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ABSTRACT. We consider systems of ordinary differential equations that arise in
the theory of gene regulatory networks. These systems can be of arbitrary size but
of definite structure that depends on the choice of regulatory matrices. Attractors
play the decisive role in behaviour of elements of such systems. We study the
structure of simple attractors that consist of a number of critical points for several
choices of regulatory matrices.

1. Introduction

The problem of self-regulation in large systems is very actual. For instance,
in telecommunication systems, where changes are rapid and unpredictable, one
can construct an optimal virtual network topology (VNT) by establishing a set
of lightpaths between nodes. To treat changing in time (fluctuating) traffic on
a VNT, adaptive VNT control methods, which reconfigure VNTs according to
traffic conditions on VNTs, should be invented. To develope such methods, one
way is to observe “attractor selection” in biological systems that “adapt to un-
known changes in their surrounding environments and recover their conditions.”
We consider an attractor selection that models the behaviour of gene regulatory
and metabolic reaction networks in a cell. Biological explanation of processes
and terms can be found in [1]–[4]. A comprehensive list of the related literature
and overview of methods and types of models can be found in the reviews [5]–[7].
The attractor selection idea and discussions in [8] and [9] have influenced and
motivated the choice of problems in this paper.
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It was mentioned in the literature that “nonlinear ordinary differential equa-
tions are probably the most-widespread formalism for modeling genetic regula-
tory networks” [5]. It is pointed out that an obvious drawback of this approach
is the complexity of analysis of these models due to essentially nonlinear char-
acter of regular functions and large size of systems. Various approximations of
linear and quasi-linear character are not sufficient to understand the mecha-
nism of interactions between elements of networks. As a compromise, piece-wise
linear (PWL) models were proposed and studied by the authors in [10] and
other publications. On the other hand, there are examples of direct study of
problems of this kind [11]. This paper is a definite contribution to the study of
low dimension (up to order five) systems arising in models of gene regulatory
networks.

2. Objectives of research

The dynamics of the expression level of the protein on the ith gene, xi, is
described by the differential system [2], [8]

dxi

dt
= f

(∑
wijxj − θ

)
vg − xivg − η. (1)

The xi variables represent the deterministic behavior of gene i. The deterministic
and stochastic behaviors are controlled by growth rate vg, which represents the
conditions of the metabolic reaction network. Regulations of protein expression
levels on gene i by other genes are indicated by regulatory matrix wij , the ele-
ments of which take values from the interval [−1, 1]. Parameter η represents sto-
chastic behavior. Parameter θ is a regulatory parameter which can be adjusted.
The function f is S-shaped sigmoidal function depending on a parameter μ that
controls steepness of the graph of f .

We consider the simplified system (η = 0)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1

dt
=

1

1 + e−μ1(w11x1+w12x2+···+w1nxn−θ1)
v1 − x1v1,

dx2

dt
=

1

1 + e−μ2(w21x1+w22x2+···+w2nxn−θ2)
v2 − x2v2,

. . .
dxn

dt = 1
1+e−μn(wn1x1+wn2x2+···+wnnxn−θn) vn − xnvn,

(2)

neglecting stochastic behaviour.

Parameters μi are the gain parameters of the sigmoidal functions.

Our goal is to clarify the structure of an attractive set for several choices
of regulatory matrices W. It means that we should study the nonlinear system
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of differential equations, make conclusions on the number and location of critical
points and reveal the character of critical points. On every stage of this problem
we face nontrivial tasks to deal with.

In some cases (for some choices of regulatory matrices) we can make compre-
hensive analysis but in some other cases we can treat only typical examples.

3. Uniform interrelations in a network

Interrelation of elements in a network is described by the so-called regulatory
matrix W that contains entries with values in the interval [−1, 1]. If the element
wij is positive this means that jth gene influences gene i positively by activation
it through expression of protein. The rate of influence can be measured by the
value of wij . Similarly, the negative entry means negative influence, namely,
inhibition of a gene by other one. Let us consider several cases.

First, we study system (2) under the conditions that all wij ≥ 0 or all wij ≤ 0.
So, either we have cross activation (all entries wij are non-negative) or we have
cross-inhibition (all entries wij are non-positive).

3.1. Linearized system

Suppose we have found a number of critical points for system (2). In order to
detect their character, one should follow the standard scheme and consider the
linearized system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′
1 = −v1u1 + g1(w11u1 + w12u2 + · · ·+ w1nun),

u′
2 = −v2u2 + g2(w21u1 + w22u2 + · · ·+ w2nun),

. . .

u′
n = −vnun + gn(wn1u1 + wn2u2 − · · ·+ wnnun),

(3)

where

gi = viμi
e−μi(wi1x1+···+winxn−θi)

[1 + e−μi(wi1x1+···+winxn−θi)]2
, (4)

i = 1, 2, . . . , n, (x1, . . . , xn) is a critical point. Notice that all gi are positive.

The coefficient matrix A of the system (3) is

A =

⎛
⎜⎜⎝

−v1 + w11g1 w12g1 . . . w1ng1
w21g2 −v2 + w22g2 . . . w2ng2
. . .

wn1gn wn2gn . . . −vn + wnngn

⎞
⎟⎟⎠ . (5)
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3.2. The case n = 2

Let n = 2. The system (2) takes the form⎧⎪⎨
⎪⎩
x′
1 =

1

1 + e−μ1(w11x1+w12x2−θ1)
v1 − v1x1,

x′
2 =

1

1 + e−μ2(w21x1+w22x2−θ2)
v2 − v2x2.

(6)

The regulatory matrix is

W =

(
w11 w12

w21 w22

)
, (7)

where all entries are either non-negative or non-positive. The characteristic poly-
nomial for this case is

det|A− λI| = λ2 + λ(v1 + v2 − g1w11 − g2w22)

+ (v1v2 − g1v2w11 − g2v1w22

+ g1g2w12w21 − g1g2w11w22) = 0, (8)

where A is the coefficient matrix for the linearized system. Suppose that elements
w12 and w21 of W are not zeros. The discriminant

D = (v1 − v2 − g1w11 + g2w22)
2 + 4g1g2w12w21 (9)

of the quadratic equation (8) is then positive. The characteristic roots are

λ1 = 1
2 (−v1 − v2 + g1w11 + g2w22 −

√
D),

λ2 = 1
2 (−v1 − v2 + g1w11 + g2w22 +

√
D).

(10)

The character of critical points depends on signs of λ1 and λ2.

Since v1 and v2 are positive, one has that for w11 ≤ 0 and w22 ≤ 0 the first
eigenvalue λ1 is negative. The second eigenvalue λ2 can be negative, zero or
positive. Therefore, the following proposition is true.

����������� 3.1	 In the case w11 ≤ 0 and w22 ≤ 0 any critical point of the
system (6) is either stable node or a degenerate point (with λ1 < 0 and λ2 = 0)
or a saddle point.

Since D in (9) is positive both roots of the characteristic equation (8) are real
and the following is true.

����������� 3.2	 No critical points of the type focus are possible for sys-
tem (6).

Critical points of focus type can appear only if w12<0<w21 or w12>0>w21

and the inequality (11) holds

(v1 − v2 − g1w11 + g2w22)
2 + 4g1g2w12w21 < 0. (11)
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����������� 3.3	 The necessary condition for the focus in system (6) is that
w12 and w21 are of opposite signs.

This condition does not fulfill under our assumptions about wij in this section.

4. Inhibition-activation

We consider the case of the regulatory matrix

W =

⎛
⎜⎜⎜⎜⎝

0 −1 −1 · · · −1
1 0 −1 · · · −1
. . .
1 1 · · · 0 −1
1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎠ (12)

and μ1 = μ2 = · · · = μn, θ1 = θ2 = · · · = θn, vi = 1.

System (2) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 =

1

1 + e−μ(−x2−x3+···−xn−1−xn−θ)
− x1,

x′
2 =

1

1 + e−μ(x1−x3+···−xn−1−xn−θ)
− x2,

. . .

x′
n−1 =

1

1 + e−μ(x1+x2+···+xn−2−xn−θ)
− xn−1,

x′
n =

1

1 + e−μ(x1+x2+···+xn−2+xn−1−θ)
− xn.

(13)

4.1. Critical points

Critical points of system (13) are to be determined from⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 =
1

1 + e−μ(−x2−x3−···−xn−1−xn−θ)
,

x2 =
1

1 + e−μ(x1−x3−···−xn−1−xn−θ)
,

. . .

xn−1 =
1

1 + e−μ(x1+x2+···+xn−2−xn−1−θ)
,

xn =
1

1 + e−μ(x1+x2+···+xn−2+xn−1−θ)
.

(14)

Since the right-hand sides in (14) are positive but less than unity, all critical
points locate in the n-dimensional unit cube (0; 1) × (0; 1) × (0; 1) · · · × (0; 1).
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Moreover, since

−x2 − x3 − · · · − xn−1 − xn < x1 − x3 − · · · − xn−1 − xn

< x1 + x2 − x4 − · · · − xn−1 − xn < · · · < x1 + x2 + · · ·+ xn−2 + xn−1

it follows from (14) that 0 < x1 < x2 < · · · < xn < 1.


���
 4.1	 For n = 2, the system (14) has a unique positive solution.

P r o o f. For 2D system only. Indeed, the system (14) is⎧⎪⎨
⎪⎩
x1 =

1

1 + e−μ(−x2−θ)
,

x2 =
1

1 + e−μ(x1−θ)
.

(15)

The function x1 = 1
1+e−μ(−x2−θ) is decreasing in the interval [0, 1]. On the other

hand, the second equation in (15) can be rewritten as

x1 = θ − 1

μ
log

( 1

x2
− 1

)
. (16)

This function monotonically increases from −∞ to +∞ in the interval (0, 1).
The graphs of both functions intersect only once. �

The above assertion seemingly is valid for n-dimensional case also. All calcu-
lations being made confirm this.

4.2. Location of a critical point

Suppose (x1, x2, . . . , xn) is a critical point for the system (13), where 0 <
x1 < x2 < · · · < xn < 1. Then, due to (14), for any pair of consecutive xi and
xi+1 one has {

xi = 1

1+e−μ(−xi+1+X−θ) ,

xi+1 = 1
1+e−μ( xi+X−θ) ,

(17)

where X means the remaining variables the same in both lines,

X =

i−1∑
k=1

xk −
n∑

m=i+2

xm. (18)

It follows from (17) that{
e−μ(−xi+1+X−θ) = 1

xi
− 1,

e−μ( xi+X−θ) = 1
xi+1

− 1.
(19)
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⎧⎨
⎩

μ(xi+1 +X + θ) = ln
(

1
xi

− 1
)
,

μ(−xi +X + θ) = ln
(

1
xi+1

− 1
)
.

(20)

Eliminating X and θ from (20) one gets that

μ =
1

xi+1 + xi

[
ln
( 1

xi
− 1

)
− ln

( 1

xi+1
− 1

)]
. (21)

Therefore, there is a recurrent relation between coordinates of a critical point.

����������� 4.1	 For any critical point (x1, x2, . . . , xn) of the system (13) the
following is true:

1

xi+1 + xi

[
ln
( 1

xi
− 1

)
− ln

( 1

xi+1
− 1

)]
=

1

xi + xi−1

[
ln
( 1

xi−1
− 1

)
− ln

( 1

xi
− 1

)]
, i = 2, . . . , n− 1. (22)

4.3. Linearized system

To get the character of possible critical points, consider the linearized system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
1 = −u1 − μe−μ(−x2−x3−···−xn−θ)

[1 + e−μ(−x2−x3−···−xn−θ)]2
(u2 + u3 + · · ·+ un),

u′
2 = −u2 − μe−μ(x1−x3−···−xn−θ)

[1 + e−μ(x1−x3−···−xn−θ)]2
(−u1 + u3 + · · ·+ un),

. . .

u′
n = −un − μe−μ(x1+x2−···+xn−1−θ)

[1 + e−μ(x1+x2−···+xn−1−θ)]2
(−u1 − u3 − · · · − un−1).

(23)

We can simplify (23) by introducing

k1 =
e−μ(−x2−x3−···−xn−θ)

[1 + e−μ(−x2−x3−···−xn−θ)]2
, (24)

k2 =
e−μ(x1−x3−···−xn−θ)

[1 + e−μ(x1−x3−···−xn−θ)]2
, (25)

. . .

kn =
e−μ(x1+x2−···+xn−1−θ)

[1 + e−μ(x1+x2−···+xn−1−θ)]2
. (26)

This notation is valid onward till the end of the paper. Values of ki are always
positive and less than unity.
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The linearized system can by written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′
1 = −u1 − μk1(u2 + u3 + · · ·+ un),

u′
2 = −u2 − μk2(−u1 + u3 + · · ·+ un),

· · ·
u′
n = −un − μkn(−u1 − u2 − · · · − un−1).

(27)

The coefficient matrix A of the system (27) is

A =

⎛
⎜⎜⎝

−1 −μk1 −μk1 · · · −μk1

μk2 −1 −μk2 · · · −μk2
· · ·
μkn μkn · · · −μkn −1

⎞
⎟⎟⎠ (28)

and the equation for the characteristic values is

det(A− λI) =

∣∣∣∣∣∣∣∣
−1− λ −μk1 −μk1 · · · −μk1
μk2 −1− λ −μk2 · · · −μk2
· · ·
μkn μkn · · · −μkn −1− λ

∣∣∣∣∣∣∣∣
= 0. (29)

4.4. Low-dimensional cases

4.4.1. Two-dimensional system

Consider the case

W =

(
0 −1
1 0

)
. (30)

The system (2) then is ⎧⎪⎨
⎪⎩
x′
1 =

1

1 + e−μ(−x2−θ)
− x1,

x′
2 =

1

1 + e−μ( x1−θ)
− x2.

(31)

The linearized system can by written as{
u′
1 = −u1 − μk1u2,

u′
2 = μk2u1 − u2

(32)

with the coefficient matrix

A =

(−1 −μk1
μk2 −1

)
. (33)
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The roots of the characteristic equation

det|A− λI| = λ2 + 2λ+ μ2k1k2 + 1 = 0 (34)

are {
λ1 = −1− μ

√
k1k2 i,

λ2 = −1 + μ
√
k1k2 i,

(35)

where i =
√−1. It appears that only one type of critical point is possible for the

2D system. Since λ1,2 are complex numbers, the type of a critical point is stable
focus [12].


���
 4.2	 Critical points of the system (31), if any, are of the type stable
focus.

4.4.2. Three-dimensional system

Let the regulatory matrix be

W =

⎛
⎝ 0 −1 −1

1 0 −1
1 1 0

⎞
⎠ . (36)

The linearized system now is⎧⎪⎪⎨
⎪⎪⎩
u′
1 = −u1 − μk1u2 − μk1u3,

u′
2 = μk2u1 − u2 − μk2u3,

u′
3 = μk3u1 + μk3u2 − u3

(37)

with the coefficient matrix

A =

⎛
⎝ −1 −μk1 −μk1

μk2 −1 −μk2
μk3 μk3 −1

⎞
⎠ . (38)

The characteristic equation

det|A− λI| = −λ3 − 3λ2 − μ2(k1k2 + k1k3 + k2k3)(λ+ 1)− 3λ− 1 = 0 (39)

has the roots ⎧⎪⎨
⎪⎩
λ1 = −1,

λ2 = −1− μ
√
k1k2 + k1k3 + k2k3 i,

λ3 = −1 + μ
√
k1k2 + k1k3 + k2k3 i.

(40)


���
 4.3	 Any critical point of the 3D system (13) with the regulatory matrix
(36) is a sink ([13, p.102]): there is 2D-subspace with a stable focus and attraction
in the remaining dimension.
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Consider the example illustrating (and confirming) our analysis.

Figure 1. The phase portrait for 3D system (13), µ = 1, Θ = 0.5.

Figure 2. Projections of the phase space for 3D system (13) on the 2D
coordinate planes.

For parameters μ = 1 and θ = 0.5, the critical point is (0.211336, 0.311244,
0.505645). The values of λ for this critical point are⎧⎪⎨

⎪⎩
λ1 = −1,

λ2 = −1− 0.36191 i,

λ3 = −1 + 0.36191 i.

(41)

In this example, the 3D system (13) has one critical point (stable focus in
2D-subspace and attraction in the third dimension).

4.4.3. Four-dimensional system

Consider the regulatory matrix

W =

⎛
⎜⎜⎝

0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0

⎞
⎟⎟⎠ . (42)
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The linearized system is⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′
1 = −u1 − μk1u2 − μk1u3 − μk1u4,

u′
2 = μk2u1 − u2 − μk2u3 − μk2u4,

u′
3 = μk3u1 + μk3u2 − u3 − μk3u4,

u′
4 = μk4u1 + μk4u2 + μk4u3 − u4

(43)

with the coefficient matrix

A =

⎛
⎜⎜⎝

−1− λ −μk1 −μk1 −μk1
μk2 −1− λ −μk2 −μk2

μk3 μk3 −1− λ −μk3

μk4 μk4 −μk4 −1− λ

⎞
⎟⎟⎠ . (44)

The characteristic equation is

det|A− λI| = λ4 + 4λ3

+ μ2(k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4)λ
2 + 6λ2

+ 2μ2(k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4)λ+ 4λ

+ μ2(k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4) + 1 = 0. (45)

Let

Sk1 = k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4, (46)

then the above equation can be written in a simplified form

det|A− λI| = λ4 + 4λ3 + μ2(Sk1)λ
2 + 6λ2

+ 2μ2(Sk1)λ+ 4λ+ μ2(Sk1) + 1 + k1k2k3k4μ
4 = 0. (47)

After rearrangement of terms we get

(λ+ 1)4 + μ2(Sk1)(λ+ 1)2 + k1k2k3k4μ
4 = 0. (48)

Denote

G4d =
√
S2
k1 − 4k1k2k3k4 (49)

and notice that S2
k1 − 4k1k2k3k4 > 0. The roots of the characteristic equation

(48) are then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = −1− μ√
2

√
Sk1 +G4d i,

λ2 = −1 +
μ√
2

√
Sk1 +G4d i,

λ3 = −1− μ√
2

√
Sk1 −G4d i,

λ4 = −1 +
μ√
2

√
Sk1 −G4d i.

(50)
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���
 4.4	 Any critical point of the 4D system (13) is a sink: there are two
2D-subspaces with a stable focus.

4.4.4. Five-dimensional system

Consider the 5D differential system with the regulatory matrix

W =

⎛
⎜⎜⎜⎜⎝

0 −1 −1 −1 −1
1 0 −1 −1 −1
1 1 0 −1 −1
1 1 1 0 −1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎠ . (51)

Introduce the notation

Sg1 = k1k2 + k1k3 + k1k4 + k1k5+

k2k3 + k2k4 + k2k5 + k3k4 + k3k5 + k4k5
(52)

and

Sg2 = k1k2k3k4 + k1k2k3k5 + k1k2k4k5 + k1k3k4k5 + k2k3k4k5. (53)

The characteristic equation is now

det|A− λI| = λ5 + 5λ4 + μ2(Sg1)λ
3 + 10λ3+

3μ2(Sg1)λ
2 + 10λ2 + μ4(Sg2)λ+ 3μ2(Sg1)λ+

5λ+ μ4(Sg2) + μ2(Sg1) + 1 = 0. (54)

After rearrangement of terms one obtains

(λ+ 1)5 + μ2(Sg1)(λ+ 1)3 + μ4(Sg2)(λ+ 1) =

(λ+ 1)
[
(λ+ 1)4 + μ2(Sg1)(λ+ 1)2 + μ4(Sg2)

]
= 0. (55)

Denote

G5d =
√

S2
g1 − 4Sg2 (56)

and notice that

S2
g1 − 4Sg2 = (k1k2 − k2k4)

2 + (k1k3 − k2k5)
2+

(k1k5 − k2k4)
2 + (k1k4 − k3k5)

2 + (k2k3 − k4k5)
2 > 0.
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The characteristic values for the linearized system are then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = −1,

λ1 = −1− μ√
2

√
Sg1 +G5d i,

λ2 = −1 +
μ√
2

√
Sg1 +G5d i,

λ3 = −1− μ√
2

√
Sg1 −G5d i,

λ4 = −1 +
μ√
2

√
Sg1 −G5d i.

(57)


���
 4.5	 Any critical point of the 5D system is a sink: there are two 2D-
-subspaces with a stable focus and attraction in the remaining dimension.

5. Conclusions

The structure of attractors for two-dimensional systems with uniform (non-
-negative or non-positive elements) regulatory matrices is simple and they
(attractors) cannot contain any critical points of the type focus.

In low-dimension inhibition-activation systems, only one critical point was
detected. For n-dimensional systems with n even, the characteristic equation for
a single critical point has pairs of conjugate complex eigenvalues λ and the real
parts of all eigenvalues are equal to −1. Therefore, a critical point is the stable
focus in all 2D-subspaces.

For n odd, all λ-s except one are pairs of complex values with real parts
equal to −1. The remaining λ is −1. A critical point is the stable focus in all
2D-subspaces and attracted in the remaining dimension.

����������������	 The authors wish to thank the referee for carefully read-
ing the paper and even checking computations.
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