix covariance. 

So finally the probability density function of the composite error term ε is obtained: 
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This finding matches the results presented in [22]. 
Using the density function (16) and following the same logic as in (10), we obtained the respective 

log-likelihood function for the SARARSF model: 
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Maximisation of the log-likelihood function with respect to its parameters is a separate computational 
problem. 
 
Application to Airports 

 
We applied both SARSF and SARARSF specifications of the spatial stochastic frontier model to  

a data set of European airports.  
There are many different approaches to understanding of airport business, a set of used resources 

and an output of airport activity [23]. In this research we used a number of transferred passengers of  
a main result of airport activity and infrastructure units (gateways, check-ins) as airport resources.  
The production function used in this research is estimated in the form (SARARSF model): 
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where  

Passengers is a total number of passengers carried by an airport (both departure and arrival); 
Runways and CheckIns are numbers of airport’s runways and check-ins respectively. 

Other airport infrastructure characteristics are excluded due to a multicollinearity problem. 
A matrix of spatial weights W was constructed on the base of Euclidean distances. Realising all 

shortcomings of this approach, we think that general influence of spatial effects will be estimated 
correctly. 

 
Data 
The study data set includes characteristics of 122 European airports in 2009. The characteristics 

include: 
- A number of passengers carried (direct transit passengers are excluded). This indicator is used 

as the main output of airport’s activity. 
- Airport infrastructure – a number of check-in facilities, gates, runways, and parking spaces are 

used as input resources of airports’ activity.  
The full dataset is collected from the Eurostat database [24]. Descriptive statistics of the collected 

dataset is presented in the Table 1. 
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Table 1. Data descriptive statistics 
 

 Total number  
of passengers carried, 

thousands 

Number of runways Number of check-ins 

Min 108.0 1 3 

Median 4479.8 2 43.5 

Mean 9072.9 1.724 71.71 

Max 60495.8 6 481 
 
Estimation results 
Three different model specifications were tested for the data set: 
- classical stochastic frontier (SF estimates); 
- spatial autoregressive stochastic frontier (SARSF estimates); 
- spatial autoregressive stochastic frontier with spatial autoregressive disturbances (SARARSF 

estimates). 
The results are presented in the Table 3. 
 

Table 2. Estimation results of different model specifications* 

 SF SARSF SARARSF 

β0 
12.498 

(< 2E-16) 
12.50 

(< 2E-16) 
12.120 

(< 2E-16) 

β1 
0.669 

(7.3E-07) 
0.668 

(9.4E-07) 
0.653 

(5.7E-07) 

β2 
0.785 

(< 2E-16) 
0.786 

(< 2E-16) 
0.796 

(< 2E-16) 
σv 0.549 0.444 0.494 
σu 0.248 0.400 0.005 

ρ - 0.0001 
(9.4E-01) 

0.0002 
(9.0E-01) 

ξ - - 0.132 
(4.7E-08) 

* Values in brackets are significance  
 

Standard SF estimates show significant inefficiency in data (inefficiency variance σu = 0.248, 
which is comparable with the error term variance σu). Moran’s I is a popular test statistics for spatial 
dependence [25]:  
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Applying the Moran’s I test to estimated efficiency levels of the standard SF model, we strongly 
reject a hypothesis about absence of spatial relationships in data (see Table 3). Note that observed 
Moran’s I value is positive, which indicates positive spatial relationship. 

 
Table 3. Moran’s test for spatial dependency in estimated efficiency values 
 

Null hypothesis No spatial dependency 

Alternative hypothesis Presence of spatial dependency  

Moran’s I value 0.0379 

p-value (two-sided test) 0.0068 

 Null hypothesis is rejected 
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we discovered significant spatial heterogeneity, which was considered as inefficiency in the previous 
models. We regard these results as an important evidence of necessity of spatial components in stochastic 
frontier models. Non-inclusion of spatial components into benchmarking models can lead to significant 
biases of frontier parameters and efficiency levels estimates. 
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