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REMARKS ON SUPER-ADDITIVE AND
SUB-ADDITIVE TRANSFORMATIONS
OF AGGREGATION FUNCTIONS
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Slovak University of Technology in Bratislava, Bratislava, SLOVAKIA

ABSTRACT. In this contribution we modify the definitions of the super-additive
and sub-additive transformations of aggregation functions. Firstly, we define
k-bounded transformations that represent only finite decompositions with at most
k elements. Secondly, we introduce two other transformations that preserve the
super-additivity property in some sense. Also, a remark on continuity of the clas-
sical super-additive transformation of an aggregation function is presented for
one-dimensional case.

1. Introduction

Aggregation functions have proved to be a prolific topic of investigation both
from a theoretic as well as from an application points of view. As a tool for
furnishing a single value out of multiple inputs, such functions have proven
to be useful in various branches of research, science and technology, notably
in statistics, decision-making, data mining, artificial intelligence and economics,
to list just a few. In order to avoid being repetitious we refer for particulars
about the theory and applications of aggregation functions to the monographs [I]
and [2] and to the references therein.

This contribution focuses on certain features of transformations of aggrega-
tion functions that seem not to have been studied in the literature. It builds
on two basic notions of super- and sub-additive transformations of aggregation
functions introduced recently in [3] and studies their further properties and varia-
tions. We remark that transformations of aggregation functions as defined in [3]
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have been extensively studied as well, especially in connection with existence
of aggregation functions with given super- and sub-additive transformations;
see, e.g., M-[7, [10]-[12].

The paper is organized as follows. In Section 2 we introduce some prelimi-
naries and basic building blocks of this paper. Section 3 introduces k-bounded
transformations of aggregation functions and properties of these transformations
are discussed. The main proposition of Section 4 is the proof of the continuity
of the classical super-additive transformation of a continuous aggregation func-
tion. Lastly, in the Section 5, we introduce two other transformations of aggre-
gation functions.

2. Preliminaries

For the purpose of this article, by an aggregation function we will understand

any function
A: [0, 00["— [0, 00]

such that A(0) = 0 and A is increasing in every coordinate. This is consistent
with [2] and one usually assumes that n > 2 in applications. As their name
suggests, such functions are used to aggregate a certain number of inputs into
a single output. Although this motivation of aggregation function cannot be used
in one dimension, analysing the case n = 1 sometimes proves to be helpful before
going into higher dimensions. For completeness we note that there are different
approaches to the very definition of an aggregation function; for example, in the
survey [§ the domain is restricted to [0, 1]™

We say that an aggregation function as defined above is super-additive if
Ax+y) > Ax) + A(y), and sub-additive if A(x +y) < A(x) + A(y) for all
X,y € [0, 00[".

Motivated by applications in economics, the authors of [3] introduced the fol-
lowing two important concepts. For an aggregation function A its super-additive
transformation A* is given by

k k
A*(x) :sup{ZA(x,-): in =Xx,%x; >0, kEN}.

i=1 i=1
Analogously, the sub-additive transformation A, of A is defined by

k k
Au(x) = inf{ZA(xi): in =Xx,%x; >0, kEN}.

=1 =1

Again, the terminology reflects the fact that A* is always a super-additive
and A, is always a sub-additive aggregation function. The properties of these
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transformations have been extensively studied in the literature, see, e.g., [B]-[7],
[10]12]. Also note that A* might assume the value of co; if this happens at some
point then we will say that A* escapes locally. If A*(x) = oo for all x €]0, co[™
we will say that A* escapes globally. There is no need to define escapeness for
sub-additive transformations because A, is bounded below by 0 and bounded
above by A.

3. Transformations of finite decomposition

The way super- and sub-additive transformations have been introduced as-
sumes that a given point x € [0, 00" may be written as a finite sum of non-
-negative points in an arbitrary way. In practice, however, it may happen that
such decompositions of x are available only with a bounded number of sum-
mands. This restriction motivates us to define a new type of transformation
that takes this into the account.

DEFINITION 3.1. Let k € Nand let A: [0, co["*— [0, oo[ be any aggregation func-
tion. An upper k-bounded transformation of A is the function A®) defined by

k k
AR [0, 00" — [0, 00[: x —>sup {ZA(Xi)Z in =x, X; > 0}.

i=1 i=1
Similarly, a lower k-bounded transformation of A is the aggregation function
k k
Ayt [0, 00["— [0, 00[: x + inf {ZA(XZ‘): in =X, X; > 0} .
i=1 i=1
EXAMPLE 3.2. Let F,G, H: [0,00[— [0,00[ be aggregation functions given by
F(x) = min{z, 1}, G(z) = v/x, and H(x) = 2% Then

G (x) = Vku, Gy (z) =G(z),
H(k)(.'lj) :H(x), H(k)(x) :.1'2/]6‘.

Remark 3.3. Note that the upper and lower k-bounded transformations of an
aggregation functions are again aggregation functions.

Remark 3.4. In contrast with super- and sub-additive transformations, an up-
per or a lower k-bounded transformation of an aggregation function need not be
super- or sub-additive, respectively; this can be seen by the functions F' and H
from Example 3.2.

Nevertheless, one has the following interesting property of our bounded trans-
formations.
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PROPOSITION 3.5. Let A be an aggregation function and let k,1 € N. Then
(A(k))(l) = A(kl) and (A(k)>(l) = A(kl)-

Proof. Note that

l l
(AP (x) = sup {ZA(k) (xi): in = X}

i=1 i=1
1 k k 1
= sup ZSUP{ZA(XM) wa = x,} ZXZ =x
=1 j=1 =1 1=1
l k k l
= sup ZZA(XM)'ZXU Xz,le—x ,
=1 j=1 j=1 i=1

where x; and x; ; are all non-negative vectors, and also note that

kl kl
AR () = up { S Ax): 3 0 — .0 > o} |
m=1 m=1

From these equations it easily follows that (A®))()(x) = A*)(x) for all x > 0.
The proof for lower k-bounded transformations is analogous. O

Even though some properties of super- and sub-additive transformations
do not carry over to upper and lower k-bounded transformations, some of them
do. These are summarized in the following theorem.

THEOREM 3.6. Let A be an aggregation function. Then

e if A< B then A®) < B®) and Ay < Byy:

o if A is super-additive (sub-additive) then A®) = A (A, = A);

o A®) and Ay are positively homogeneous of degree 1, i.e., (aA)F) = qAKF)

and (@A) = oAy for all o> 0.

Proof. We will prove the theorem only for upper k-bounded transformation,
leaving the similar arguments for lower k-bounded transformations to the reader.
Let us assume that A < B. Then

k

k
ZA(xi) <) B(xi)

=1

holds for all decompositions {x;}*_; of x and thus A% (x) < B(*)(x). Note that
if A is super-additive, then
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for all decompositions {x;}*_, of x and thus A(x) > A®¥)(x). The fact that x is
a singleton decomposition of x implies that A*)(x) = A(x). Lastly, let o > 0.
Then

k k
(2 A)®) (x) = sup {Z aA(x;): Z = 0}
i=1 i=1
—asup{ZA X;): sz—x xlzo} ozA(k)
which completes the proof of the theorem. O

Our next theorem relates the upper and lower k-bounded transformations
by certain inequalities.

THEOREM 3.7. Let A be an aggregation function. Then A = A and A+ >
AP for all k € N. Similarly, Ay = A and Ay < Ay for all k € N.
Proof. This theorem will again be proved only for upper k-bounded transfor-
mation. Note that

AN (x) = sup{A(x1): x1 = x,%1 > 0} = A(x)

and thus AV = A. Now let {x;}¥_, be any decomposition of x. Then {x;}**}

with x;41 = 0 is also a decomposition of x and thus A®) (x) < A*+1D(x). D

We continue with a study of inheritance of continuity of upper and lower
k-bounded transformations.

PROPOSITION 3.8. If A is continuous then so are A% and Ak -

Proof. Restricting ourselves to the case of upper k-bounded transformations
again, note that the definition of A*)(x) can be rewritten to the form

AP (x) = sup (A(x1) + -+ A(xp—1) + A(x — X1 — - — Xp_1)),

where the supremum is taken subject to inequalities

i—1
0<x; <x —Z X;
j=1
fori=1,2,...,k—1. Note that this area deforms continuously when the point x
is changed continuously which implies that A®*) is continuous. O
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4. Remarks on super-additive transformations

THEOREM 4.1. Let A: [0,00["— [0,00[ be any aggregation function. Then A*
escapes locally if and only if A* escapes globally.

Proof. The proof of < is trivial. Now let us assume that there exists an X
such that A*(X) = oco. From monotonicity we trivially obtain that A*(y) = oo
for all y > X. Let ¥ be a point such that ¥y > 0 and y > x. From the previous
discussion we conclude that A*(¥) = co. Now, from the definition of A*(¥) it
follows that there exists a sequence {y, }nen converging to 0 such that

Y yu=5 and > A(y,) = co.
neN neN

The only limit point of {y,, }nen is the point 0. Now let y be any point such that
0 <y <¥. Then we can remove a finite number, say k, elements of {y, }nen

so that oo
> <y
n=k+1

From this we obtain that

00 00 k
Ay) =3 Ay) = S Alya) =3 Alya) =S Alya) = o0

n=k+1 n=k+1 neN

and thus A*(y) = oo for all y such that 0 < y < §. Now let x > 0 be any
point. Then there exists a point z > 0 such that z < x and z < y. Finally,
from monotonicity we obtain that A*(x) > A*(z) = oo which completes the
proof. O

In general one cannot say what happens on the “edges”, i.e., at the points x
that have at least one coordinate equal to zero. This is shown in the following
example.

EXAMPLE 4.2. Let A: [0,00[*— [0, 0] be an aggregation function such that

n 1/2n
A(X):3<IIQM> .

A*(X):{oo it x >0,

0, otherwise.

Then

Continuity inheritance for super- and sub-additive transformations have, to
the best of the authors’ knowledge, not been studied. In this contribution we
present a corresponding result only for one-dimensional aggregation functions,
deferring the more complex multi-dimensional case to [9].
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THEOREM 4.3. Let A: [0, 00[— [0, o0 be a continuous aggregation function. If A*
does not escape globally then A* is continuous.

Proof. It is sufficient to prove that the super-additive transformation A* is
uniformly continuous on [0, Z] for any T €]0, oo[. Let € > 0 and let n > 24*(%) /e
be such that

T . . €
ly—vy'| < — implies  [A(y) — Ayl < T (1)

This can be done based on the uniform continuity of A on [0,Z]. Suppose now
that z, 2" €]0,Z[ and, without loss of generality, ' < 2. We will show that

x
x—12' <= implies A*(z)— A*(2') <e.
n
Let us thus assume that  — 2’ < Z/n. For the given € > 0, by definition of A*

there exists a k-tuple {z;}*_,, z; > 0, such that

k

k
in:x and A*(x)fZA(xi)<

i=1 =1

(2)

=] M

Case 1: Suppose that one of the x;’s, say, without loss of generality, xy, is such
that z; > = — 2’ Let {y; fill be such that y; = x4, 1 <i <k —1, ypur1 =2 — 2/,
and yr = o) — yry1. Note that zp — y, = 2 — 2’ and

From the definition of A*(z) we obtain the inequality

k

S A(y) < A%()

=1

from which we obtain, for z — 2’ < T/n, that

k
A () — A" (2') < A%(2) —Z Aly:)

- (A*(x) =D Al | + (ZA(m) —ZA<yi>>

i=1

»
- (A*(x) ZA(M) + A(zr) — A(yr)-

=1
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Note that by [I) we get that A(xx) — A(yx) < £/4 and that by (@) we get that

k

A () =) Alws) <

=1

= ™

and thus

A*(z) — A* () < Z+ Z <e.

Case 2: Suppose now that x; < x — 2’ for all + < k. Without loss of generality
we can assume that x1 > o > -+ > 2. Let [ < k be such that

-1 !
in <2 but in > .
i1 i—1

Let x; = u + v so that

-1
in—l—u:x’ and note that Z ri+v=x—21a.
i=1 i=l+1

Using the fact that

from the definition of the super-additive transformation, the fact that x —z’ < %,
and the way we chose n it follows that

k

> Aw) <A ) < CA(E) <

i=l+1

DO ™
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and from the uniform continuity of A and the fact that x; —u < = — 2’ we get
that
A(zy) — Au) <

Combining these results we obtain that

A*(x)—A*(w’)<i+%+§:5

which completes the proof. (]

=] M

Note that thanks to continuity of A* for continuous aggregation functions A
we can prove a uniform convergence of the upper k-bounded transformations.

THEOREM 4.4. Let A: [0,00[— [0,00[ be continuous aggregation function that
does not escape globally. Then {A(k)}kel\f converges to A* uniformly.

Proof. Follows from the monotonicity of the sequence {A(k) }keN and Dini’s
theorem. O

5. Other types of transformations of aggregation

5.1. Super-additive ray transformation

DEFINITION 5.1. Let A: [0, 00["— [0, 00[ be an aggregation function. Its super-
additive ray transformation is a mapping A~ : [0, co["— [0, oo given by

k k
A7 (x) :sup{ZA()\ix): i ZO,Zx\i = l,kEN}.

i=1 i=1
THEOREM 5.2. Let A: [0, 00["— [0, 00] be an aggregation function. Then A~ is
also an aggregation function.

Proof. Note that A~(0) = 0. Now let x > y. The monotonicity of A implies
that A(Ax) > A(\y) for all A > 0 and thus for every sequence {\;}¥_; such that
A1+ -+ A = 1 we obtain that

k k
D> ANX) =) Any)
i=1 i=1
which implies that A~ (x) > A~ (y) and thus A~ is an aggregation function. [J

THEOREM 5.3. Let A: [0,00["— [0, 00[ be an aggregation function. Then A~ is
super-additive on rays starting at 0, i.e., for all x € [0,00[" and all o, > 0
we have

A ((a+ B)x) > A™ (ax) + A~ (Bx).
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Proof. Let us fix x € [0, 00[" and let us define
B: [0,00[— [0,00[: t — A(tx).

Note that B is an aggregation function and also note that

k k
B*(t) = sup {ZB(ti): Y ti=tt;>0ke N}
=1 =1
k k +
zsup{ZA(tix): Zf =1,t; >0,k € N}
=1

=1

k k
= sup {ZA(ﬁi(tx)) Y Bi=1,82>0ke N} = A~ (tx),
=1 i=1

where 3; = t;/t. From the super-additivity of B* we obtain that
A ((a+pB)x) = B*(a+ ) = B*(a) + B*(8) = A (ax) + A~ (x)
which completes the proof. (]

EXAMPLE 5.4. Note that, in general, A~ might not be super-additive. Let A be

such that A(x) = /2% + x3. Then A~ (x) = A(x) but
A7(3,4)=5%#34+4=A7(3,0)+ A7(0,4)

which implies that A~ is not super-additive and thus A~ # A*

From the previous example and the properties of the super-additive transfor-
mation we obtain:

THEOREM 5.5. Let A be an aggregation function. Then A < A~ < A*.

Proof. To see that A < A~ is trivial. Note that in A~ we restrict ourselves to
special type of decompositions which implies that A~ < A* ([l
5.2. Linear super-additive transformation

DEFINITION 5.6. Let A: [0, 00["— [0, 00[ be an aggregation function. Its linear
super-additive transformation is a mapping A': [0, co["— [0, o[ given by

k k
AT(x) = sup {Z a;A(x): a; > 0,%x; > O,Zaixi =x,k¢€ N} )
i=1 i=1

THEOREM 5.7. Let A: [0,00["— [0,00[ be an aggregation function. Then AT is
a super-additive aggregation function.

Proof. The proof is analogous to the proof of the super-additivity of the super-
additive transformation of aggregation function. (]

THEOREM 5.8. Let A be an aggregation function. Then A < A* < A'.
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Proof. The first inequality A < A* follows from the definition of the super-
-additive transformation of aggregation function. Note that the super-additive
transformation uses a subclass of decompositions that AT uses which implies the
second inequality. O

EXAMPLE 5.9. Let us consider an aggregation function A: [0,00["— [0, c0]
defined by
A(x) = H X,
i=1

where x = (21, %2,...,2,) and n > 2. Then A* = A but

AT(X): {oo, if x >0,

0, otherwise.

6. Concluding remarks

For each aggregation function A we have introduced the upper and the lower
k-bounded transformations A®*) and Ay of A that are modifications of super-
-additive and sub-additive transformations of aggregation functions. These newly
defined transformations take into account that only finite decompositions might
be available. Some properties of these transformations were discussed.

We established a criterion of the super-additive transformation to be well-de-
fined, i.e., we proved that if the super-additive transformation A* escapes locally
then it escapes everywhere. Moreover, we proved the continuity inheritance for
the super-additive transformation. Lastly, we proved that the sequence of upper
k-bounded transformations of continuous aggregation function converges to the
super-additive transformation uniformly.

In the last section of this contribution we constructed two new types of trans-
formations, namely the super-additive ray transformation A~ and the linear
super-additive transformation Af-. Properties of these transformations are also
discussed.
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