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AN OPTIMAL CONTROL PROBLEM
FOR A VISCOELASTIC PLATE
IN A DYNAMIC CONTACT WITH AN OBSTACLE

Icor BoCK — MARIA KECKEMETYOVA

FEI STU, Bratislava, SLOVAKIA

ABSTRACT. We deal with an optimal control problem governed by a nonlinear
hyperbolic initial-boundary value problem describing the perpendicular vibra-
tions of a simply supported anisotropic viscoelastic plate against a rigid obstacle.
A variable thickness of a plate plays the role of a control variable. We verify the
existence of an optimal thickness function.

1. Introduction

Shape design optimization problems belong to frequently solved problems
with many engineering applications. We deal here with an optimal design prob-
lem for a viscoelastic anisotropic plate vibrating against a rigid foundation.
A variable thickness of a plate plays the role of a control variable. The con-
sidered initial-boundary value state problem represents one of the most natural
engineering problem not frequently solved because of the hyperbolic character
of the presented evolutional variational inequality. We deal here with a plate
made of a short memory viscoelastic material. It characterizes constructions
made of concrete for example [5]. The dynamic contact for a viscoelastic bridge
in a contact with a fixed road has been solved in [2]. The similar problems for
beams in a boundary and inner contact are investigated in [3] and [4]. Due to the
contact between a bottom of the plate and the rigid obstacle the state problem
for the dynamics of the plate has the form of the initial-boundary value problem
for the hyperbolic variational inequality. We substitute the variational inequality
firstly by the penalized nonlinear equation and solve it by the Galerkin method
in the same way as in [I], where the problem for a viscoelastic von Karmén
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plate vibrating against a rigid obstacle has been solved. The state variational
inequality in its weak form is formulated without an acceleration term using the
integration by parts in the time domain. The optimal control problem is formu-
lated for solutions of the state problem achieved using the penalization method.
It enables to find the optimal thickness as a limit of a sequence of thicknesses
solving penalized control problems.

2. Solving the state problem

2.1. Setting of the state problem

We consider an anisotropic short memory viscoelastic plate with the middle
surface 2 C R? and its Lipschitz continuous boundary 942. The variable thick-
ness of the plate is expressed by a positive function = +— e(x), x = (z1,22) € £2,
the positive constant p is the material density, A;jre, Bijre are the symmetric
and positively definite tensors expressing the viscoelastic and elastic proper-
ties of the material respectively. The plate is simply supported on its boundary.
Let F: (0,T] x 2 — R be a perpendicular load per a square unit acting
on the plate, w: 02 — R the boundary position and ug, vg: {2 — R be the
initial displacement and velocity of the middle surface 2. We set

a = 6_1p’ Qijre = %Aijkb bijre = %Bijkfa f= %
the new mechanical and material characteristics. The rigid obstacle is repre-
sented by a function @: 2 — R and the unknown contact force between the
plate and the obstacle by an unknown function g.
The vertical displacement u: (0, 7] x {2 — R is then a solution of the following
hyperbolic initial-boundary value problem

e(x)uy —adiv (e3grad utt) + [eg(x)(aijkgut,mimj + bijkgumimj)]

=f+g in (0,7T] x 5?” (1)
0§gj_<u—%e—d5>20 in (0,77 x £2, (2)
u(t,x) = wt,z), M(u)(t,z) =0 in (0,T] x 812 (3)
uw(0,z) = up(z), u(0,2) = vo(x) in {2, (4)

with the bending moment
M (u) = € () (aijritit,z,m, + bijritioz, )NEne -

The Einstein summation convention is employed above and further.
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We introduce the Hilbert spaces
H=L1,(2), H"(2)={yeH:DyeH, |a|<k}, keN

with the standard inner products (-,-), (-,-)x and the norms |- |o, || - ||x-
Further we set

Hy(92) ={y € H'(2): y(€) =0, £ € 912 (in the sense of traces) }
and the Hilbert space
V = H*(2)N H(12)

with the inner product and the norm

((y7 Z)) :/yﬁcﬂﬂj (x)zmimj (.’IJ) d.’IJ, HyH = ((yvy))1/27 Y,z € V
Q
We denote by V* the dual space of linear bounded functionals over V with

duality pairing (F,y). = F(y), F € V* y € V. It is a Banach space with a norm
| - |«- The spaces V, H, V* Hg(£2) fulfil the compact embedings

Veses H e V5V s HY ().

We set I = (0,7), @ = I x £2. For a Banach space X we denote by L,(I;X)
the Banach space of all functions y: I + X such that |ly(-)[|x € L,(0,T),
p > 1, by Lo (I; X) the space of essentially bounded functions with values in X,
by C(I; X) the space of continuous functions y: I + X. For k € N we denote
by C*(I; X) the spaces of k-times continuously differentiable functions defined
on I with values in X. If X is a Hilbert space, we set

_ dk
HMI; X) = {v e C*U(I; X): F: € LQ(I;X)}

the Hilbert spaces with the inner products

(u, v) gre (1, %) :/ {(u,v)x +zk:(uj,vj)x] dt, keN.
T

j=1
We denote by ©, ¥ the first and the second order time derivative of a function
v: I — X and continue with the following assumptions.
The symmetric and positively definite fourth-order tensors a;;xe, bijxe fulfil
Qijke = Akeij = Qjike,  bijre = breij = bjike,

oy > 0, Qp E45E45 S A5kt EijERL S a1 €45E45 for all {Eij} S Ri;ﬁw

Bo >0, Boeijeij < bijrecijere < Bieijcij for all {e;} € R§;3L7 (5)
where the Einstein summation convention is employed and R?? is the set of all
second-order symmetric tensors.
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The plate has the variable thickness

e€Eqq:={e€H*(12):0 < emin < () <emax for all z € 2, ||| gz(n) <é}.
(6)
We assume the right-hand side f € Ly(Q), the obstacle ® € C({2) and boundary
and initial functions fulfilling:

we H(I; HY(2)) n H (I; H*(2)),

w(t,z) > %emax +&(x) forall ze€Q, (7)
uo(z) = w(0,z), x€2; wye HY(Q). (8)

For u,y € H?(£2) we define the following bilinear forms
A: (u,y) = aijretiijyre,  B: (u,y) = bijretijyre 9)
and introduce a shifted cone
%(e)::{y € Ly(L;V)+w:
y € Ly(I; HI(Q))7 y(t,x) > %e(x) + &(x) for all (t,z) € Q}. (10)

Applying the integration by parts both with respect to the time and plane
variables we obtain the following weak (variational) formulation of the
Problem (I))-#]). We remark that the acceleration term i does not appear there.

Problem (#(e)). To find a function u € . (e) such that @ € L (I; H*(£2)),
u(0,z) = ug(x), x € §2; and the variational inequality

/(e3 (A(it,y — u) + Blu,y — u) — aVi - V(i — @) — ey — u)) da dt

Q
+ / (a€®Vi- Yy — ) + eily —w))(T,.) da
2

>/(a63Vvo -V (y(0,) — uo) + evo (y(0,-) — uo)> dx

(9}
—I—/f(y—u) dz dt (11)
Q

is satisfied for any y € J# (e).
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2.2. Formulation and solving of the penalized problem

For any 7 > 0 we define the penalized problem approximating the original
problem Z(e).

Penalized Problem (#,(e)). To find u € Ly(I; V) + w such that

u € Ly(I; H*(R2)), it € Lo(I; H'(£2))
and

/(eﬂz +e*(aVii- Vz+ A(u, z) + B(u, z))) dzdt =

R SR

Q

zdxdt forall ze Lo(I;V), (12)

’LL(O,.’IJ) = ’LL()(.’IJ), ’LL(O,.’IJ) = ’Uo(.'IJ) z €2 (13)
with w™ = max{0, —w}, w: 2 +— R.

We verify the existence and the uniqueness of a solution of the penalized
problem 2, (e) together with a prioriestimates inevitable for solving the original
state Problem Z(e).

THEOREM 2.1. For any e € Fqq there exists a unique solution u = u, of the

problem ([I2)), (I3)).

Proof. Let w; € V; i € N be a basis of V. We construct the Galerkin approxi-
mation u,, of a solution in a form

um(t):Zai(t)wi—i—w, a;(t) € R, i1=1,...,m, meN (14)
i=1

given by a solution of the approximated initial value problem for a system of
second-order ordinary differential equations

/[e(m)umwl + €°(2) (aViiy, - Vw; + A, i) + B(um, wz))] dz =
Q

! ln_l (um ~ 5ele) - ¢<x>)_+ 0

U (0) = Uom, Um(0) = Vom; Uom — o in H2(£2), vom — vo in H'(2). (16)

A solution originally existing only locally can be prolonged to the whole time
interval I with the n-independent a priori estimates

w; dax, i=1,...,m; (15)

lumllor,m2(2)) + 1mll o, m2(2)) + mlled,mr o) <

Cl (a07 aq, 507 617 €min; €max) é7 Ugp, Vo, W, f) (17)
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We have directly from the Galerkin system the n-dependent estimate

iim || Lo r:m1 (2)) < C2(0, @1, Bos B1s €min, €max;, €, Lo, Vo, W, f,1)- (18)

We proceed with the convergence of the Galerkin approximation. Applying the
estimates ('), (I8), the Aubin-Lions compact imbedding theorem [10], Sobolev
imbedding theorems and the interpolation theorems in Sobolev spaces [7]
we obtain for a subsequence of {u,,} (denoted again by {u,,}) a function

ue C(I,V+w) with @€ Ly(I,H*(2)), i€ Ly(I,H (1))
and the convergences
iim — i in Lo (I, H'(R2)),
U — 0 in Lo(I; V),
C(I; H'(%2)), (19)
Um —u in C(I; H*(£2)).

Um — U 1

=

Let p € N, y, = Y1 ¢i(t)wi, ¢; € C3°(0,T), i =1,..., u. The convergence
process (I9) implies

/[e iy, + € (aVil -Vy, + A4, y,) + B(u, yﬂ))} dx dt =

2 / ln_l <u Lo - gs(m)l £(t)
Q

Functions {y,} form a dense subset of the set Ly(/; V') and hence a function u
fulfils the identity (I2).

The approximated Galerkin initial conditions (I6) imply the initial condi-
tions ([I3)).

The proof of the uniqueness can be performed in a standard way using the
Gronwall lemma. O

Yp da dt.

2.3. Solving the state problem

In order to solve the original state problem Z?(e) we perform the conver-
gence of {u,} as n — 0+. We need the n-independent estimates of u,, and its
derivatives.

The estimates (7)), (I8) and the convergences (I9) imply the estimates

inll om0y + Vgl Ly, m2(2) + lwnllor, m20)
< Cl(a070175076176min76maxvé7u077}07w7f) for all e € Fuq, (20)

[tin || Lo(1;10 (2))
< 02(0407@17507617€min7 6maxvé7u077}07w7 fv 77) for all e € Euq. (21)
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We express a penalized variational formulation in a form

/(63 (A(ty,y) + Bluy, y) — aViy, - V) — euny) dz dt

—I—/ (ae®Vi, - Vy + eiyy) (T, ) dx
10}

= (a Vg - Vy( 7')+€U0y(07')) dx
2

+ ( < ——e— >+f>ydxdt forall ye %, (22)
Q

v = {y € Ly(I;V); g € Lo(I; H&(Q))}.

Using the assumptions (2.I) we obtain after inserting y = w — u,, in (22)) the
crucial L; estimate of the penalty term

o7t (= 5o ) |
g K 2 4 L1(Q)

< CS(aOa aq, 507 ﬁla €min; €max, é) Uop, Vo, W, f) (23)

After coming back to a weak penalty formulation with i we have a dual estimate
of accelerations

| — adiv(e®Viiy) + eyl £, 7.v+
< 04(aOa aq, 507 ﬁla €min; €max, é) Uop, Vo, W, f) (24)

We use further the following generalization due to [9] of Aubin’s-Lion’s com-
pactness theorem mentioned and used above:

LEMMA 2.2. Let Xg —— X < X; be Banach spaces, the first reflexive and
separable, 1 <p < oo, 1 < q<oo. Then

W = {U: v e Ly,(I; Xo), 0 € Lq(I;Xl)} —— L,([; X).

We apply this compactness result with the spaces Xo = L2(£2), X = H~1($2),
X1 =V"* The sequence {—a div(e3V1,)+et, } is then compact in Ly (1; H~1(12))
and we obtain the important strong convergence of the sequence {ux} to ,
u € J (e); for a subsequence

{u} of the sequence {u,, }, m —0+.
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Applying, simultaneously, the estimate (20) we have the convergences
U =0 in Ly (I; H'(£2)),
up =14 in Ly (I; H*(£2)), (25)
up —*u  in Lo (I; H*(£2)),
up —u in C (I;HY(R2)).
After inserting the test function z = y — ug, y €  (e) in the penalized equa-
tion (II) we perform the convergence (25]) in the same way as in [I] implying
that the limit w € ¢ (e) is a solution of the State problem together with the

estimates not dependent on the variable thickness e and the existence theorem
follows.

THEOREM 2.3. For any e € E,q there exists a solution u = u(e) € J# (e) of the
Problem P (e) fulfilling the estimate

(e Lo (1,11 (2)) + W) o1, 12 (02)) + lule) oz, 1220

S Cl<0407al)ﬁoaﬁlaeminaemaxaéau()avOaw)f) fOT all ee€ Ead~ (26)
Remark 2.4. Applying the estimate ([24) and the Alaoglu w*-compatness the-
orem [6] we obtain the weak existence of the acceleration term

[—adiv(e’Vu) + eu] € (Loo(I; )"
fulfilling the estimate
. 3 .
| [~adiv(e*Vu) + eu] ||(LOO(I;V))*
< 04(a07alaﬂOvﬁla6min76maxaévu07’l}07’w7 f) for all e € Fuq. (27)

3. Optimal control problem

The state problem Z(e), e € E,q is in general not uniquely solved, more-
over there is a lack of compactness in any bounded set of solutions due to not
enough regular acceleration term (see Remark 2.4). Hence, we formulate the
optimal design problem with states restricted of solutions of Z?(e) achieved as
limits of solutions of penalized problems &, (e), n > 0. We obtain a solution
of the corresponding optimal control as the limit of the sequence of solutions
of penalized control problems.

We consider a continuous cost functional

(e,u) = J(e,u) € RT, (e,u) € O(2) x C([—1lex]I; H'(£2)).
We recall
E.g= {e € H2(Q): 0 < emin < e() < emax for all z € £2, lellm2(0) < é}

the set of admissible thicknesses compact in the space C(£2).
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We start with a penalized control problem for any n > 0. Let us set
() = J (e uy(e)), € € Eqa, (28)
where u,(e) is a unique solution of the penalized problem 2, (e).
Optimal Control Problem (£, ). To find el € Eqq such that

Hnlel) < Fyle)  forall e€ Euq. (29)

THEOREM 3.1. There exists a solution of the Optimal Control Problem 2] .

Proof. Let {e,}, n € N; be a minimizing sequence for the cost functional #,,

ie.,
lim 7, {e,} = inf _Z,(e)

n—o00 ecFEq.q

There exists e € E,q and a subsequence denoted again by (e, ) such that
en — €lin H2(02), e, — e in C(92). (30)

The corresponding sequence {uy(en)} = {up} contains due to the estimates
(20), 1) the subsequence again denoted by {u;} and fulfilling

up = u! in H(I; H*(2)),
w—iil in Ly(I; H'(12)), (31)
ur —» ! in CYI,HY(02)).

i

3

The previous convergences and the formulation of the Penalized Problems
Py (en) imply that ul = u,(el). The continuity property of the cost functional
J and the formula (28) then imply

nlel) = min Hn(e) (32)

and the thickness e} is a solution of the Optimal Control Problem 2" O

opt*

We have verified in the Theorem 2.3 the existence of a solution of the state
problem Z(e) using the penalization method. In order to apply this method also
in solving the optimal design problem with solutions of #(e) in the role of the
states we consider the sequence of problems &, (ex) with n, — 0+, e, — e
in H2(£2). It can be verified in the same way as in the previous section with
fixed e the existence of a solution u = u(e) of the Problem Z(e) fulfilling the
convergence
—4 in Ly (I; H'(92)),

—4 in L2(I-H2 2)), (33)
—*u in Leo(I; H*(92)),
—u in C (I;H'(9)).

U, (€x)
U, (€x)

(ex) )
Uy (€r) )
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We set
Uada(e) = {u € A (e) : uis a solution of 2(e)
fulfilling the convergence [33]) with e, — e in H 2(9)}

and formulate

Optimal Control Problem (£,,;). To find a couple (e, u,) such that
J(ex,us) < J(e,u) for all (e,u) € Eqq X Ugal(e).

THEOREM 3.2. There exists a solution of the Optimal Control Problem ZP,p;.

Proof. Using solutions of the penalized optimal control problems @}]pt we
obtain applying the approach from [8] the existence of the optimal thickness
function e, .

Let e € Eyq be arbitrary and u € U,q4(e). There exist sequences i, — 0+, e, — e
and uy, (e) such that the convergence (B3) holds. Simultaneously, there exists
a subsequence of {e!*} (denoted again by {el*}) of solutions of the penalized

problems @;’I’jt and the element e, such that

e — e, in H2(02), €™ — e, in C(Q).
Applying the minimum result (29), the continuity property of the functional J
we obtain for u, € Ugq(e,) the relations

J(ew,un) = Hm J (eI, up, (]¥))
< lim J (e, (¢)
= J(e,u) for all (e ,u) € Eqq X Uga(e)

and hence the couple (e, u,) is a solution of the Optimal Control Problem Z,,;.

O

Remark 3.3. There is an open question to verify the existence of an optimal
thickness without any additional conditions with respect to the set of solutions
of state problems. We mentioned in Remark 2.4 the existence of the acceleration
term from the dual space (LOO(I ; V))* In contrast to the proof of the existence
of the state u € J# (e) in Theorem 2.3 we cannot apply Lemma 2.2 using a priori
estimates in the space Ly (I; V™).
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