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IMPROVEMENT ON BIT DIFFUSION ANALYSIS
OF π-CIPHER
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ABSTRACT. π-Cipher, designed by Gligoroski et al., is a second round candi-
date of the CAESAR competition. The designers analyzed the bit diffusion of
the cipher by examining the ∗ operation and 1 round π-function. We improve
this analysis by applying Strict Avalanche Criterion (SAC) test to ∗ operation
and reduced round versions of π-function for π 16-Cipher. We found out that
∗ operation fails SAC test whereas all versions of π-function for π 16-Cipher pass
the test.

1. Introduction

The authenticated encryption is a cryptographic tool that provides the privacy
and authenticity simultaneously. The need for such tool emerged from special
purposes. In the recent years, successfully finished competitions like AES [1],
eSTREAM [2], SHA-3 [3] have been organized to answer the demands of the
industry and interests in the research community. Similarly, the CAESAR com-
petition [4] was initiated in 2014 in order to boost the design for the authen-
ticated encryption tool which provides the privacy and authenticity together.
The CAESAR competition is different from the previous competitions AES [1]
and SHA-3 [3] done to determine the standard algorithm since the winner is
going to be determined by the competition committee consisting of prominent
academicians [5], not by the US National Institute of Standards and Technol-
ogy (NIST) [6]. In addition, the competition allows the designers to tweak their
algorithms. These features are similar to the competition eSTREAM [2].
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There are 57 submissions for the first round of the CAESAR competition.
However, some have been withdrawn. Moreover, 19 of them have been eliminated
from the competition at the end of the first round. Therefore, there are 29
algorithms left for the second round of the CAESAR competition [7]. The third
round started in July 2016. The final portfolio will be announced in the near
future. [8].

The construction of Cryptographic algorithms is based on the generation of
quantities which are not easily predictable to provide the security of the algo-
rithms. Since an adversary should not be able to observe a leakage of the system
or even to break the system, the generated quantities must have an adequate
length and size, or have randomness property, etc. Although the randomness
property is needed to generate a key for asymmetric or symmetric systems, the
keys generated from a deterministic source may cause the system to be broken
if they show nonrandom properties. In this paper, we apply Strict Avalanche
Criterion (SAC) test to π-Cipher algorithm [17] which is one of the algorithms
which passed into the second round of the CAESAR competition. SAC test is
one of the randomness tests proposed in the recent test package designed by
D o ğ a n a k s o y et al. [10]. SAC test determines the number of rounds of an al-
gorithm, for which it behaves like a random mapping, by analyzing the relation
between inputs and outputs. The aim of this method is to get a single p-value
related with the data set under consideration, through a large set of p-values
produced by SAC test.

This work is organized as follows. In Section 2, the details of randomness
tests and SAC test are given. In Section 3, we give the brief description of the
π-Cipher algorithm. In the Section 4, we present the application of SAC test and
the results of the test. In Section 5, we conclude the paper by giving the results
and future work.

2. Randomness tests

Random numbers are generated by using random binary sequences in which
each element is either 0 or 1 with an equal probability of 1

2 . Although random
numbers play an important role in the cryptographic systems, the generation of
random numbers is difficult. To generate a true random number, we can use the
true random number generators (TRNGs). Although these sources are nondeter-
ministic, the generation with these sources, the storage and transfer of random
numbers are problematic. The solution to this problem is to use the determinis-
tic algorithms that are pseudorandom number generators (PRNGs). PRNGs take
a random binary sequence of length k and produce a periodic random looking
binary sequence of length l >> k [9]. The outputs of these sources are pseudo-
random. Because of pseudorandomness, the outputs must be checked whether
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they have some non-random properties. They are subjected to the statistical
tests which are designed to detect the characteristics expected from a random
sequence. With that aim, NIST published a suite of randomness tests [12] which
are used to evaluate the numbers and to compare them to truly random num-
bers via their probability; that is, the output of the generator should not be
distinguished from the random numbers, that is, it should be random looking.
S o t o et al. applied NIST randomness tests suite to the candidate and finalist
algorithms in AES competition [13], [14]. Therefore, cryptographic algorithms
should have the randomness property.

There exist two types of randomness testing: the first one is statistical ran-
domness testing and the second one is cryptographic randomness testing which
analyzes the property of cryptographic randomness of the algorithms. In this
work, we use a cryptographic testing, namely SAC test that is available in the
package of cryptographic randomness testing [10].

2.1. Strict avalanche criterion (SAC) test
In addition to the randomness property, there exist desirable cryptographic

properties for block ciphers and hash functions. For example, confusion and dif-
fusion are principal properties for block ciphers while collision resistance is an
essential design criterion for hash functions. If cryptographic algorithms do not
possess these properties with a significant degree, then they are considered to
have poor randomization. In fact, this situation is sufficient to break the algo-
rithms. Hence, cryptographic randomness testing is crucial for the algorithms to
determine their security levels [11].

Recently, a package has been designed by D o ğ a n a k s o y e t. a l [10] to
evaluate block ciphers and hash functions via cryptographic randomness tests.
This package consists of 4 tests:

— SAC Test,
— Linear Span Test,
— Collision Test and
— Coverage Test.
SAC Test is primarily recommended for S-boxes by W e b s t e r and T a v a -

r e s [15]. Furthermore, it is located in a test package designed by D o ğ a n a k -
s o y et. al [10]. SAC test measures whether one input bit change affects any
output bit changes with probability 1

2 or not. To test SAC property, SAC Matrix
is formed using 220 different random inputs and corresponding outputs.

SAC test is done as follows:
(1) Set the n × n SAC Matrix entries to 0.
(2) Get a random plaintext and compute the corresponding ciphertext (origi-

nal output).
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(3) For each 1 ≤ i ≤ n:
• Flip the ith bit of the input and get the corresponding output.
• XOR the original output with the corresponding output.
• Write the result of XOR of the original output with the corresponding

output to the ith row of SAC Matrix.
(4) Repeat this process for 220 different random inputs.

We use 220 different random inputs and corresponding output sets which are
obtained from ∗ operation for w = 16, 32, 64 and the π-function of one, two and
three rounds for π 16-Cipher. We give the details of our method to get output
sets in Section 4.

After this process, SAC Matrix is obtained. Using χ2 Goodness of Fit Test,
SAC Matrix is evaluated and p-value is obtained. Afterwards, we obtain the
number of rounds for which the ∗ operation and the π-function of one, two
and three rounds for π 16-Cipher behave like random mappings, according to
the corresponding p-value, which helps us to estimate the security level of the
algorithms [16].

3. π-Cipher

π-Cipher is a sponge-based algorithm with 4 different types named:
— π 16-Cipher096,
— π 32-Cipher128,
— π 64-Cipher128 and
— π 64-Cipher256

which was designed by G l i g o r o s k i et al.; also, it consists of three rounds [17].
As shown in Figure 1, the encryption scheme is divided into four parts: initial-
ization, associated data processing, secret message number processing, plaintext
processing with tag generation. Moreover, the encryption/authentication and
decryption/verification of the algorithm have a new construction namely triplex
component which is related to the dublex sponge.

The triplex component takes the internal state, counter and input string as
inputs, and then it always outputs the authentication tag.

The 4 parts use a permutation which is called the π-function. π-function is
both an ARX based permutation and the core part of the algorithm. It consists of
three rounds. Each round has two consecutive transformations called E1 and E2.
These transformations are based on ∗ operation given in Figure 2. In other words,
Z = X ∗ Y ≡ σ(μ(X) �4 ν(Y )), where �4 is the component-wise addition of
two vectors of dimension 4 in Z

4
2w , w = 16, 32, 64, and X, Y and Z in Z

4
2w have
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Figure 1. π-Cipher process of initialization, secret message number,
associated data and plaintext; also, the generation of a tag [17].

different word sizes for types of π-Cipher [17]. Details of the transformations
σ, μ, ν can be found in [17].

The π-function has two consecutive transformations E1 and E2 for one round.
In Figure 3, the definition of E1 is E1 : ZN+1

2w → Z
N
2w such that

E1(C1, I1, . . . , IN ) = (J ′
1, . . . , J ′

N ),

where J1 = C1 ∗ I1, Ji = Ji−1 ∗ Ii for i = 2, . . . , N and C1 is a 4-tuple of w-bit
constant defined in [17] while the definition of E2 is E2 : ZN+1

2w → Z
N
2w such that

E2(C2, J ′
1, . . . , J ′

N ) = (J1, . . . , JN ),
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Figure 2. Graphical representation of ∗ operation.

where JN = J ′
N ∗ C2, JN−i = J ′

N−i ∗ JN−i+1 for i = 1, . . . , N − 1 and C2 is
a 4-tuple of w-bit constant defined in [17].

π-function is defined as follows for one round:

π(I1, . . . , IN ) = E2
(
C2, E1(C1, I1, . . . , IN )

)
,

where N is taken as the value 4 [17]. In version 2, the round number is reduced
from 4 to 3. Thus, in this light, the π-function with 3 rounds is defined as

π(I1, . . . , IN )=E2

(
C6, E1

(
C5, E2

(
C4, E1

(
C3, E2

(
C2, E1(C1, I1, . . . , IN )

)))))
,

where Ci’s are 4-tuple of w-bit constants for i = 1, 2, 3, 4, 5, 6 defined in [17].

3.1. Bit diffusion analysis of π-Cipher

The designers of π-Cipher presented the bit diffusion analysis of ∗ operation of
w = 16, 32, 64 and one round π-function for π 16-Cipher, π 32-Cipher and π 64-
-Cipher. They constructed two experimental settings to evaluate the bit diffusion
in the analysis. The first setting for ∗ operation was based on 10000 randomly
generated right and left inputs of ∗ operation, and then the designers analyzed
the propagation of one bit difference for 10000 inputs as follows:
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Figure 3. Graphical representation of E1 and E2 transformations.

(1) Compute Z = X ∗ Y, where X and Y are inputs and Z is output of
∗ operation.

(2) Evaluate Z ′ = X ′ ∗ Y, where X ′ is an input of ∗ operation such that
HammingDist (X, X ′) = 1.

(3) Measure the Hamming distance between Z and Z ′.
They repeated the same process for Y. Afterwards, they represented the re-

sults in figures for X and Y in the values of w = 16, 32, 64 without any con-
clusion [17]. The second setting for one round π-function was based on 1000
randomly generated inputs for IS of π-function, and then the bit difference prop-
agation for 1000 inputs was examined as follows:

(1) Compute the output of one round π-function of IS.
(2) Evaluate the output of one round π-function of IS’, where is an input of

one bit change in IS .
(3) Measure the Hamming distance between π (IS) and π (IS′).
This was done for all of π 16-Cipher, π 32-Cipher and π 64-Cipher. Then the

designers presented the results in figures in terms of minimum, average and
maximum avalanche effect of one bit difference of π 16-Cipher, π 32-Cipher and
π 64-Cipher without any conclusion [17].
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3.2. The Cryptanalysis of π-Cipher
There are some cryptanalysis papers of π-Cipher [18], [19], [20], [21], [22].

4. SAC test application and results

In this work, we apply SAC test to ∗ operation of π-Cipher for w = 16, 32, 64
and reduced versions of π-function for w = 16.

We apply SAC test on ∗ operation and π-function in two ways. First, the dif-
fusion property of the ∗ operation is analyzed. For this analysis, steps presented
below are followed.

(1) Choose a random Y and fix this value.
(2) Choose a random X and compute Z = X ∗ Y. For each i, where

i = 0, . . . , n − 1,

(3) Generate Xi by flipping the ith bit of X and compute Zi = Xi ∗ Y.
(4) Increment the (i, j)th entry of the n × n SAC matrix if jth bit of Z ⊕Zi

is 1.
(5) Repeat the steps 2 to 4.

The procedure is carried out for 220 different values of X. Also, the same steps
are repeated for Y with fixed X as well.

We apply a χ2 Goodness of Fit Test to the SAC matrix with the subinterval
probabilities stated in [10], flag the entries which deviate from the mean sig-
nificantly and repeat the test once more. If a previously flagged entry deviates
significantly again, we conclude that the algorithm fails from the SAC test and
there is a strong evidence of correlation in the flagged input-output bit pair [10].

We observe that the applications of SAC test on ∗ operation for w = 16, 32, 64
for both inputs X and Y give the values of p < 0.01 and each entry of each
SAC matrix is flagged twice. Therefore, ∗ operation is non-random for w =
16, 32, 64.

The only nonlinear part of the ∗ operation is the modular addition: the diffu-
sion layer consists of two simple permutations and one rotation. Experimental
result indicates that a single bit difference in the input affects 18 bits on average
instead of the expected 32. Furthermore, we know that the difference in the left-
most bits of each modular addition results in fewer number of bit changes in the
output due to the differential characteristics of modular addition. The results
for these bits are presented in Table 1 and Table 2.

The results indicate that if there is a difference in the 2nd bit of X, then
15.26 output bits change on average and this may be the starting point of a
cryptanalysis.
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Table 1. Results of SAC Test for X.

Position of the flipped bit Avg. number of output bit changes
2 15.26
50 16.24
17 16.35
18 16.40

Table 2. Results of SAC Test for Y.

Position of the flipped bit Avg. number of output bit changes
33 15.86
34 15.86
49 16.18
50 16.37

The second analysis method of the cipher using SAC Test is the statistical
examination of π-function. Similar to the first method, take an input I ∈ (Z4

216)N

such that
π (I0, . . . , Ib−1) = J, where b = N × 4 × 16 and

change the input bit Ii for i = 0, . . . , b − 1 and compute the corresponding
output, i.e.,

π(¬I0, . . . , Ib−1) = J1, . . . , π (I0, . . . , ¬Ib−1) = Jb.

Then, XOR the output corresponding to the one-bit change of input and the
original output, i.e., J i ⊕ J for i = 1, . . . , b. Finally, write the result of XOR on
the ith row of SAC Matrix. The procedure is performed for only one input, so
we repeat it for 220 different inputs.

Table 3. SAC Test for π-function.

SAC test results for π 16-Cipher
1 round 2 rounds 3 rounds

p value 0.969954 0.429349 0.774130

In this work, we apply SAC test to the reduced round versions of π func-
tion for π 16-Cipher. We observe that the p values obtained from the test are
0.969954, 0.429349 and 0.77413 for 1, 2 and 3 rounds of π-function, respectively.
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Since all p values are greater than 0.01 we conclude that all versions of π-function
for π 16-Cipher are random.

5. Conclusion

In this work, we apply the Strict Avalanche Criterion (SAC ) Test to π-Cipher
algorithm of the CAESAR competition. We improve the evaluation of the diffu-
sion of ∗ operation and π-function given by the designers of the algorithm. Ac-
cording to the corresponding test results given in the Table 1, 2, 3 in Section 4,
we determine that the algorithm behaves randomly for one, two or three rounds,
and explain the diffusion of ∗ operation and π-function in further details. As
a future work, we can apply other randomness tests to the algorithm. Further-
more, we plan to apply SAC test to other algorithms that have the potential to
remain in the CAESAR competition.
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