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CONVERGENCE OF THE NUMERICAL SCHEME

FOR REGULARISED RIEMANNIAN MEAN

CURVATURE FLOW EQUATION

Matúš Tibenský — Angela Handlovičová

Slovak University of Technology in Bratislava, Bratislava, SLOVAKIA

ABSTRACT. The aim of the paper is to study problem of image segmenta-
tion and missing boundaries completion introduced in [Mikula, K.—Sarti, A.–
–Sgallarri, A.: Co-volume method for Riemannian mean curvature flow in sub-
jective surfaces multiscale segmentation, Comput. Vis. Sci. 9 (2006), 23–31],

[Mikula, K.—Sarti, A.—Sgallari, F.: Co-volume level set method in subjective
surface based medical image segmentation, in: Handbook of Medical Image
Analysis: Segmentation and Registration Models (J. Suri et al., eds.), Springer,
New York, 583–626, 2005], [Mikula, K.—Ramarosy, N.: Semi-implicit finite
volume scheme for solving nonlinear diffusion equations in image processing,
Numer. Math. 89 (2001), 561–590] and [Tibenský, M.:Využitie Metód Založených

na Level Set Rovnici v Spracovańı Obrazu, Faculty of mathematics, physics
and informatics, Comenius University, Bratislava, 2016]. We generalize approach
presented in [Eymard, R.—Handlovičová, A.—Mikula, K.: Study of a finite vol-
ume scheme for regularised mean curvature flow level set equation, IMA J. Nu-
mer. Anal. 31 (2011), 813–846] and apply it in the field of image segmentation.
The so called regularised Riemannian mean curvature flow equation is presented

and the construction of the numerical scheme based on the finite volume method
approach is explained. The principle of the level set, for the first time given
in [Osher, S.—Sethian, J. A.: Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988),
12–49] is used. Based on the ideas from [Eymard, R.—Handlovičová, A.–
–Mikula, K.: Study of a finite volume scheme for regularised mean curvature flow

level set equation, IMA J. Numer. Anal. 31 (2011), 813–846] we prove the stability
estimates on the numerical solution and the uniqueness of the numerical solution.
In the last section, there is a proof of the convergence of the numerical scheme
to the weak solution of the regularised Riemannian mean curvature flow equation
and the proof of the convergence of the approximation of the numerical gradient

is mentioned as well.
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1. Studied equation and assumptions on the data

We consider the following problem arising in image segmentation as a gen-
eralisation of the approach given in [1], find an approximate solution to the
equation

ut − f1(|∇u|)∇ ·
(
g(|∇GS ∗ I0|) ∇u

f(|∇u|)
)

= r, a.e. (x, t) ∈ Ω× [0, T ], (1)

where u(x, t) is an unknown (segmentation) function defined in QT ≡ [0, T ]×Ω,
where Ω is a finite connected open subset of Rd, d ∈ N, [0, T ] is a time interval
and I0 is a given image, typically on this image is an object we want to segment.

We consider zero Dirichlet boundary condition

u = 0, a.e. (x, t) ∈ ∂Ω× [0, T ] (2)

and initial condition

u(x, 0) = u0(x), a.e. x ∈ Ω. (3)

The assumptions on the data in (1)–(3) are similar as in [1] and [3]. We can
summarize them into the following hypothesis:

Hypothesis H

(H1): Ω is a finite connected open subset of Rd, d ∈ N, with boundary ∂Ω
defined by a finite union of subsets of hyperplanes of Rd,

(H2): u0 ∈ L∞(Ω),

(H3): r ∈ L2(Ω× [0, T ]) for all T > 0,

(H4): f ∈ C0(R+; [a, b]) is a Lipschitz continuous (non-strictly) increasing
function, such that the function x �→ x/f(x) is strictly increasing on R+.

For practical application we are using f(s) = min(
√
s2 + a2, b), where a

and b are given positive parameters,

(H5): f1 ∈ C0(R+; [a1, b1]), in general a1 	= a, b1 	= b, but for now in our
model we consider the case a1 = a and b1 = b,

(H6): g ∈ C0(R+; [0, 1]) is decreasing function, g(0) = 1, g(s) → 0 for s →
∞. For practical numerical computation we use g(s) = 1

1+Ks2 , where K is
constant of sensitivity of function g and we choose it,

(H7): GS ∈ C∞(Rd) is a smoothing kernel (Gauss function), with width of
the convolution mask S and such that

∫
Rd GS(x) dx = 1,

∫
Rd |GS| dx ≤

CS , CS ∈ R, GS(x) → δx for S → 0, where δx is Dirac measure at point x
and

(∇GS ∗ I0)(x) =

∫
Rd

∇GS(x− ξ)Ĩ0(ξ) dξ, (4)
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where Ĩ0 is extension of image I0 to Rd given by periodic reflection through
boundary of Ω and for which

1 ≥ gS(x) = g(|∇GS ∗ I0|)(x) ≥ νS > 0 (5)

for ∀x ∈ Ω due to properties of the convolution.

Definition of the numerical scheme and the space discretisation of the equa-
tion we are generalising in this paper could be found in [1]. We apply method
presented in [1] in the field of image segmentation, but in addition, we have
function g and convolution of the initial image with smoothing kernel in our
approach (see [3] or [4]).

For now just remark that discretisation of Ω, denoted by D, is defined as the
triplet D = (M, E ,P), where M is a finite family of non-empty connected open
disjoint subsets of Ω (the “control volumes”) with measure marked by |p|, hp
denote the diameter of p and hD denote the maximum value of (hp)m∈M, E is

a finite family of disjoint subsets of Ω (the “edges” of the mesh) with measure
marked by |σ| and P is a family of points of Ω indexed by M, denoted by
P = (xp)p∈M, such that for all p ∈ M, xp ∈ p and p is assumed to be xp-star-
-shaped so for all x ∈ p the inclusion [xp, x] ⊂ p holds.

We say that (D, τ) is a space-time discretisation of Ω× [0, T ] if D is a space
discretisation of Ω in the sense we mentioned above and if there exists NT ∈ N

with T = (NT + 1)τ , where τ is a symbol for the time step.

Another important assumption on the discretisation we make is that

dpσnp,σ = xσ − xp, ∀p ∈ M, ∀σ ∈ Ep, (6)

where Ep denotes the set of the edges of the control volume p, xσ ∈ σ, dpσ is
a symbol for the Euclidean distance between xp and hyperplane including σ
(it is assumed that dpσ > 0) and np,σ denotes the unit vector normal to σ
outward to p.

We define the set HD ⊂ R
|M| × R

|E| such that uσ = 0 for all σ ∈ Eext
(the set of boundary interfaces). We define the following functions on HD:

Np(u)
2 =

1

|p|
∑
σ∈Ep

|σ|
dpσ

(uσ − up)
2, ∀p ∈ M, ∀u ∈ HD, (7)

where up is defined as up = u(xp) and uσ is defined as uσ = u(xσ).

Let us recall that

‖u‖21,D =
∑
p∈M

|p|Np(u)
2 (8)

defines a norm on HD (see [9]).

Under the above mentioned assumptions and notations the semi-implicit
scheme is defined by

u0p = u0(xp), ∀p ∈ M, (9)
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u0σ = u0(xσ), ∀σ ∈ E , (10)

rn+1
p =

(n+1)τ∫
nτ

∫
p

r(x, t) dx dt, ∀p ∈ M, ∀n ∈ N, (11)

un+1
σ = 0, ∀σ ∈ Eext, ∀n ∈ N, (12)

and

|p|
τ f1(Np(un))

(
un+1
p − unp

)− 1

f(Np(un))

∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
σ − un+1

p

)

=
rn+1
p

τ f1(Np(un))
, ∀p ∈ M, ∀n ∈ N, (13)

where the following relation is given for the interior edges

un+1
σ − un+1

p

f(Np(un)) dpσ
+

un+1
σ − un+1

q

f(Nq(un)) dqσ
= 0, (14)

∀n ∈ N, ∀σ ∈ Eint (the set of interior interfaces) where σ is the edge between
p and q.

For the explanation of the selection of u0p and u0σ, which impacts the assump-
tions given on function u0 in (H2) see [7].

The gp is in (13) ∀p ∈ M defined by

gSp := gS(xp) = g

⎛
⎝
∣∣∣∣∣∣
∫
Rd

∇GS(xp − ξ)Ĩ0(ξ) dξ

∣∣∣∣∣∣
⎞
⎠ . (15)

Now we define some symbols we will be using in the next sections:

wD,τ (x, t) = − un+1
p − unp

τf1(Np(un))
+

rn+1
p

|p|τf1(Np(un))
(16)

δuD,τ (x, t) =
un+1
p − unp

τ
, ND,τ (x, t) = Np(u

n+1), gSD(x) = gSp , (17)

for a.e. x ∈ p, for a.e. t ∈ [nτ, (n+ 1)τ ], ∀p ∈ M, ∀n ∈ N,

GD,τ (x, t) = d
un+1
σ − un+1

p

dpσ
npσ, HD,τ (x, t) = d gSp

un+1
σ − un+1

p

dpσf(Np(un))
npσ , (18)

for a.e. x ∈ Dpσ, for a.e. t ∈ [nτ, (n + 1)τ ], ∀p ∈ M, ∀σ ∈ Ep, ∀n ∈ N, where
Dpσ is the cone with vertex xp and basis σ.
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Finally, we define function F (see [1]), which we need to use in the following
sections. Let F be function defined by

F (s) =

s∫
0

z

f(z)
dz, ∀s ∈ R+. (19)

Definition of function f implies that

F (s) ∈
[
s2

2 b
,
s2

2 a

]
, (20)

where constants a and b are the same as in the definition of the function f
in (H4).

2. Stability estimates

����� 2.1 (L∞ stability of the scheme)� Under Hypothesis (H), let (D, τ) be
a space-time discretisation of Ω× [0, T ]. Now we denote by

|u0|D,∞ = max
p∈M

∣∣u0p∣∣, (21)

and by

|r|D,τ,∞ = max

{
|rn+1

p |
τ |p| , p ∈ M, n = 0, . . . , NT

}
(22)

(note that, if u0 ∈ L∞(Ω) and r ∈ L∞(Ω×R+), then |u0|D,∞ ≤ ‖u0‖L∞(Ω) and
|r|D,τ,∞ ≤ ‖r‖L∞(Ω×(0,T ))). Let (u

n
p )p∈M,n∈N be a solution of (13)–(14). Then

following holds:

|unp | ≤ |u0|D,∞ + |r|D,τ,∞nτ

≤ |u0|D,∞ + |r|D,τ,∞T, ∀p ∈ M, ∀n = 0, . . . ,NT .

P r o o f. Now follow the ideas from [1] and suppose that for fixed time step
(n+1) the maximum of all un+1

p is achieved at the finite volume p. We can write
(13) in the following way

un+1
p +

τ f1(Np(u
n))

|p| f(Np(un))

∑
σ∈Ep

gSp
|σ|
d pσ

(
un+1
p − un+1

σ

)
= unp +

rn+1
p

|p| . (23)

On the other hand, from (14) we know that the value un+1
σ satisfies the equality

un+1
σ f

(
Np(u

n)dpσ
)
+ f
(
Nq(u

n)dqσ
)
= un+1

p f
(
Nq(u

n)dqσ
)
+un+1

q f
(
Np(u

n)dpσ
)
.

Let us write this equation in the following way

un+1
σ =

un+1
p f(Nq(u

n))dqσ + un+1
q f(Np(u

n))dpσ

f(Np(un))dpσ + f(Nq(un))dqσ
,
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which is a convex linear combination of points un+1
p and un+1

q .

We obtain

un+1
p − un+1

σ = un+1
p − un+1

p f(Nq(u
n))dqσ + un+1

q f(Np(u
n))dpσ

f(Np(un))dpσ + f(Nq(un))dqσ

=
f(Np(u

n))dpσ(u
n+1
p − un+1

q )

f(Np(un))dpσ + f(Nq(un))dqσ
. (24)

Because un+1
p is the maximum of up for the fixed time step (n+1) is un+1

p −un+1
q

non-negative, thanks to definition of function f are f
(
Np(u

n)
)
and f

(
Nq(u

n)
)

positive and dpσ and dqσ are positive. So un+1
p −un+1

σ must be non-negative, too.

This implies the following inequality

τ

|p|
∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
p − un+1

σ

) ≥ 0. (25)

If we look back to the equality (23), we can see that it leads to

un+1
p ≤ unp +

rn+1
p

|p| ≤ unp + |r|D,τ,∞ τ. (26)

Applying this method recursively for n we get

un+1
p ≤ u0p + |r|D,τ,∞nτ ≤ |u0|D,∞ + |r|D,τ,∞T. (27)

So we get our estimate. Proof for the minimum values is similar. �

Remark 2.1 (Uniqueness of the discrete solution)� The consequence is that
there exists one and only one solution to the semi-implicit scheme (13), (14).

����� 2.2 (L2(Ω × [0, T ]) estimate on ut and L∞(0, T ;HD) estimate)� Let
Hypothesis (H) be fulfilled. Let (D, τ) be a space-time discretisation of Ω× [0, T ]

and let θ ∈ (0, θD], where θD = minp∈M minσ∈Ep

dpσ

hp
and let νS be defined

in (H7). Let (unp )p∈M,n∈N be the solution of (13), (14). Then there exists Cθ > 0,
only depending on θ, such that it holds:

1

2bνS

m−1∑
n=0

τ
∑
p∈M

|p|
(
un+1
p − unp

τ

)2

+
∑
p∈M

|p| F(Np(u
m)
)
+

1

2b

m−1∑
n=0

∑
p∈M

|p|(Np(u
n+1)−Np(u

n)
)2

≤
Cθ‖u0‖2H1(Ω) +

1
νS

‖r‖2L2(Ω×(0,T ))

2 a
, ∀m = 1, . . . , NT . (28)
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P r o o f. Based on idea from [1] we multiply the scheme (13) by un+1
p − unp and

sum over p. We obtain

∑
p∈M

|p|
τ f1(Np(un))

(
un+1
p − unp

)2

−
∑
p∈M

(un+1
p − unp )

f(Np(un))

∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
σ − un+1

p

)

=
∑
p∈M

rn+1
p

τ f1(Np(un))

(
un+1
p − unp

)
, ∀p ∈ M, ∀n ∈ N. (29)

We can write it in the form

T1 + T2 = T3, (30)
where

T1 =
∑
p∈M

|p|
τf1(Np(un))

(
un+1
p − unp

)2
,

T2 =
∑
p∈M

gSp
f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(
un+1
σ − un+1

p

)(
unp − un+1

p

)

=
∑
p∈M

1

f(Np(un))

∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
σ − un+1

p

)(
un+1
σ − un+1

p − (unσ − unp )
)
,

T3 =
∑
p∈M

rn+1
p

τ f1(Np(un))

(
un+1
p − unp

)
.

In term T2 we have used the property (14) of the finite volume scheme.

At first we remark that, thanks to Young’s inequality and to the Cauchy-
-Schwarz inequality,

T3 ≤ 1

2

⎛
⎝∑

p∈M

|p|
τf1(Np(un))

(
un+1
p − unp

)2
+
∑
p∈M

(rn+1
p )2

|p|τf1(Np(un))

⎞
⎠

=
1

2
T1 +

∑
p∈M

(rn+1
p )2

2|p| τ f1(Np(un))
≤ 1

2
T1 +

1

2a

∑
p∈M

(rn+1
p )2

|p| τ

≤ 1

2a

(n+1)τ∫
nτ

∫
Ω

r(x, t)2 dx dt+
1

2
T1, (31)

where we have in last step used (11).
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In the study of the T2 we apply approach presented in [1]. Using (19)—the
definition of function F, we have

F
(
Np(u

n+1)
)− F

(
Np(u

n)
)
=

Np(u
n+1)∫

Np(un)

zdz

f(z)
.

Now, we set for c, d ∈ R+,

Φc(d) =
d

f(c)
(d− c)− (d− c)2

2f(c)
−

d∫
c

zdz

f(z)
.

We have Φc(c) = 0, and Φ′
c(d) =

2d−c
f(c) − 2d−2c

2f(c) − d
f(d) =

d
f(c) − d

f(d) .

Thanks to Hypothesis (H4) is f (non-strictly) increasing so we get

∀c, d ∈ R+,

d∫
c

zdz

f(z)
+

(d− c)2

2f(c)
≤ d

f(c)
(d− c). (32)

Thanks to (7) we know we can set d = Np(u
n+1) and c = Np(u

n) to (32),
realize (5) - νS ≤ gSp for all p ∈ M and definition of the function F stated
in (19) to get

gSp

(
F
(
Np(u

n+1)
)− F

(
Np(u

n)
))

+
νS
2b

(
Np(u

n+1)−Np(u
n)
)2 ≤

gSp

(
F
(
Np(u

n+1)
)− F

(
Np(u

n)
))

+
gSp
2

(
Np(u

n+1)−Np(u
n)
)2

f
(
Np(un)

) ≤

gSp
Np(u

n+1)

f(Np(un))

(
Np(u

n+1)−Np(u
n)
)
. (33)

Now we multiply (33) by |p| and sum it over all p ∈ M
∑
p∈M

|p|gSp
(
F
(
Np(u

n+1)
)−F(Np(u

n)
))

+
νS
2b

∑
p∈M

|p| (Np

(
un+1

)−Np(u
n)
)2 ≤

∑
p∈M

|p|gSp
Np(u

n+1)2

f(Np(un))
−
∑
p∈M

|p|gSp
Np(u

n+1)Np(u
n)

f(Np(un))
. (34)

Note that the Cauchy-Schwarz inequality implies

∑
σ∈Ep

|σ|
dpσ

(
un+1
σ − un+1

p

)(
unσ − unp

) ≤ |p| Np

(
un
)
Np

(
un+1

)
, (35)
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which in turn gives us

∑
p∈M

|p|gSp
Np(u

n+1)2

f(Np(un))
−
∑
p∈M

|p|gSp
Np(u

n+1)Np(u
n)

f(Np(un))
≤

∑
p∈M

gSp
f(Np(un))

∑
σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )
(
un+1
σ − un+1

p − (unσ − unp )
)
= T2. (36)

Putting the above together we obtain

T1 +
∑
p∈M

|p|gSp
(
F
(
Np(u

n+1)
)− F

(
Np(u

n)
))

+

νS
2b

∑
p∈M

|p| (Np(u
n+1)−Np(u

n)
)2 ≤

T1 + T2 = T3 ≤ 1

2
T1 +

1

2a

(n+1)τ∫
nτ

∫
Ω

r(x, t)2dxdt. (37)

After rewriting, summing this inequality over n = 0, . . . ,m − 1 for all m =
1, . . . , NT and using (5) and (H5), we get that

1

2b

m−1∑
n=0

τ
∑
p∈M

|p|
(
un+1
p − unp

τ

)2

+ νS
∑
p∈M

|p| F(Np(u
m)
)
+

νS
2b

m−1∑
n=0

∑
p∈M

|p| (Np(u
n+1)−Np(u

n)
)2 ≤

∑
p∈M

|p|gSp F
(
Np(u

0)
)
+

1

2a

mτ∫
0

∫
Ω

r(x, t)2dxdt ≤
∑
p∈M

|p|gSp F
(
Np(u

0)
)
+

1

2a
‖r‖2L2(Ω×(0,T )),

where we define u0σ by (10).

As the last step we use the following inequality, proven in [8]: there exists
Cθ > 0, only depending on θ, such that

|p| Np(u
0)2 ≤ Cθ‖u0‖2H1(p), ∀p ∈ M (38)
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and we get∑
p∈M

|p| F(Np(u
0)
)
=
∑
p∈M

|p|
Np(u

0)∫
0

z

f(z)
dz ≤

1

a

∑
p∈M

|p|(Np(u
0))2

2
≤ 1

2a
Cθ

∑
p∈M

||u0||2H1(p) =
1

2a
Cθ||u0||2H1(Ω), (39)

which concludes the estimate (28). �

3. Convergence of the scheme

This section is based on the approach presented in [1], so we list few lemmas
without proofs as there are no changes from [1]. The others are given with proofs
as the generalisation and new point of view were needed.

����� 3.1� Let Ω be an open bounded connected subset of R
d, with d ∈ N

and let T > 0. Let (Dm, τm)m∈N denote a sequence of space-time discretisations
such that hDm

and τm tends to 0 as m → ∞. Let (um)m∈N be such that um ∈
Dm, τm, such that ||um||1,Dm,τm ≤ C for all m ∈ N and such that there exists
ū ∈ L2(Ω × [0, T ]) such that sequence of functions uDm,τm defined for u = um,
D = Dm and τ = τm by

uD,τ (x, t) = un+1
m , for a.e. x ∈ p, t ∈ [nτ, (n+ 1)τ

]
, ∀p ∈ M, ∀n

= 0, . . . , NT ,

satisfies uDm,τm → ū in L2(Ω× [0, T ]) as m→ ∞.

Then ū ∈ L2
(
0, T ;H1

0 (Ω)
)
. Moreover, defining Gm ∈ L∞(0, T ;L2(Ω)

)
by

Gm(x, t) = d
un+1
σ − un+1

p

dpσ
npσ

for a.e. x ∈ Dpσ and t ∈ [
nτ, (n + 1)τ

]
, then Gm ⇀ ∇ū in L2(Ω × [0, T ])d

as m→ ∞.

P r o o f. See proof of the Lemma 4.1 in [1]. �
����� 3.2 (Strong convergence of the approximate gradient norm)� Let Ω be an
open bounded connected subset of Rd, with d ∈ N and let T > 0. Let (Dm, τm)m∈N

denote a sequence of space-time discretisations such that hDm
and τm tends to 0

as m → ∞. For any φ ∈ C∞
C (Ω × [0, T ]) we define the discrete interpolation

of φ, denoted v ∈ H(D,τ), by v
n
p = φ(xp, nτ) and vnσ = φ(xσ, nτ) and we define

ND,τ by

NDm,τm(x, t) = Np(v
n+1), for a.e. x ∈ p, t ∈ [nτ, (n+ 1)τ

]
, ∀p ∈ M, ∀n

= 0, . . . , NT .
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Then NDm,τm → |∇φ| in L∞(Ω× [0, T ]) as m tends to ∞.

P r o o f. See proof of the Lemma 4.2 in [1]. �

����� 3.3 (Strong approximate of the gradient of φ)� For all φ ∈ C∞
C (Ω ×

[0, T ]) we denote by vnp = φ(xp, nτ) and vnσ = φ(xσ, nτ). We introduce the
approximation

∇n+1
pσ φ =

vn+1
σ − vn+1

p

dpσ
npσ

+∇φ(xp, (n+ 1)τ
)− (∇φ(xp, (n+ 1)τ

) · npσ)npσ, (40)

and ∇Dm,τmφ(x, t) = ∇n+1
pσ φ for x ∈ Dpσ and t ∈ [nτ, (n+ 1)τ

]
.

Then ∇Dm,τmφ→ ∇φ in L∞(Ω× [0, T ]) as m tends to ∞.

P r o o f. See proof of the Lemma 4.3 in [1]. �

As the next we prove short lemma, which will be needed later in the proof
of the convergence of the scheme.

����� 3.4� For all u, v ∈ HD:

∑
p∈M

∑
σ∈Ep

gSp
|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)
(uσ − up − vσ + vp) ≥ 0.

P r o o f. Applying the Cauchy-Schwartz inequality, we get

∑
σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)
(uσ − up − vσ + vp)

=
∑
σ∈Ep

( |σ|
dpσ

(uσ − up)
2

f(Np(u))
+

|σ|
dpσ

(vσ − vp)
2

f(Np(v))

− |σ|
dpσ

(uσ − up)(vσ − vp)

f(Np(u))
− |σ|
dpσ

(uσ − up)(vσ − vp)

f(Np(v))

)

≥ |p|Np(u)
2

f(Np(u))
+

|p|Np(v)
2

f(Np(v))
− |p|Np(u)Np(v)

f(Np(u))
− |p|Np(u)Np(v)

f(Np(v))

= |p|
(

Np(u)

f(Np(u))
− Np(v)

f(Np(v))

)(
Np(u)−Np(v)

) ≥ 0. (41)
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The last expression is non-negative thanks to the (H4). On the other hand, from
(H7), it is clear that

∑
p∈M

gSp
∑
σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)
(uσ − up − vσ + vp)

≥ νS
∑
p∈M

∑
σ∈Ep

|σ|
dpσ

(
uσ − up
f(Np(u))

− vσ − vp
f(Np(v))

)
(uσ − up − vσ + vp),

(42)

where νS is independent on the discretisation. Which concludes proof of the
lemma. �

����� 3.5 (Convergence properties)� Let Hypothesis (H) be fulfilled and for
all m ∈ N the function uDm,τm is defined by uDm,τm(x, t) = un+1

p for a.e. x ∈ p,
∀t ∈ (nτ, (n + 1)τ ], ∀p ∈ M, ∀n ∈ N. Let (Dm, τm)m∈N denotes a sequence
of space-time discretisations such that hDm

and τm tend to 0 as m → ∞, θDm

remains bounded away from 0. Then there exists a subsequence of (Dm, τm)m∈N,
again denoted (Dm, τm)m∈N, there exists a function

ū ∈ L∞(0, T ;H1
0 (Ω)

)⋂
C0
(
0, T ;L2(Ω)

)
,

such that ūt∈L2(Ω×[0, T ]), u(., 0)=u0 and uDm,τm tend to ū in L2
(
0, T ;H1

0 (Ω)
)

and there exists functions H̄ ∈ L2(Ω × [0, T ])d, w̄ ∈ L2(Ω × [0, T ]) such that
HDm,τm ⇀ H̄ weakly in L2(Ω × [0, T ])d (see (18)) and such that wDm,τm ⇀ w̄
and δuDm,τm ⇀ ūt weakly in L2(Ω×[0, T ]) as m→ ∞. Moreover, GDm,τm ⇀ ∇ū
weakly in L2(Ω× [0, T ])d and the following relations holds:

lim
m→∞

T∫
0

∫
Ω

gSDm
(x)

NDm,τm(x, t)2

f(NDm,τm(x, t))
dx dt =

T∫
0

∫
Ω

H̄(x, t) · ∇ū(x, t) dx dt. (43)

P r o o f. From the definition of F and (20) uDm,τm(·, t) is uniformly bounded
in HD for all t ∈ [0, T ]. Hence we can apply a generalisation of Arzela-Ascoli’s
theorem (see [1, Theorem 6.1]), which implies that the convergence property
uDm,τm(·, t) → ū ∈ C0

(
0, T ;L2(Ω)

)
holds in L∞(0, T ;L2(Ω)

)
. Moreover, thanks

to (9), we have ū(·, t) = u0 and, thanks to Lemma 3.1, that ū ∈ L∞(0, T ;H1
0 (Ω)

)
and that GDm,τm ⇀ ∇ū in L2(Ω× [0, T ])d.

From definition of wD,τ in (16) and from Lemma 2.2 we get that wDm,τm

remains bounded in L2(Ω×[0, T ]) for allm ∈ N. Therefore there exists a function
w̄ ∈ L2(Ω× [0, T ]) such that wDm,τm ⇀ w̄ up to a subsequence in L2(Ω× [0, T ]).

Similarly, we have δuDm,τm ⇀ ūt in L2(Ω × [0, T ]), which shows that ūt ∈
L2(Ω× [0, T ]) and HDm,τm ⇀ H̄ in L2(Ω× [0, T ])d up to a subsequence.
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Let rewrite (13) to the form

− 1

f(Np(un))

∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
σ − un+1

p

)
= |p|wn+1

p , ∀ p ∈ M, ∀n ∈ N (44)

and turn to study (43). Let φ ∈ C∞
C (Ω × [0, T ]) be given. We denote by vnp =

φ(xp, nτ) and vnσ = φ(xσ, nτ). Multiplying (44) by τvn+1
p and summing over n

and p we get T1m = T2m with

T1m =

NT∑
n=0

τ
∑
p∈M

gSDm

∑
σ∈Ep

|σ|
dpσ

un+1
σ − un+1

p

f(Np(un))

(
vn+1
σ − vn+1

p

)
(45)

and

T2m =

NT∑
n=0

τ
∑
p∈M

|p|wn+1
p vn+1

p . (46)

Using the approximation ∇Dm,τmφ of ∇φ introduced in Lemma 3.3 we obtain

T1m =

T∫
0

∫
Ω

HDm,τm · ∇Dm,τmφ dx dt. (47)

As we mentioned above HDm,τm ⇀ H̄ in L2(Ω × [0, T ])d and thanks to the
Lemma 3.3 we know that ∇Dm,τmφ→ ∇φ in L∞(Ω× [0, T ]). From (H6) we know
that function g is bounded and continuous, together with properties of convolu-
tion mentioned in (H7) it gives us that gSDm

→ gS in L∞(Ω). So we get

lim
m→∞T1m =

T∫
0

∫
Ω

H̄ · ∇φ dx dt. (48)

On the other hand, we have

lim
m→∞T2m =

T∫
0

∫
Ω

w̄φ dx dt. (49)

Hence
T∫

0

∫
Ω

H̄ · ∇φ dx dt =
T∫
0

∫
Ω

w̄φ dx dt. (50)

Since this equality holds for all φ ∈ C∞
C (Ω× [0, T ]) it also holds, thanks to the

density, for all v ∈ L2
(
0, T ;H1

0 (Ω)
)
and especially for ū

T∫
0

∫
Ω

H̄ · ∇ūdxdt =
T∫
0

∫
Ω

w̄ūdx dt. (51)
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MATÚŠ TIBENSKÝ — ANGELA HANDLOVIČOVÁ

We now multiply (44) by τun+1
p , summing over n and p and we get T3m = T4m

with

T3m =

NT∑
n=0

τ
∑
p∈M

gSp
∑
σ∈Ep

|σ|
dpσ

(un+1
σ − un+1

p )2

f(Np(un))

=

NT∑
n=0

τ
∑
p∈M

gSp |p|
Np(u

n+1)2

f(Np(un))

=

T∫
0

∫
Ω

gSDm
(x)

NDm,τm(x, t)2

f(NDm,τm(x, t))
dx dt (52)

and

T4m =

NT∑
n=0

τ
∑
p∈M

|p|wn+1
p un+1

p =

T∫
0

∫
Ω

wDm,τmuDm,τm dx dt. (53)

As we mentioned above

wDm,τm⇀w̄ ∈ L2(Ω× [0, T ])

and

uDm,τm → ū ∈ L∞(0, T ;L2(Ω)
)

so we get

lim
m→∞ T4m =

T∫
0

∫
Ω

w̄ūdx dt. (54)

(51) and (54) lead to

lim
m→∞T3m =

T∫
0

∫
Ω

w̄ū dx dt =

T∫
0

∫
Ω

H̄ · ∇ūdx dt, (55)

which completes the proof of (43). �

����� 3.6� Let Hypothesis (H) be fulfilled and for all m ∈ N the function
uDm,τm is defined by

uDm,τm(x, t) = un+1
p for a.e. x ∈ p, ∀t∈(nτ, (n+ 1)τ ], ∀p∈M, ∀n∈N.

Let (Dm, τm)m∈N denotes an extracted subsequence (the existence is provided by
Lemma 3.5). Let φ ∈ C∞

C (Ω× [0, T ]) be given. We denote by

vnp = φ(xp, nτ) and vnσ = φ(xσ, nτ)

and by
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Tm =

NT∑
n=0

τ
∑
p∈M

∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
σ − un+1

p

f(Np(un+1))

− vn+1
σ − vn+1

p

f(Np(vn+1))
(un+1

σ − un+1
p − vn+1

σ + vn+1
p )

)
. (56)

Then the following holds

lim
m→∞Tm =

T∫
0

∫
Ω

(
H̄ − gS

∇φ
f(|∇φ|)

)
(∇ū−∇φ) dx dt, (57)

and

T∫
0

∫
Ω

H̄ · ∇v dx dt =
T∫

0

∫
Ω

gS
∇ū

f(|∇ū|) · ∇v dx dt ∀v ∈ L2
(
0, T ;H1

0 (Ω)
)
. (58)

P r o o f. Remark that Tm we can rewrite in the form Tm=T3m−T5m−T6m+T7m,
where T3m is the same as in (52) in Lemma 3.5 and

T5m =

NT∑
n=0

τ
∑
p∈M

∑
σ∈Ep

gSp
|σ|
dpσ

(
un+1
σ − un+1

p

f(Np(un+1))
(vn+1

σ + vn+1
p )

)
,

T6m =

NT∑
n=0

τ
∑
p∈M

∑
σ∈Ep

gSp
|σ|
dpσ

(
vn+1
σ − vn+1

p

f(Np(un+1))
(un+1

σ + un+1
p )

)
,

T7m =

NT∑
n=0

τ
∑
p∈M

∑
σ∈Ep

gSp
|σ|
dpσ

(
vn+1
σ − vn+1

p

f(Np(un+1))
(vn+1

σ + vn+1
p )

)
.

From (H6) we know that function g is bounded and continuous, together with
properties of convolution mentioned in (H7) it gives us that gSDm

→ gS in
L∞(Ω). On the other hand, thanks to the strong convergence of the ND,τ to |∇φ|
in L∞(Ω×[0, T ]) provided in Lemma 3.2, strong convergence of the ∇D,τφ to ∇φ
in L∞(Ω× [0, T ]) and weak convergence of the HDm,τm to H̄ in L2(Ω× [0, T ])d

we have (55) and
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lim
m→∞T5m =

T∫
0

∫
Ω

H̄ · ∇φ dx dt,

lim
m→∞T6m =

T∫
0

∫
Ω

gS
∇φ

f(|∇φ|) · ∇ūdx dt,

lim
m→∞T7m =

T∫
0

∫
Ω

gS
∇φ

f(|∇φ|) · ∇φ dx dt.

Gathering these results together we get (57).

Thanks to Lemma 3.4 we know that Tm ≥ 0, which provides

T∫
0

∫
Ω

(
H̄ − gS

∇φ
f(|∇φ|)

)
(∇ū−∇φ) dx dt ≥ 0, ∀ φ ∈ C∞

C (Ω× [0, T ]). (59)

Density of the functions from C∞
C (Ω × [0, T ]) in L2

(
0, T ;H1

0 (Ω)
)
implies that

the above inequality holds for all v ∈ L2
(
0, T ;H1

0 (Ω)
)
.

Now we apply the so called Minty trick taking v = ū − λψ, with λ > 0
and ψ ∈ C∞

C (Ω × [0, T ]) and use Lebesgue’s dominated convergence theorem
to obtain

T∫
0

∫
Ω

(
H̄ − gS

∇ū
f(|∇ū|)

)
∇ψ dx dt ≥ 0, ∀ ψ ∈ C∞

C (Ω× [0, T ]). (60)

The same trick we can apply for −ψ, so actually

T∫
0

∫
Ω

(
H̄ − gS

∇ū
f(|∇ū|)

)
∇ψ dx dt = 0, ∀ ψ ∈ C∞

C (Ω× [0, T ]). (61)

As this equality could be extended for all v ∈ L2
(
0, T ;H1

0 (Ω)
)
we achieve proof

of (58). �

����� 3.7� Under the same assumptions as in Lemma 3.6 NDm,τm → |∇ū|
in L2(Ω× [0, T ]) as m→ ∞.

P r o o f. See proof of the Lemma 4.7 in [1]. �

����	�� 3.1� Let Hypothesis (H) be fulfilled and for all m ∈ N the function
uDm,τm is defined by uDm,τm(x, t) = un+1

p for a.e. x ∈ p, ∀t ∈ (nτ, (n + 1)τ ],
∀p ∈ M, ∀n ∈ N. Let (Dm, τm)m∈N denotes a sequence of space-time discretisa-
tions such that hDm

and τm tends to 0 as m → ∞, θDm
remains bounded away
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from 0. We assume that sequence (Dm, τm)m∈N denotes an extracted subsequence
(the existence is provided by Lemma 3.4).

Then the function

ū ∈ L∞(0, T ;H1
0 (Ω)

)
, such that uDm,τm → ū in L2

(
0, T ;H1

0 (Ω)
)
,

is a weak solution of (1)–(3). Moreover, if we define:

ĜD,τ (x, t) =
1

|p|
∑
σ∈Ep

(
un+1
σ − un+1

p

)
npσ, (62)

for a.e. x ∈ p, t ∈ (nτ, (n + 1)τ ], ∀p ∈ M, ∀n ∈ N, it holds that ĜDm,τm → ∇ū
in L2(Ω× [0, T ])d and ND,τ (x, t) → |∇ū| in L2(Ω× [0, T ]).

ĜD,τ define strongly convergent approximation for the gradient of the ū (recall
that GD,τ (x, t) defined in (18) is only weak convergent).

P r o o f. Following arguments presented in [1] from Lemma 3.6 we know that

T∫
0

∫
Ω

gS
∇ū

f(|∇ū|) · ∇v dx dt =
T∫

0

∫
Ω

H̄ · ∇v dx dt, ∀v ∈ L2
(
0, T ;H1

0 (Ω)
)
. (63)

On the other hand, from Lemma 3.5 we know that
T∫

0

∫
Ω

H̄ · ∇v =

T∫
0

∫
Ω

w̄v dx dt, ∀v ∈ L2
(
0, T ;H1

0 (Ω)
)
. (64)

Combination of these two equations with the definition of w in (16), which give
us that w̄ = r−ut

f(|∇u|) completes the proof that ū is a weak solution of (1)–(3).

Proof of the strong convergence of ĜD,τ to ∇ū in L2(Ω× [0, T ])d and of the
strong convergence of ND,τ to |∇ū| in L2(Ω × [0, T ]) is, compared to proof
of the [1, Theorem 4.1], without changes, so we do not repeat it here. �
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