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CONNECTING THE COMPLEXITY
OF MQ- AND CODE-BASED CRYPTOSYSTEMS

PAvOL ZAJAC

ABSTRACT. We study the connection between the MQ problem and the de-
coding problem, through the intermediate MRHS representation. The main goal
of this study is to explicitly bound the complexity of solving MQ systems with
decoding tools. The main observation is that although the MQ problem over
GF(2) can be efficiently transformed to syndrome decoding, the existing general
decoding methods are not suitable to solve the system as efficiently as expected
from the MQ representation.

1. Introduction

Both multivariate and code based post-quantum systems (over Zs) rely on the
difficulty of particular NP-hard problems. It is known theoretically that there are
polynomial-time reductions between NP-hard problems. However, it is not clear
how the instances of the problem used for different types of cryptosystems are
related in practice, and what effect this has on security /complexity trade-offs of
various types of systems.

The main goal of this article is to stimulate a research that will provide explicit
reductions and direct comparison of different types of post-quantum systems in
terms of the estimated security. We are able to provide an explicit polynomial
transformation between the MQ problem and the decoding problem. We can
do this over Z, using a process involving MRHS representation of a system of
polynomial equations, and a transformation of the MRHS system to a decoding
problem from [14[16].

Unfortunately, the basic upper bound of the estimated decoding complexity is
0(220”2 ), with ¢ = 1/20, which is not very tight. However, it is comparative with
some proposed parameters of code-based schemes (see section 22 for discussion),
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albeit with special code parameters not typically used in code based systems.
A tighter complexity bound is given by O(2°), where p is a multiplicative
complexity of the transformation represented by the MQ system. This result is
theoretical, as it requires the attacker to actually find a representation with the
minimal number of products (leading to a MinRank problem).

It remains an open question, whether we can provide a similar transforma-
tion over general fields. Furthermore, it can also be interesting to find an oppo-
site polynomial transformation from the decoding problem back to a compact
MQ instance.

2. Notation and basic definitions

Symbol F denotes a finite field, and Z, denotes finite field GF'(2). All vectors
in this article are row vectors. Hamming weight of vector v € F", denoted by
wg (v) is the number of non-zero coordinates of v. By dg(z,y) we understand
Hamming distance of vectors z,y (Hamming weight of their difference).

Matrices are typed in boldface. Matrix I,, is the n x n identity matrix (if n is
not specified, it should be clear from the context). Let A be a n x m matrix over
some field F, and let S be a set of vectors from F”™. Then SA = {zA;z € S} will
denote a set of vectors from F”. When S is a set of m vectors from F” then S
will denote an (m x n) matrix with rows from S (in some specified order).

2.1. MRHS equation systems

DEFINITION 1. [II] Let F be a finite field. A Multiple-Right-Hand-Sides
(MRHS ) equation is an expression of the form

tM e S, (1)
where M € F("*V is an (n x [) matrix, and S C F! is a set of I-bit vectors.

We say that = € F™ is a solution of MRHS equation (), if and only if zM € S.

A system of MRHS equations M is a set of m MRHS equations with the same

dimension n, i.e.,
M:{xMiESi;izl,Q,...,m}, (2)

with M; € F("xt) and S; C Fh, respectively. A MRHS system can be written
as one MRHS equation with the right-hand side given as the Cartesian product
of the right-hand sides of the individual equations in the MRHS system, i.e.:

Z‘(M1|M2|~-~|Mm)ES1XSQX"'XSm, (3)
where M = (M;|Msy|---|M,,) is the matrix obtained by concatenating the

individual left-hand side matrices.
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A MRHS system is considered to be polynomially sized, if the total number
of right hand sides in its representation is bounded by a polynomial function
of n (this usually means that both m, and each |S;| in the Cartesian product
representation are polynomially bounded in n). In such a system, the verification
that x is a solution of the system is also polynomial in n. We will typically work
with MRHS systems with fixed sizes and dimensions of the sets S;, which we will
denote | = dim(v; ;),v; j € S;, and k = |S;], respectively.

DEFINITION 2. [I5] We define MRHS solution decision problem as: Given a
MRHS system M € S, decide whether there exists any solution xz € F" of this
system.

As was shown in [I5], this problem is NP-hard (NP-complete for a family of
polynomially sized MRHS systems). In practical applications, we are interested in
finding some concrete solution of the system, not just that it exists. MRHS oracle
OMRHS is an (oracular) algorithm, that given MRHS system 2M € S produces
any solution x € F™ of this system, or L, if none exists.

Suppose there exists oracle O for the MRHS solution decision problem. Oracle
OMRuS can be constructed as follows: If O returns “NO”, return L. Else fix
each value x1,x9,...,2, in sequence: Compute r = (z1,22,...,2;0,...,0)M,
where x1,...,x;_1 is already fixed. Verify with O for which Z; as a potential
value for x;, system z’M’ € S + r, where M’ contains last n — 7 rows of M, has
a solution. This requires at most n - |[F| calls to O. Alternatively, if |F| is large,
we can test with O a sequence of systems that are obtained by removing all but
one vector from each .S; in the sequence. The final solution x is then computed
by linear algebra. This requires at most »_ |.S;| calls to O.

2.2. Decoding problem

Let G be an k xn matrix over a finite field F. A linear (n, k, d)-code generated
by G is the set
v s e se CG:{UG;UEFk},

where d = min {wy(v);v € C\ {0}} is a code distance. We omit G in the sub-
script, if the generator matrix is obvious from the context.

Given G, there exists an (n—k) xn parity check matrix H such that GH” = 0.
An arbitrary vector ¢ € F” is a code word of C if and only if cH? = 0.
Thus, a parity check matrix also uniquely defines a linear code.

In general, we call s = wH” a syndrome. The vector space F" can be factored
into cosets C + w, where every vector ¢ + w gives the same syndrome

(c+w)H = wHT = s.

Let t = [952]. Let e € F", with wp(e) < t, and let s = eH”. Then for every
vector € FT| with 2H” = s, we can find a unique codeword ¢ € C such that
dy(x,c) = wy(e). For two vectors ey # eq, with corresponding weights at most ¢,
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the cosets C + e; and C + e3 must be distinct, and the corresponding syndromes
as well. In general, not all cosets contain vectors of weight at most ¢.

The syndrome decoding decision problem is defined as follows: Given linear
(n,k)-code C, t € Z, and syndrome s, decide whether there exists

e € " with wpy(e) <t such that eH'=s.

The syndrome decoding decision problem was proven to be NP-complete [4].
In real-world applications we are mostly interested in the non-decision version
of the problem, that asks for a vector e (if it exists). If ¢ < Ld%J, this question
can also be formulated as a question of finding the shortest vector in the code
generated by G U {w}, where w is an arbitrary solution of wH? = s.

We define a syndrome decoding oracle Oy, as an oracular algorithm, that
given inputs s, H,t produces any vector e € F" such that eH? = s, with
wg(e) < t, or returns L, if no such vector exists.

A syndrome decoding oracle can also be created from a decision version of
the oracle O. If the decision oracle O returns “no”, Oy, returns L. Otherwise,
we start by adding vectors from H to s till O returns “no”. We now know that
final addition crossed the threshold ¢ on Hamming distance of the (hidden)
solution e. By reverting the last change and testing each position individually,
we can reconstruct the entire vector e in en|F| steps (for some small constant ¢).

Families of codes, for which the syndrome decoding problem is easy to solve,
are used for the construction of error correcting codes. A code word is trans-
mitted through the channel. A syndrome is computed from the received word,
and vector e identifies the errors added during the transmission. Low weight
criterion corresponds to a model of the transmission channel with random errors
and a low error rate. We can however imagine many different models for error
distribution, and the corresponding decoding problems.

The regular decoding decision problem] is defined as follows: Given matrix
H. t € Z, n = mt, and syndrome s, decide whether there exists

€ F" with eH' =5, wy(e) =t,
and

wH(emHl, Cmit2y - - - ,em(i_,_l)) =1 foreach i=0,1,...,t—1.

Similarly to the syndrome decoding oracle, we can define a regular decoding
oracle O,q4: given inputs s, H, ¢, return any vector e € F", such that eHT = s,
with wy(e) = t, and wy (emit1, €mit2, - -+ €m(it1)) = 1 foreach i =0,1,...,¢t—
1, or return 1, if no such vector exists. A regular decoding oracle can also
be constructed from the decision version, similarly to the syndrome decoding
version.

1We use the word regular in the sense defined in [I], and later used, e.g., in [5].
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The regular decoding problem models a situation where the codeword con-
tains ¢ blocks of size m, and to each block we add a single error (to an unknown
position). This problem arises in connection with solving MRHS equations, as
shown in [T4L[16]. In dedicated subsections of section [B] we revisit this connec-
tion, and show also a correspondence between the classical syndrome decoding
and the regular decoding.

2.3. MQ problem

Let F ={f1, fa,---, fm}, [i € Flx1,29,...,2,], be a set of multivariate poly-
nomials of degree at most 2. The multivariate quadratic (MQ ) decision problem
is: given y = (y1, 92, - - -, ym) € F™, decide whether there exists x € F", such that
y; = fi(x), for every i = 1,2,...,m.

We can again define an MQ oracle Oypq @ Given y, F, return x such that
yi = fi(x), for every i = 1,2,...,m, or L if no such solution exists. Similarly
to MRHS case, we can build oracle Oy from decision version, by testing val-
ues z; in sequence.

It seems obvious that there is a strong connection between MRHS decision
problem and MQ decision problem, as both ask whether some algebraic variety
is non-empty. On the other hand, the variety is defined in a different way:

e MQ problem requires a sparse polynomial representation (limit on the de-
gree),

e MRHS problem requires a sparse representation as an intersection of unions
of affine spaces.

In Section [B] we show the correspondence between the MQ problem and the
MRHS problem, and through the MRHS representation, with the decoding prob-
lem.

3. Connecting MQ problem and decoding problem

In the following section we show a polynomial transformation that can be used
to get from the MQ problem to the MRHS problem, then to the regular decoding
problem and finally to the syndrome decoding problem. We can only construct
the whole transformation for systems over F = Z,, a general algorithm is still
an open question. We separate all these transformations to the corresponding
subsections, and then connect the results in the final section.

3.1. From MQ problem to MRHS problem

Let x be a solution of MQ system y; = f;(x). Let us substitute each term z;z;
(if i = j, we get x?) which has a non-zero coefficient anywhere in the system
by z; j. We will denote the number of such terms by N. Then x can be computed
as a solution of the combination of linear system y; = (x|z)M and non-linear
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equations z; j — z;x; = 0. Using y; = (z|2)M, we can express rank (M) of the
variables as linear combinations of the remaining n + N — rank (M) variables u
and constants from .

We can suppose that rank (M) = m < n + N. If not, we can remove some
linearly dependent equations from the system (this cannot decrease N, because
the equation that contains a singular term is not linearly dependent on others).
This means that we can find matrix M; ; and constants ¢ = (co, ¢1,¢2), such
that (z;,z;, 2 ;) can be written as uM; ; + c¢. Thus, each non-linear equation
z; ; —x;2; = 0 corresponds to a MRHS equation

uM,; ; € S;; ={(a,b,ab) + c;a,b € F}.

After collecting all such non-linear equations, we can write the final MRHS sys-
tem as
“(Mm) c ‘5’171 X ‘5’172 X oo

To simplify the notation, we will simply write the system as
uM’ € S,

where M’ denotes the concatenation of matrices M; ;, and S denotes the Carte-
sian product of the corresponding sets .S; ;.

The dimensions of the final MRHS system are n’ = N 4 (n—m) (more ex-
actly: n’ = n + N —rank (M)), m’ = N (the number of non-linear equations),
" = 3 (each non-linear equation relates three linear combinations of unknowns),
and k' = |F|? (each choice of a, b € F provides a distinct right-hand side vector).
We have N < @ +n (note that for F = Z,, we can also remove n terms x?),
thus (for small fields F) the MRHS system is polynomially sized.

Up till now, we were only doing linear algebra transformations on the original
MQ system. Thus, given oracle Oyjggs . we can construct Oyjq with a single
call to Oyprpus as follows:

(1) If Opjrys returns L, return L;

(2) If Oyjrus returns u, compute x from u, return z.

The overhead cost consists only of linear algebra operations with the matrix of
size (n 4+ N) x m over F.

3.2. From MRHS problem to regular decoding (and back)

Given a (polynomially sized) MRHS system M € S; x ---S,,, with param-
eters n,m, [, k, we can use regular decoding oracle O,., to find solutions of the
MRHS problem.
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Let S, 0 --- 0
0 S 0

S = . ,
0 0 S

be a block diagonal matrix, with each S; composed of vectors in sets 5;. Dimen-
sions of S are (mk x ml). Let H be a (ml —n) x ml matrix such that MH” = 0.
It is thus a parity check matrix for the linear code C generated by M. Now =z
is a solution of the MRHS system if and only if there exists some ¢ € F™, such
that zM = ¢, and c € S7 X ....5,,.

We can define a one to one mapping between vectors

cESlx...Sm,

and regular codewords

r=(e", e”,...,e"m) ey,

wr(e) =1, e €Fy, k=[S

Each r; has value from {1,2,... k}, corresponding to an index of the projection
of c onto S; in some specified order. We can use the same order which is used to
convert S; to S;. Thus, r-S = c.

Let V = SH”. Any regular solution of #V = 0 will provide vector ¢ = #S, that
is a codeword of C. If F = GF(2), we have also found a solution of MRHS system,
as

7S €Sy X X S,

Thus for GF(2), we can use O,y to solve the MRHS problem. Block ma-
trix V, with m blocks and total dimensions (mk) x (ml —n), is the input of the
regular decoding oracle. If the O,.., answers L, the MRHS system does not have
a solution. Otherwise, for output r of O,4, compute ¢ = rS, and find 2M = ¢
by linear algebra (in polynomial time).

Suppose that we have started with an MQ problem over GF(2) with pa-
rameters (n,m, N). We have transformed this problem to MRHS problem with
parameters

n=N+(n-m), m'=N, I'=3, and k' =|F]*=4.
The parameters of the regular decoding problem would be
n” =m'k' = 4N,
" =n"—k'"=m'l'!=n'=3N -~ (N+n—-m)=2N —n+m,

or
EF'=2N+4+n—-m, and t=m'=N.
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3.3. Connection between regular decoding and syndrome decoding

Let us now explore the exact nature of the connection between the syndrome
decoding and the regular decoding oracles. It can be trivially seen that if O,.4
returns some vector e of weight ¢, then e is also a solution of the corresponding
syndrome decoding problem with bound ¢. Conversely, if there is no e of weight
at most ¢ with eH = s, then there cannot be any regular decoding with the same
parameter ¢.

On the other hand, the number of errors ¢ for regular decoding problem can
be much higher than corresponds to a code distance. As such, a regular solution
to the decoding problem can be only one of many solutions for the syndrome
decoding problem. Moreover, if there is a unique word with the given distance ¢ to
a codeword that solves the syndrome decoding problem, there is only a very low
chance that it is also regular (each of ¢ parts has weight 1). However, for each e
with wg(e) < m, there is a set of permutation matrices P, such that eP is
regular for P € P. Thus, if there is a solution e to a syndrome decoding problem
(H, s,t), there exists some matrix P, such that eP is a solution to a regular
decoding problem (P~'H, s,t). Unfortunately, we do not know the set P, until
we find e.

What we want is a polynomial transformation between a syndrome decoding
and a regular decoding that is one-to-one. We propose one such transformation
from a regular to a syndrome decoding over F = Z,. We are given input H, s, ¢
to a regular decoding problem:

(1) From n x r matrix H, with n = mt, construct a new n x (r + t) matrix

H’, such that
Ji

H’ o2
Ji
where each J; is an m x ¢t matrix, that contains all ones in the ith column,
and zeroes in other columns.

(2) The new syndrome will be ' = (s|11---1).

If Oreq(H, s,t) returns some e, the same e is a solution of O,.4(H', s’,t). This
is because additional parity checks in each block sum to one (the syndrome
value) due to the regularity of the solution (this is also why this construction
does not work for general F). As e is a solution of O,.,(H’,s', ), it is also one
of solutions of O, (H', s, ). We would like to show that there is no solution of
Osyn(H', s, t), that is not regular.

Suppose that some ¢’ is a solution of ¢H’' = s’ of weight at most ¢, which
is not regular. If ¢’ has weight less than ¢, there is at least one block that has
weight zero. If €’ has weight ¢, but is not regular, it must contain more than one
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non-zero coordinate in some block. Because n = mt there exists some i, such
that wa (€754 15 €mitas -5 € i) = 0. But this means that we cannot get s’
by multiplying ¢'H’, as the product of ¢’ and ith added column would be zero.

Thus we have proven the following lemma:

LEMMA 1. Quer F = Zs, there exists a polynomial equivalent transformation
from Oyeq with parameters t, n = mt, r, to Oy, with parameters t, n = mt,
r4t.

It remains an open question, whether Lemmal[ll can be generalized to all finite
fields.

The corollary of Lemma [I] is that, for binary fields, we can use the existing
syndrome decoding algorithms to solve regular decoding problems. We slightly
modify the underlying code. While the code length n remains the same, code rate
is decreased from *—* to ”_TH The construction of H guarantees that if there
is a unique solution of the regular decoding problem it would also be a unique
solution of the syndrome decoding problem, and if there are more solutions of
the syndrome decoding, they always have weight ¢, and are regular.

The opposite transformation does not seem to be so well defined. Given a
regular decoding oracle, we would like to obtain an arbitrary error vector of
weight at most ¢t for some instance of the syndrome decoding problem (H, s, t).
The first problem is that the regular decoding is only well defined for n = mt,
where t is fixed, and m is some integer. If we know the exact number of errors
to be t, we can compute m = [%], and extend the code to the size n’ = mt by
adding arbitrary extra rows to H. If we do not know the exact ¢, we must try
all potential values separately.

If a regular decoding oracle produces a negative answer, it does not mean that
there is no solution for the syndrome decoding problem. Given some solution e
of the syndrome decoding problem, we know that some eP is a solution of the
regular decoding problem (P~'H, s, wg(e)). The problem is to find P, or to
show that no such P exists (meaning that there is no solution to the syndrome
decoding problem).

If t = 1, the transformation is trivial, as there is only one block and the regular
decoding oracle behaves in the same way as the syndrome decoding oracle. With
t = 2 we have two blocks. Either we get a regular solution (in which case O,.,
returns the correct answer), or both errors are located in one of the blocks (in
which case we get answer ). In the second case, we can try to obtain the solution
by cutting each block in half and exchange one of the halves. We can continue
this process recursively. In log, n steps we either obtain a solution or get a proof
that no such solution exists. It is not clear to us, whether this process can be
extended to an arbitrary ¢ (but this issue is out of scope of the present paper).

171



PAVOL ZAJAC

4. Complexity of solving MQ systems with syndrome
decoding algorithms

Let F = GF(2). We are given MQ system with m linearly independent MQ
equations in n variables and N quadratic terms with non-zero coefficients.
Value N can be bounded by (3).

We can solve a MQ problem with parameters n, m, N via the MRHS problem
with parameters n” = N + (n —m), m' = N, I’ = 3, k' = 4. Obviously, if
N < m — n, the system can be solved by linearisation directly in the MQ form,
so we can consider that n’ > 0. If I'm’ < n’, or 2N < n — m, the MRHS system
can be solved trivially: for every potential right-hand side there exists a solution
(space) obtained by a linear algebra [I5]. Thus, we are only interested in non-
trivial systems with N > #5=, and N > m —n.

We can solve a MRHS problem with parameters n/,m’, k’,l’ via the regular
decoding problem with parameters

t=m', n=km', 7=1Im —n
After substituting the values from the original MQ problem we get
n=4N, 7=2N—-n+m, t=N.

We can solve a regular decoding problem with parameters (t,n,r) via the
syndrome decoding problem with parameters (¢,n,r +t). After substituting the
values from the original MQ problem we get a decoding problem with parameters
(N,4N,3N —n+m). This means, that to solve a MQ problem in F = Z,, we can
use syndrome decoding algorithms for (4N, N + n — m)-linear code, looking for
error vector of weight V. If the MQ problem is dense, with every term present, we
have N = n(n — 1)/2. This gives an asymptotic complexity bound O(22"("=1))
for the decoding problem, where ¢ is some constant. According to [3], we can take
¢ = 1/20 as an upper bound. This result is clearly unsatisfactory, as MQ problem
can be solved by faster methods with O(2°792") asymptotic complexity [2].

On the other hand, we can try to compare cryptosystem parameters across
various types of post-quantum systems. A public key of the signature scheme
QUARTZ [§] is a system of m = 100 equations in n = 107 GF(2) variables
for security level 80. The basic decoding attack would have to work with code
of size 22684 and dimension 5678, trying to find a codeword of weight 5671.
The same security level was expected from the code-based signature scheme
CFS , with proposed code length 65536, dimension 65392, correcting 9 errors [7].
Security level 80 is also expected of the McEliece cryptosystem with code length
1702, dimension 1219, correcting 45 errors [I0]. Similar in dimensions is the code
for QC-MDPC system [9] with code length 27212 and dimension 6803, but it is
designed for 128 bit security, and should correct 68 errors. It would be nice to
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have a simple closed formula, even if not exactly precise, that we can use to
compare these various cases.

4.1. Reducing the size of the decoding problem

An alternative approach can be used to (slightly) reduce the decoding com-
plexity. Note that MRHS systems can be used to efficiently represent generic
Boolean functions F : Z} — Z that depend only on a small number of variables
(such as S-boxes). The left-hand side contains (I3 + l3) input and output vari-
ables (or any linear combinations of variables), the right-hand side contains 2"
pairs of values (x, F(x)).

When we return to the transformation from a MRHS system to a decoding
problem, we can see that the codeword size is actually the total number of right-
hand sides (RHS) in the MRHS system. For a general MQ system we expect
N = n(n —1)/2 product equations, with 4 RHS each. Without the loss of gen-
erality, let the system contain the following 3 products: xiz2, z123, zox3. These
terms can be substituted by 3 product equations with 12 RHSs (altogether).
We can also construct a single MRHS equation that contains all three substitu-
tions:

T1 T2 T3 | 21,2 21,3 223

o o op 0 0 O

Instead of 12 RHSs we get only 8. In general, we can group s variables to
produce (;) substitutions with a single MRHS equation with 2 RHSs . This
is only useful for s < 6, because of the exponential growth of the number of
RHSs with s.

There is another problem with grouping variables in this way. If we express all
terms x1, 9, r3 in one MRHS equation with 8 RHSs, we save 4 RHSs. However, we
must also express combinations of x1, xo, x4. If we grouped these variables again,
we would be repeating the product x;x,. Thus, we would cover only two new
products z1x4, and xox4, with the total number of RHSs staying at 8. This gets
worse with larger s, because of the larger number of combinations of variables
we must consider.

We can instead group variables 1, xo, x3, then separately group variables
r3, T4, Ty, variables xs, xg, x7, etc., and leave the cross-products intact.
Unfortunately, this saves only 4 RHSs per 2 variables in the system, leading
to a decoding complexity of O(22¢"=D). Tt is an open question, how can we
express the attacked MQ system in the most efficient way in terms of the total
number of RHSs of the MRHS system.
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4.2. Tighter complexity bounds based on product equations

Let us consider a system of m MQ equations that can be written in the form
lii-lio = lisg+ ci, where [; j(x) are linear functions and ¢; € Z,. We can sub-
stitute each product using y; = l; 1(z) - l; 2(x) (a product equation). This gives
us a MRHS system, and further a decoding instance with N = m. The asymp-
totic complexity of solving a system of this type can be bounded by O(2%™).
Depending on the ratio of n/m, the decoding algorithm can be faster than the
brute-force approach in this case.

The complexity of the transformed problem depends on the number of prod-
uct equations, but does not depend on the affine part of the system. Thus we can
ask: For a given MQ problem, what is the smallest number of product equations
Npin that can be used to represent the problem? Clearly, N, < n(n —1)/2,
as we can simply take all different terms of degree 2 as product equations.
Let us consider a different approach: In each of m equations, separate terms
with x; to produce the following system:

CElMle = F1(£E2,563, .. ,ZEn) + All‘T + cq.

Function Fj is a quadratic function in the remaining variables. Matrix M; rep-
resents (in rows) individual linear functions that are multiplied by z; in each of
m equations. We can use equivalent row operations on the system to produce
rank (M) product equations on the left hand side (replace each non-zero row
of reduced M; by y;, and add y; = x1m;(x) to a set of product equations).
We are working in Zs, so 23 = x1, and the first column of M; can contain only
zeroes. This means that rank (M;) < min(m,n — 1). After we have separated
all quadratic terms with x1, we can proceed similarly with zs, ..., ,—1. When
processing x;, all quadratic terms with x;, j < are already substituted, so we
get rank (M;) < min(m,n —4). If m > n, the total number of equations can be
again bounded by N, < n(n—1)/2. On the other hand, if m = n — d for some
0 < d < n, we get a smaller bound N,,;, < (n—d)(252 + £). It is however still
quadratic in n.

Another approach is to write the system in the symbolic form
Maz? = MaT +¢,
where 91 is a m X n matrix of linear forms in
T1,X2, .y T

This corresponds to: moving the affine part to the right, and separating variables
x; from the remaining products in each of the MQ equations in some well defined
way (e.g., x1 first, etc.). When linearising the system, each non-zero linear form
l;,; in 9 produces one product equation z; ; = l; jx;. Thus, the total number of
product equations depends on the number of non-zero linear forms in 91, further
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reduced by the number of repeated linear forms in each column of 9t. We can do
equivalent row and column operations on 91, to reduce this number, as follows:

(R-M-C)(C'z") = (RM)zT + (Re).

The question becomes: find a non-singular m x m matrix R and a non-singular
n x n matrix C, such that (R-9t- C)(C~'2T) produces the minimal number of
product equations.

The theoretical minimal bound can be obtained by rewriting the system in
any way with the minimal number of products and unlimited number of sums.
This minimal number is the multiplicative complexity of the associated quadratic
boolean function. This problem was already studied by Boyar et.al. in [6].
The multiplicative complexity u(f) of a single Boolean function f : Z§ — Zs
is given by u(f) = 1/2rank (A @& AT), where A @& AT characterizes the qua-
dratic form corresponding to f. This means that for a single Boolean function
w(f) < [n/2]. Their hypothesis for a set of Boolean forms is similar, and is
related to a rank of a set of matrices corresponding to all component func-
tions. For random MQ systems, this would lead to similar estimates as shown in
the previous paragraph. Note that results based on the multiplicative complex-
ity are theoretical, and essentially violate the main assumption of MQ systems:
we know that the examined MQ system has a low complexity representation
(trapdoor /private key system), but we do not know (or should not be able to
know) how to reconstruct it.

4.3. Supporting experiments

We illustrate the theoretical results with experiments on 20-variable toy ex-
amples from Fukuoka MQ Challenge [ME We use four ToyExample-typel-n20
instances, with 20 unknowns and 40 equations. It is possible to find the solution
by trying at most 22° variable assignments, for each of them computing 180
ANDs, and 8000 XORs (schoolbook version, around 233 basic operations).

After transforming one of these systems to MRHS form, we obtain a system
with n = 170 variables, and m = 190 MRHS (product) equations (each term,
no reductions in size attempted). With our yet unpublished MRHS solver [12],
we can solve these systems with 7039894-7481030 XORs and 7732366—-8390297
table lookups (about 222 basic operations), which takes 0.2 seconds on our ex-
perimental PC (single core process on Intel i7-3820 CPU, 3.60GHz).

The code generated by left-hand side of the MRHS system has parity check
matrix H” with dimensions 400 x 570. After multiplying the right-hand side
block matrix, we get V = SHY, a matrix with 190 blocks of four G F(2)4% vec-
tors. A regular decoding problem is equivalent to finding one vector in each of
these blocks, such that their sum is a 0 vector. We can use the transformation

thtps ://wuw.mgchallenge.org/
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from Section [3:3]to get a syndrome decoding problem: find the shortest solution
of cH' = s, where H' is a matrix with dimensions 760 x 590, and the weight
of ¢ is 190. We are not aware of an algorithm that can find such solution (with-
out knowing the original MQ /MRHS problem) within the 220 basic “operations”
order of magnitude.

5. Concluding remarks

In this article we have explored the connection between various NP-hard
problems related to post-quantum cryptography research. We have provided
a way to explicitly transform MQ problem to decoding problem with the help
of MRHS equation systems. We have used term-by-term representation of MQ
problem, which does not seem optimal. The question of optimal representation
of MQ problem as a decoding problem is related to the corresponding multi-
plicative complexity of the system, which is in itself a difficult open problem.

It would be interesting if we were also able to reverse the process, and find
a compressed MRHS or MQ representation of the decoding problem. This would
enable us to employ various tools and techniques that were already developed
for solving algebraic systems for decoding problems and unify the security levels
of these types of post-quantum systems.
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