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Most of the methodologies for the solution of state-space models are based on the Kalman Filter algorithm (Kalman, 1960), 
developed for the solution of linear, dynamic state-space models. The most straightforward extension to nonlinear systems is the 
Extended Kalman Filter (EKF). The Limiting EKF (LimEKF) is a new algorithm that obviates the need to compute the Kalman gain 
matrix on-line, as it can be calculated off-line from pre-computed gain matrices. In this research, several different strategies for the 
construction of the gain matrices are presented: e.g. average of previously computed matrices per interval per demand level and 
average of previously computed matrices per interval independent of demand level.  

Two case studies are presented to investigate the performance of the LimEKF under the different assumptions. In the first 
case study, a detailed experimental design was developed and a large number of simulation runs was performed in a synthetic 
network. The results suggest that indeed the LimEKF algorithm is robust and – while not requiring the explicit computation of the 
Kalman gain matrix, and thus having vastly superior computational properties – its accuracy is close to that of the “exact” EKF.  
In the second case study, a smaller number of scenarios is evaluated using a real-world, large-scale network in Stockholm, Sweden, 
with similarly encouraging results. Taking the average of various pre-computed Kalman Gain matrices possibly reduces the noise 
that creeps into the computation of the individual Kalman gain matrices, and this may be one of the key reasons for the good 
performance of the LimEKF (i.e. increased robustness). 
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Limiting Extended Kalman Filter (LimEKF) 

 
Introduction 
 

Effective management of large-scale transportation systems requires the support of detailed traffic 
simulation models. Such traffic simulation models involve a large number of parameters and input data 
that must be calibrated to match surveillance data. Depending on the scope, calibration can be either 
performed off-line or on-line. The role of off-line calibration is to develop a historical database that 
supports the simulation model’s ability to replicate average or expected traffic conditions as captured by 
archived surveillance data. The output of this process is expected to perform adequately in off-line, 
planning-level studies, such as the evaluation of alternative traffic management strategies. Traffic 
conditions are affected by a number of exogenous factors, including incidents and weather conditions.  
In order to capture these fluctuations, therefore, the off-line, “average”, parameters must therefore be 
updated dynamically [1]. The real-time performance of the traffic simulation models could therefore be 
significantly enhanced by re-calibrating the a priori parameter estimates using the available surveillance 
data. 

Off-line and on-line calibration has similar objectives, and a general formulation that encompasses 
both has been proposed by Antoniou et al. [2]. Off-line calibration is a global optimisation step aiming to 
determine the mean values of the parameters and inputs, while on-line calibration adjusts the off-line 
values to reflect prevailing conditions. Data from prior days may be available for off-line calibration, 
while on-line calibration will generally use smaller amounts of recent, real-time data. Further, off-line 
calibration has no explicit computational constraints, while on-line calibration has to be faster than real-
time. Finally, off-line calibration must estimate all model inputs and parameters, while on-line calibration 
could focus on a subset of critical parameters. The remainder of this paper focuses on on-line calibration.  
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Several approaches for on-line calibration of dynamic traffic simulation models have been 
proposed. Tavana and Mahmassani [3] use transfer functions (bivariate time series models) to estimate 
dynamic speed-density relations from detector data, while Huynh et al. [4] extend this work by using 
transfer functions in a simulation-based DTA framework. Qin and Mahmassani [5] evaluate the same 
model with sensor data from several links in Irvine, CA. Antoniou et al. [6] formulate the problem of  
on-line calibration of the speed-density relationship as a flexible state-space model and present solution 
approaches, validating and comparing three of the presented solutions [Extended Kalman Filter (EKF), 
Iterated EKF, and Unscented Kalman Filter (UKF)]. Wang and Papageorgiou [7] and Wang et al. [8, 9] 
present a general approach for real-time freeway traffic state estimation, with detailed case studies. Ashok 
and Ben-Akiva [10, 11] formulate the real-time OD estimation and prediction problem as a state-space 
model and solve it using Kalman Filters. The approach has been implemented in DynaMIT [12–14]. 
Bierlaire and Crittin [15] present an efficient solution algorithm for OD estimation, while Zhou and 
Mahmassani [16] develop similar Kalman-filter based adaptive OD estimation and prediction procedures 
using a polynomial trend filter to recursively capture demand deviations from a priori demand estimates. 
Antoniou [17] develops an approach that jointly formulates the on-line calibration problem as a state-
space model comprising transition and measurement equations. Applicable solution algorithms are 
presented and compared in Antoniou et al. [18]. 

The remainder of this paper is structured as follows. The next section provides some background 
to the problem, introducing the Origin-Destination estimation problem, while the following section 
outlines the methodology, leading to and presenting the optimisation algorithms that are used to solve the 
state-space formulation of the OD estimation and prediction problem. Two case studies are presented in 
the following section. The first one includes several experiments undertaken in a synthetic network, 
followed by a case study using a real-world large-scale network. The concluding section provides an 
overview and discussion of the results obtained, as well as future research directions. 

 
Background 
 

The proposed methodology builds upon the OD estimation and prediction framework presented by 
Ashok and Ben-Akiva [10, 19] and formulated as a state-space model. A state-space model is formulated 
as a set of:  

• Transition equations; and  
• Measurement equations. 
Denoting by Xh  the vector representing the number of vehicles between each OD pair departing 

their origins during time interval h, the transition equation can be expressed in matrix form as:  
 

∑
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p
hh wXfX 1
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where X̂h+1  is an estimate of Xh+1 , fh
p  is the matrix of effects of X p  on X̂h+1 , wh  is a vector of 

Gaussian, zero-mean, uncorrelated errors, and q is the degree of the autoregressive process.  
The measurement equation, which relates unknown OD flows to observed link counts, can thus be stated 
in matrix form as follows:  
 

hhhh vXAY += , (2) 
 

where Ah = ah
h  is the assignment matrix mapping the drivers that departed in interval h to the link 

counts observed in interval h and vh  is the vector of measurement errors, assumed to be zero-mean, 

uncorrelated as well as uncorrelated with the transition errors wh .  
 
Methodology 
 

Most of the methodologies for the solution of state-space models are based on the Kalman Filter 
algorithm [20], developed for the solution of linear, dynamic state-space models. The most straightforward 
extension to nonlinear systems is the Extended Kalman Filter (EKF, shown in Algorithm 1), which 
employs a linearization of the non-linear relationship [21]. This algorithm can be applied to simulation-
based systems (which do not have an analytical representation) by performing the linearization step using 
numerical derivatives. The use of numerical techniques requires a large number of function evaluations 
(each implying a run of the simulator) thus making this technique potentially computationally expensive.  
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Algorithm 1. Extended Kalman Filter (EKF) 

 
In Antoniou [17] and Antoniou et al. [18] the Limiting EKF (LimEKF, shown in Algorithm 2),  

a new algorithm that obviates the need to compute the Kalman gain matrix on-line was proposed.  
 
Generation of limiting Kalman gain matrix G and H 
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Algorithm 2. Limiting Extended Kalman Filter (EKF) 

The performance of that approximate algorithm proved very close to the “exact” EKF and raised 
interest for the approach. In that work, the off-line computed Kalman gain matrix was the average of all 
available pre-computed such matrices. In this research, several different strategies for the construction of 
the gain matrices are presented: e.g. average of previously computed matrices per interval per demand 
level and average of previously computed matrices per interval independent of demand level.  
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Platform Implementation 
 

The experimental framework was implemented as a standalone Java application, consisting of 
three main components: a) An implementation of the parameter estimation algorithm; b) a wrapper of the 
traffic simulation; c) the main module which initialises the experimental set-up and orchestrates the 
execution of simulation and estimation for the appropriate iterations. 

The parameter estimation currently includes implementations of the EKF and Limiting EKF 
algorithms, and is designed to be modular and easily extensible. The input to the EKF algorithm includes 
the initial values of the X vector, which correspond to the demand values in the traffic network. Also 
given are the matrices F, P, Q and R, and the vector Y corresponding to the network flow measurements. 
The output of the algorithm implementation is mainly the estimated vector X* and the simulated  
Y* = f(X*). The implementation of the Limiting EKF is similar, and takes the additional input of  
the pre-calculated H matrix. 

The simulation wrapper implementation abstracts the execution of the traffic simulation software 
as a function Y = f(X). The orchestration module implements the main method, which reads the 
configuration of the experiment (specifying which estimation algorithm is used, providing the estimation 
parameters, defining the parameters of the mezzo simulation). The estimation algorithm is executed for 
the specified time intervals, and the estimation output is persisted to the file system for further processing. 

Mezzo [22, 23] is mesoscopic traffic simulation software developed by the Centre for Traffic 
Research of the Stockholm Royal Institute of Technology (KTH). It allows the definition of a road 
network over which aggregated traffic is simulated on the level of network links, according to specified 
values of traffic demand. The software facilitates the execution of simulations in sequential time slices 
with the possibility of varying the demand for each of the time intervals. Mezzo supports modelling of 
traffic features such as traffic signals and road incidents. The software can be executed either with  
a graphical user interface allowing user interaction and step-by-step monitoring of the simulation process, 
or in batch mode as a standalone application. The simulation results are logged in appropriately formatted 
text files containing relevant information such as the (average) link travel times, origin/destination 
outputs, speeds and densities. Mezzo is developed in C++ and is free and open source under Gnu Public 
License v. 3. 

 
Case Study 1: Synthetic Network 
 

A detailed experimental design was developed and a large number of simulation runs was 
performed. In order to be able to explore the specific properties of the Gain matrices in a practical way,  
a small synthetic network is considered, with varying levels of demand and number of OD pairs. A simulation 
framework is developed, that implements the various algorithms and uses the Mezzo mesoscopic traffic 
simulator.  
 
Synthetic Network Description 
 

For the purposes of this research, a simple synthetic network was developed to explore the specific 
properties of the EKF and Limiting EKF algorithms. The synthetic network which was modeled in Mezzo 
simulator is comprised of ten links and three OD pairs (one origin and three destinations). The simulation 
would run for two hours (eight consecutive 15-min intervals), where the first hour was considered to be 
the warm-up period. To avoid congestion and spillbacks into the network links, the input demand was set 
at medium levels. The demand during the warm-up period remained constant, and it varied slightly at 
each subsequent interval. In this synthetic network it was assumed that detector data (flows) were 
available on two of its links.  

 
Experimental Design  
 

Several scenarios were developed in this research to evaluate the EKF and the different Limiting 
EKF variants using the synthetic network described earlier. More specifically, one of the parameters that 
varied throughout the simulations was the OD demand. Five levels of the demand were evaluated; correct 
knowledge of the OD demand, and its variation by ±10% and ±20%. Additionally, to account for  
the variability in real life data that is typically induced due to detector errors or misreading, we further 
assumed that the traffic counts on the two links would vary by 0%, 10%, and -10%. Table 1 summarizes 
the different scenarios that were evaluated through the use of the synthetic network. 
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Table 1. Different scenarios and parameter levels for the EKF and Limiting EKL algorithm evaluation 
 

 OD demand variation Traffic counts variation 
Scenario 1 0% 0% 
Scenario 2 0% +10% 
Scenario 3 0% -10% 
Scenario 4 +10% 0% 
Scenario 5 +10% +10% 
Scenario 6 +10% -10% 
Scenario 7 -10% 0% 
Scenario 8 -10% +10% 
Scenario 9 -10% -10% 
Scenario 10 +20% 0% 
Scenario 11 +20% +10% 
Scenario 12 +20% -10% 
Scenario 13 -20% 0% 
Scenario 14 -20% +10% 
Scenario 15 -20% -10% 

 
Imperative in the estimation of the Kalman Gain matrix (Gh) is the measurement matrix Hh, which 

is obtained through an intermediate linearization step (see Algorithm 1). For the EKF algorithm, a 2% of 
the linear delta factor was assumed, indicating the percentage of the demand to be considered during the 
linearization step.  

To overcome the computationally intensive step of the linearization in the EKF algorithm, the 
Kalman gain matrix Gh is replaced with its limit G (Chui and Chen, 1999), for the Limiting EKF 
algorithm.  Thus, the main component of the gain matrix (i.e. the time-dependent matrix Hh) is replaced 
herein with an average matrix H of a number of available matrices. We distinguish three cases for 
computing the average matrix H: (a) it is the average matrix for each time interval for the scenarios  
with varying OD demand ±10%, (b) it is the average matrix for each time interval for the scenarios  
with varying OD demand ±20%, and (c) it is the average matrix across all time intervals for the scenarios 
with varying OD demand ±10%. 

Furthermore, for the implementation of the Limiting EKF it was further assumed that the covariance 
matrices Qh and Rh are identity matrices. 

 
Results 

 
The results suggest that indeed the Limiting EKF algorithm is robust and – while not requiring  

the explicit computation of the Kalman gain matrix, and thus having vastly superior computational 
properties – its accuracy is close to that of the “exact” EKF. Taking the average of various pre-computed 
Kalman Gain matrices possibly reduces the noise that creeps into the computation of the individual 
Kalman gain matrices, and this may be one of the key reasons for the good performance of the Limiting 
EKF (i.e. increased robustness).  

This section demonstrates the ability of the two algorithms to estimate traffic flow conditions in a 
 synthetic network. To evaluate the fit of the estimated and the simulated counts, two measures of 
effectiveness were considered, namely the normalized root mean square error (RMSN) and the mean 
percentage error (MPE).  
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where N is the number of observations, s
nY  is the estimated observation and o

nY  is the corresponding 
simulated traffic count. 
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Figure 1 summarizes the RMSN results for all four intervals of the 15 scenarios tested in this case 
study, considering also the three alternative options used for the calculation of the Kalman Gain matrix of 
the Limiting EKF algorithm. Figure 2 presents the corresponding MPE results. The “no-calibration” case 
is presented to indicate the starting point, while the EKF version presents a reference performance of the 
computationally intensive “exact” algorithm. The three Limiting EKF variants (depending on the way that 
the H matrix was pre-computed) are also presented. While the various scenarios are not really connected – and 
therefore a bar plot would be a more appropriate graphical representation – lines are used in this figure to 
provide a visually clearer presentation of the various cases.  

The results suggest that, as expected, the EKF algorithm performs well, and it manages to provide 
a satisfactory correction of the initial erroneous values of the parameters. These trials demonstrate the 
utility of the EKF algorithm in the OD estimation and prediction problems. It is also interesting to note 
that, although the Limiting EKF algorithm eliminates the computationally intensive steps of the EKF 
algorithm, it does not lack significantly in terms of accuracy in its estimation. The results of the Limiting 
EKF algorithm for all scenarios presented on Figures 1 and 2 show that in some cases the simpler 
Limiting EKF algorithm provides accuracy comparable to that of the EKF algorithm. In some scenarios 
(such as Scenario 12, in which the true demand has been perturbed by +20% while the true surveillance 
measurements have been perturbed by -10%, thus “misleading” the calibration process) the EKF does not 
provide an improvement (and even provides a deterioration from the starting point). The Limiting EKF, 
on the other hand, which uses an average of formerly calibrated H matrices, manages to clearly outperform the 
EKF in this case. Overall, it is noted that the computation of the H matrix used in the Limiting EKF 
algorithm plays an important role in the accuracy of the estimation results. More specifically, the results 
indicate that the computation of the H matrix used in LimEKFa (average matrix for each time interval for 
the scenarios with varying OD demand ±10%) and LimEKFc (average matrix across all time intervals for 
the scenarios with varying OD demand ±10%) performed better than in the case of the LimEKFb 
(average matrix for each time interval for the scenarios with varying OD demand ±20%). Actually,  
the latter case seemed to perform rather poorly in a few situations. The approach of the average values 
that was introduced in this research manages to eliminate the noise in the simulations, without producing 
adverse estimation results. The exact values of the results are presented in a table in Appendix A. 
 

 

 
Figure 1. Overview of the calibration results of the synthetic network based on the RMSN statistic 
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This scenario was also simulated for eight 15-min intervals (i.e. a total duration of two hours), 
considering the first hour as the warm-up period. In this set of experiments two levels of the OD demand 
were evaluated (set at -20% and -10% of the original demand), and perfect knowledge of traffic counts 
was available across a small sample of the network links. For determining which traffic count 
measurements to use in the limiting EKF algorithm, a simple sampling technique of selecting one every 
ten (non-zero) links was undertaken. This resulted to a total of 85 measurements. Similar to the synthetic 
network, it was further assumed that the covariance matrices Qh and Rh are identity matrices. In addition, 
a 5% value was assumed for the linear delta factor, indicating the percentage of the demand to be 
considered during the linearization step. 

As an intermediate step, the EKF algorithm was run for each scenario and the computed H matrices 
for the four intervals were used to calculate the average H matrix to be used in the Kalman gain matrix Gh 
of the Limiting EKF algorithm. The algorithm was evaluated in terms of its ability to estimate  
the traffic flow conditions at the measurement locations, through the RMSN and MPE statistics (as in 
case study 1). The results of the evaluation of the two scenarios are presented in Table 2.  

 
Table 2.  Summary results of the Limiting EKL algorithm (Södermalm network) 
 

  Mezzo LimEKF Improvement 
   RMSN MPE RMSN MPE RMSN MPE 
S. 1 (-20%) Int. 1 24.1% -13.6% 12.7% -4.4% 47.3% 67.6%
 Int. 2 27.7% -19.8% 14.3% -6.2% 48.4% 68.7%
 Int. 3 29.4% -17.8% 13.5% -3.6% 54.1% 79.8%
 Int. 4 26.4% -13.9% 16.0% -3.4% 39.4% 75.5%
S. 2 (-10%) Int. 1 13.1% -7.1% 11.8% 1.0% 9.9% 85.9%
 Int. 2 15.0% -9.7% 13.5% -8.5% 10.0% 12.4%
 Int. 3 16.7% -6.6% 15.7% -5.5% 6.0% 16.7%
 Int. 4 16.2% -8.1% 15.4% -5.7% 4.9% 29.6%

 
Based on the results shown in Table 2, the Limiting EKF algorithm provides significantly lower 

(i.e. better; between 40% and 80%) RMSN and MPE statistics compared to the base scenario, when the 
OD demand is -20%. For smaller variation of the OD demand the algorithm still appears to perform as 
expected, although it is not as efficient in minimizing the difference between the simulated and observed 
conditions. Still, the improvement is between 5% and 30%, with a single value exceeding 85% improvement). 
In conjunction with the results of the synthetic network, it can be inferred that the LimEKF algorithm 
performs well with regards to correcting the erroneous values of the OD demands, thus providing more 
accurate estimation of the prevailing conditions, especially when the discrepancies are significant. 
Scatterplots of observed vs. simulated traffic counts at the available network links using the results from 
the Limiting EKF for OD estimation for the two scenarios discussed above, are presented in Figure 4. 
Besides a slight underestimation of larger traffic counts, the results are fairly consistent with  
the “45 degree” straight line that represents the ideal results. It is noted that such an underestimation is 
expected, as the starting demand is significantly lower than the “true” demand. 

 
Figure 4.  Scatterplots of observed and simulated traffic counts at the Södermalm network for the Limiting EKF algorithm 

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Scenario 1

observed traffic counts (veh/h) 

si
m

ul
at

ed
 tr

af
fic

 c
ou

nt
s 

(v
eh

/h
) 

Interval 1
Interval 2
Interval 3
Interval 4

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Scenario 2

observed traffic counts (veh/h) 

si
m

ul
at

ed
 tr

af
fic

 c
ou

nt
s 

(v
eh

/h
) 

Interval 1
Interval 2
Interval 3
Interval 4



Transport and Telecommunication Vol. 14, No 1, 2013 
 
 

9 
 

Conclusions 
 
The results of the EKF algorithm (Algorithm 1) using a synthetic network showed that the 

algorithm provides acceptable corrections and minimizes the discrepancy between the simulated and 
observed traffic conditions. To overcome the computational burden of the linearization step during the 
on-line calibration, a variation of the EKF algorithm, the Limiting EKF algorithm, was also evaluated. 
The Limiting EKF algorithm computes the Kalman gain matrix off-line, taking into account pre-
computed gain matrices. Experiments in the synthetic network showed that, the Limiting EKF algorithm 
provides accuracy comparable to that of the best algorithm (EKF), while providing substantial 
improvement in computational efficiency. As it was shown in Figures 1 and 2, in most cases these results 
were consistent among the three different approaches for computing the Kalman gain matrix. The increased 
robustness of the proposed algorithm can be explained by the fact that the average of various pre-
computed Kalman gain matrices reduces the noise that is introduced in the computation of the individual 
Kalman gain matrices. Additional experiments undertaken in an existing large-scale network further 
validate these findings. The efficiency of the Limiting EKF algorithm increases with increased variation 
of the OD demands, whereas it’s estimating and predictive power diminishes for low OD demand 
variations. 

Future (ongoing) research includes trying additional combinations of Kalman gain matrices for the 
computation of the Limiting Kalman gain matrix, as well as testing the generalization and scalability of 
the obtained results; for example, whether the results would hold when using other traffic simulators and 
when applying the approach on larger, more complex networks. In addition, ongoing research performed 
using the Södermalm network evaluates the robustness of the LimEKF algorithm and the properties of  
the Kalman gain matrix, considering various structures of the error covariance matrices Q and R, as well 
as the impact of the number of available traffic counts in the network. 
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Appendix A 
 
Table A.1.  Summary results of the EKF and Limiting EKF algorithm (1/2) 
 

 Mezzo EKF LimEKF (a) LimEKF (b) LimEKF (c)

    RMSN MPE RMSN MPE RMSN MPE RMSN MPE RMSN MPE

S. 1 Int. 1 0. 0% 0. 0% 0% 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0%

  Int. 2 0. 0% 0. 0% 0% 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0%

  Int. 3 0. 0% 0. 0% 0% 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0%

  Int. 4 0. 0% 0. 0% 0% 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0% 0. 0%

S. 2 Int. 1 0. 0% 0. 0% 2. 8% -2. 5% 3. 1% -3. 0% 2. 9% -2. 7% 3. 6% -3. 4%

  Int. 2 0. 0% 0. 0% 3. 4% -2. 7% 5. 4% -5. 0% 3. 9% -3. 0% 4. 0% -3. 5%

  Int. 3 0. 0% 0. 0% 3. 6% -3. 5% 3. 5% -3. 4% 3. 2% -2. 9% 4. 0% -4. 0%

  Int. 4 0. 0% 0. 0% 3. 0% -2. 8% 3. 4% -3. 0% 6. 9% -6. 9% 3. 3% -3. 3%

S. 3 Int. 1 0. 0% 0. 0% 2. 9% 2. 9% 3. 5% 3. 4% 3. 1% 3. 1% 4. 1% 4. 1%

  Int. 2 0. 0% 0. 0% 3. 4% 3. 4% 5. 8% 5. 8% 4. 9% 4. 7% 4. 2% 4. 2%

  Int. 3 0. 0% 0. 0% 4. 1% 3. 9% 3. 9% 3. 8% 3. 1% 2. 8% 4. 3% 3. 9%

  Int. 4 0. 0% 0. 0% 3. 9% 3. 9% 3. 7% 3. 7% 9. 3% 9. 2% 3. 9% 3. 9%

S. 4 Int. 1 9. 0% 9. 0% 3. 1% 3. 0% 3. 2% 3. 2% 3. 0% 3. 0% 3. 6% 3. 6%

  Int. 2 10. 5% 10. 3% 4. 0% 3. 9% 4. 0% 3. 8% 4. 2% 4. 1% 3. 9% 3. 7%

  Int. 3 9. 5% 9. 2% 2. 7% 2. 7% 3. 6% 3. 3% 3. 5% 3. 5% 3. 5% 3. 5%

  Int. 4 10. 4% 10. 4% 3. 4% 3. 1% 3. 7% 3. 4% 7. 5% 7. 3% 4. 2% 4. 0%

S. 5 Int. 1 9. 0% 9. 0% 1. 6% -0. 7% 1. 4% -0. 5% 1. 3% -0. 3% 1. 7% -0. 5%

  Int. 2 10. 5% 10. 3% 2. 6% -0. 5% 2. 8% -0. 2% 2. 1% 0. 8% 2. 3% 0. 0%

  Int. 3 9. 5% 9. 2% 1. 7% -0. 4% 1. 0% -0. 3% 2. 2% -0. 4% 1. 7% -0. 4%

  Int. 4 10. 4% 10. 4% 0. 2% 0. 2% 0. 3% -0. 3% 0. 7% 0. 2% 0. 4% -0. 1%

S. 6 Int. 1 9. 0% 9. 0% 6. 9% 6. 9% 6. 7% 6. 7% 6. 2% 6. 2% 7. 9% 7. 9%

  Int. 2 10. 5% 10. 3% 8. 6% 8. 5% 10. 8% 10. 8% 9. 0% 9. 0% 8. 9% 8. 8%

  Int. 3 9. 5% 9. 2% 8. 6% 8. 6% 8. 4% 8. 4% 6. 2% 5. 8% 8. 7% 8. 7%

  Int. 4 10. 4% 10. 4% 8. 0% 8. 0% 7. 9% 7. 8% 18. 3% 18. 1% 8. 6% 8. 6%

S. 7 Int. 1 9. 2% -9. 2% 2. 8% -2. 8% 2. 8% -2. 8% 2. 3% -2. 4% 3. 3% -3. 3%

  Int. 2 10. 1% -10. 1% 3. 6% -3. 6% 4. 9% -4. 9% 3. 6% -3. 6% 3. 9% -3. 9%

  Int. 3 10. 5% -9. 8% 4. 1% -3. 9% 4. 0% -3. 6% 3. 2% -2. 5% 4. 1% -3. 7%

  Int. 4 10. 2% -10. 0% 4. 9% -4. 8% 3. 6% -3. 4% 7. 7% -7. 6% 4. 1% -3. 8%
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Table A.2.  Summary results of the EKF and Limiting EKF algorithm (2/2) 
 

 Mezzo EKF LimEKF (a) LimEKF (b) LimEKF (c)

    RMSN MPE RMSN MPE RMSN MPE RMSN MPE RMSN MPE

S. 8 Int. 1 9. 2% -9. 2% 5. 5% -5. 4% 5. 6% -5. 6% 4. 7% -4. 7% 6. 3% -6. 2%

  Int. 2 10. 1% -10. 1% 6. 6% -6. 3% 9. 1% -8. 9% 7. 5% -7. 1% 7. 0% -6. 8%

  Int. 3 10. 5% -9. 8% 6. 0% -5. 9% 5. 9% -5. 9% 4. 8% -4. 7% 6. 9% -6. 9%

  Int. 4 10. 2% -10. 0% 5. 9% -5. 9% 6. 0% -6. 0% 14. 6% -14. 5% 7. 0% -7. 0%

S. 9 Int. 1 9. 2% -9. 2% 0. 7% 0. 3% 0. 7% 0. 3% 0. 7% 0. 5% 0. 68% 0. 46%

  Int. 2 10. 1% -10. 1% 0. 5% 0. 0% 0. 8% 0. 0% 0. 6% -0. 3% 0. 52% 0. 02%

  Int. 3 10. 5% -9. 8% 3. 8% 0. 9% 3. 4% 0. 3% 3. 9% 0. 5% 3. 58% 0. 18%

  Int. 4 10. 2% -10. 0% 1. 9% 0. 0% 1. 9% -0. 4% 1. 4% 0. 1% 1. 93% -0. 36%

S. 10 Int. 1 17.4% 17.3% 5.6% 5.5% 6.2% 6.1% 5.9% 5.8% 7.1% 7.1%

  Int. 2 19.1% 18.9% 15.0% 14.7% 10.0% 9.9% 8.4% 8.3% 8.4% 8.3%

  Int. 3 14.5% 14.2% 11.3% 11.2% 10.4% 10.3% 9.2% 8.9% 10.4% 10.3%

  Int. 4 20.6% 20.6% 20.1% 20.0% 7.1% 7.0% 16.6% 16.6% 8.4% 8.4%

S. 11 Int. 1 17.4% 17.3% 2.7% 1.9% 2.9% 2.2% 3.1% 2.3% 2.9% 2.3%

  Int. 2 19.1% 18.9% 9.1% 8.4% 5.3% 4.3% 6.0% 5.3% 6.0% 5.1%

  Int. 3 14.5% 14.2% 3.1% 1.9% 2.9% 1.1% 0.7% 0.3% 2.8% 0.8%

  Int. 4 20.6% 20.6% 4.4% 3.9% 3.3% 3.3% 9.3% 8.8% 4.7% 4.4%

S. 12 Int. 1 17.4% 17.3% 9.5% 9.6% 10.7% 10.8% 9.7% 9.7% 11.9% 12.0%

  Int. 2 19.1% 18.9% 28.2% 28.2% 17.2% 17.2% 13.7% 13.7% 12.9% 12.9%

  Int. 3 14.5% 14.2% 31.9% 31.6% 15.5% 15.4% 13.9% 14.0% 16.7% 16.6%

  Int. 4 20.6% 20.6% 40.8% 40.8% 11.3% 11.3% 27.1% 27.1% 12.5% 12.5%

S. 13 Int. 1 18.7% -18.7% 5.0% -5.0% 5.6% -5.6% 4.8% -4.8% 6.2% -6.2%

  Int. 2 19.5% -19.5% 6.2% -6.2% 9.8% -9.8% 6.7% -6.6% 7.6% -7.7%

  Int. 3 20.4% -20.1% 8.5% -7.8% 7.4% -6.6% 6.0% -4.7% 8.3% -7.6%

  Int. 4 20.2% -20.0% 8.9% -8.8% 6.6% -6.4% 16.2% -16.2% 7.8% -7.6%

S. 14 Int. 1 18.7% -18.7% 7.0% -7.0% 8.0% -7.9% 6.7% -6.7% 8.7% -8.7%

  Int. 2 19.5% -19.5% 9.1% -8.9% 13.6% -13.5% 9.8% -9.6% 10.2% -10.1%

  Int. 3 20.4% -20.1% 9.4% -9.3% 9.1% -8.9% 7.3% -7.0% 10.5% -10.4%

  Int. 4 20.2% -20.0% 10.5% -10.5% 8.5% -8.4% 21.8% -21.7% 10.3% -10.2%

S. 15 Int. 1 18.7% -18.7% 2.5% -2.5% 2.9% -2.9% 2.5% -2.5% 3.2% -3.2%

  Int. 2 19.5% -19.5% 4.4% -4.3% 5.6% -5.5% 3.6% -3.7% 4.0% -4.0%

  Int. 3 20.4% -20.1% 5.6% -3.8% 5.6% -4.0% 3.8% -2.2% 5.4% -4.0%

  Int. 4 20.2% -20.0% 5.1% -4.3% 3.6% -3.4% 9.3% -9.2% 4.8% -4.3%

 


