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THREE WAYS OF DEFINING OWA OPERATOR

ON THE SET

OF ALL NORMAL CONVEX FUZZY SETS

Zdenko Takáč

ABSTRACT. We deal with an extension of ordered weighted averaging (OWA,
for short) operators to the set of all normal convex fuzzy sets in [0, 1]. The main
obstacle to achieve this goal is the non-existence of a linear order for fuzzy sets.
Three ways of dealing with the lack of a linear order on some set and defining
OWA operators on the set appeared in the recent literature. We adapt the three
approaches for the set of all normal convex fuzzy sets in [0, 1] and study their

properties. It is shown that each of the three approaches leads to operator with
desired algebraic properties, and two of them are also linear.

1. Introduction

Since Y a g e r [11] introduced ordered weighted averaging (OWA, for short)
operator, it became one of the most widely used aggregation methods for real
numbers. OWA operator is given by the following mapping OWAw : [0, 1]n →
[0, 1] defined by

OWAw(a1, . . . , an) =

n∑
i=1

wiaσ(i), (1)

where w = (w1, . . . , wn) ∈ [0, 1]n, w1 + · · · + wn = 1, is called the weighting
vector, and σ is a permutation of {1, . . . , n} such that aσ(1) ≥ . . . ≥ aσ(n). The
crucial point of this definition is the existence of a linear order on [0, 1], since
given inputs have to be reordered before the summation. The wide range of ap-
plications of OWA operators led to growing interest of scholars to also concern
with OWA operators for some elements different from real numbers. In this pa-
per, we deal with OWA operators on F ([0, 1]) (the set of all fuzzy sets in [0, 1]).
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However, the extension of definition from real numbers to fuzzy sets is not
straightforward, because, as it is well-known, fuzzy sets are not linearly ordered.
So, if one desire to define “something like OWA operator” on the set of fuzzy
sets, it is necessary to avoid the lack of linear order in some way. There are three
various approaches to this task in the recent literature:

• OWA operators on complete lattices, see [5], [6], [8];

• Type-1 OWA operators, see [13], [14], [15]; and

• OWA operator for discrete gradual real intervals, see [7], [9].

All the three approaches were applied and each of them gives appropriate re-
sults. But, of course, each effort to avoid the lack of a linear order brings some
drawback, too. We discuss this issue and study and compare algebraic properties
of the three OWA operators. We also show that two of the three OWA operators
are homogeneous and shift-invariant, that is, they are linear.

The structure of the present work is as follows. In Section 2, we recall defini-
tion of OWA operators on complete lattices and present its special case, namely
OWA operator on lattice of normal convex fuzzy sets in [0, 1]. In Section 3, we
deal with the so-called type-1 OWA operator on the set of all fuzzy sets in X. We
focus on OWA operator for discrete gradual real intervals in Section 4. Properties
of the three operators are discussed in Section 5. The conclusions are discussed
in Section 6.

2. OWA operators on fuzzy sets as special case
of OWA operators on complete lattices

The authors of [5] introduced OWA operators on complete lattices (L-OWA,
for short). In this section, we present OWA operator on a special case of complete
lattice, namely that of all normal convex fuzzy sets in [0, 1]. See [6], [8] for more
details.

We will use the following notation and terminology. Let X be a non-empty
set. A fuzzy set in X is a mapping from X to [0, 1], the class of all fuzzy sets in
X will be denoted by F (X). A fuzzy set A in X is normal if there exists x ∈ X
such that A(x) = 1, and A is convex if it satisfies

A
(
λx1 + (1− λ)x2

) ≥ min
(
A(x1), A(x2)

)
for all λ ∈ [0, 1] for all x1, x2 ∈ X. We denote by FNC(X) the class of all
normal convex fuzzy sets in X. We will use operations �, �, relations �, � and
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special elements ã, for a ∈ X, in F (X):

(A � B)(z) = sup
x∨y=z

(
A(x) ∧ B(y)

)
,

(A � B)(z) = sup
x∧y=z

(
A(x) ∧ B(y)

)
, ã(x) =

{
1 if x = a,

0, otherwise,
(2)

A � B iff A �B = A, A � B iff A �B = B.

The relations �, � are partial (non-linear) orders and they coincide on

FNC(X). Note that the algebra
(
FNC([0, 1]),�,�,�, 0̃, 1̃

)
consisting of all the

convex normal functions is a De Morgan algebra [10], i.e., it is, among other
things, bounded distributive lattice.

2.1. Definition (the first approach)

The first approach is based on replacement of possibly incomparable input
fuzzy sets by an ’appropriate’ chain. Let A1, . . . , An ∈ FNC([0, 1]), we can get
a chain Bn � Bn−1 � · · · � B1 with B1, . . . , Bn ∈ FNC([0, 1]) in the following
way (see [5, Lemma 3.1]):

B1 = A1 � · · · �An,

B2 =
(
(A1 �A2) � · · · � (A1 �An)

) � (
(A2 �A3) � · · · � (A2 �An)

)
� · · · � (

(An−1 �An)
)
,

... (3)

Bn = A1 � · · · �An.

���������� 2.1� Let W1, . . . ,Wn ∈ F ([0, 1]). A vector W = (W1, . . . ,Wn) is

said to be a distributive weighting vector in F ([0, 1]) if (i) W1 � · · · � Wn = 1̃;
and (ii) A � (W1 � · · · �Wn) = (A �W1) � · · · � (A �Wn) for all A ∈ F ([0, 1]).

	
��������� 2.2 ([8, Cor. 3.7])� A vector (W1, . . . ,Wn) ∈ FNC([0, 1])
n is a dis-

tributive weighting vector in FNC([0, 1]) if and only if there exists i ∈ {1, . . . , n}
such that Wi = 1̃.

���������� 2.3� Let W = (W1, . . . ,Wn) ∈ FNC([0, 1])
n be a distributive

weighting vector in
(
FNC([0, 1]),�,�,�, 0̃, 1̃

)
. The mapping FW :FNC([0, 1])

n→
FNC([0, 1]) given, for all (A1, . . . , An) ∈ FNC([0, 1])

n, by FW(A1, . . . , An) =
(W1 � B1) � · · · � (Wn � Bn), where (B1, . . . , Bn) is a linearly ordered vector
constructed from (A1, . . . , An) according to the equation (3), is called an n-ary
OWA operator on FNC([0, 1]).
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Remark. This first approach to avoiding the lack of a linear order in definition
of OWA operator is based on replacement of input. In the case of standard
OWA operator, the chain aσ(1), . . . , aσ(n) consists of the original input elements
a1, . . . , an, which are just reordered. In contrast to this, in case of OWA operator
FW given by Definition 2.3, the chain B1, . . . , Bn consists of elements (possibly)
different from the original input elements A1, . . . , An. So, strictly said, we do
not aggregate exactly the given input, just some reasonably chosen substitute
input. That is the price we pay for avoiding the non-existence of linear order on
the set of fuzzy sets by the first approach.

Example 1. Let the weighting vector beW = (W1, 1̃) ∈ FNC([0, 1])
2 and inputs

be A1, A2 ∈ FNC([0, 1]), where A1, A2,W1 are normal convex fuzzy sets in [0, 1]
given by Figure 1. Then the result of binary OWA operator on FNC([0, 1]),
namely, FW(A1, A2) = (W1 � B1) � (W2 � Bn), is depicted in Figure 1. Recall
that B1 = A1�A2 and B2 = A1�A2 are computed according to the equation (2),
see Figure 2. See [8, Examples 3.9 and 3.11] for more detailed explanation.

Figure 1. See Example 1.

Figure 2. See Example 1.

2.2. Algebraic properties

Some algebraic properties of OWA operator FW were studied in [5], [6] and [8].
The following theorem deals with other properties that were not under investi-
gation yet.
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���
�� 2.4� Let W = (W1, . . . ,Wn) be a distributive weighting vector in(
FNC([0, 1]),�,�,�, 0̃, 1̃

)
and FW the corresponding OWA operator given by

Def. 2.3. Then:

(i) FW(0̃, . . . , 0̃) = 0̃.

(ii) FW(1̃, . . . , 1̃) = 1̃.

(iii) A1 � A∗
1, . . . , An � A∗

n imply FW(A1, . . . , An) � FW(A∗
1, . . . , A

∗
n), for all

A1, A
∗
1, . . . , An, A

∗
n ∈ FNC([0, 1]).

(iv) A1 � · · · � An � FW(A1, . . . , An) � A1 � · · · � An, for all A1, . . . , An ∈
FNC([0, 1]).

(v) FW is a symmetric operator, i.e., FW(A1, . . . , An)=FW(Aσ(1), . . . , Aσ(n)),

for all A1, . . . , An ∈ FNC([0, 1]), for each permutation σ of {1, . . . , n}.
(vi) FW is an idempotent operator, i.e., FW(A, . . . , A) = A, for all A ∈

FNC([0, 1]).

(vii) For weighting vector W = (1̃, 0̃, . . . , 0̃) it holds FW (A1, . . . , An) =

A1 � · · · � An, and for weighting vector W = (0̃, . . . , 0̃, 1̃) it holds
FW (A1, . . . , An) = A1 � . . . � An, for all A1, . . . , An ∈ FNC([0, 1]).

P r o o f. (i) FW(0̃, . . . , 0̃) = (W1 � 0̃) � · · · � (Wn � 0̃) = 0̃ � · · · � 0̃ = 0̃.

(ii) FW(1̃, . . . , 1̃) = (W1 � 1̃) � · · · � (Wn � 1̃) = W1 � · · · � Wn = 1̃.
(iii) Let A1 � A∗

1, . . . , An � A∗
n. Then we have B1 � B∗

1 , . . . , Bn � B∗
n and

consequently FW(A1, . . . , An) = (W1 �B1)� · · · � (Wn �Bn) � (W1 �B∗
1 )� · · ·

· · · � (Wn � B∗
n) = FW(A∗

1, . . . , A
∗
n). (iv) The proof immediately follows from

[5, Proposition 3.7 (iii)]. (v) Immediately follows from Def. 2.3. (vii) Imme-
diately follows from [5, Proposition 3.8]. (vi) According to Def. 2.1 we have

FW(A, . . . , A) = (W1�A)�· · ·�(Wn�A) = (W1�· · ·�Wn)�A = 1̃�A = A. �

2.3. Homogeneity and shift-invariance

���������� 2.5� An aggregation function M : F ([0, 1])n → F ([0, 1]) is ho-
mogeneous if for all λ ∈]0,∞[ and for all (A1, . . . , An) ∈ FNC([0, 1])

n the fol-
lowing holds: M (λA1, . . . , λAn) = λM (A1, . . . , An) whenever (λA1, . . . , λAn) ∈
FNC([0, 1])

n.

���������� 2.6� An aggregation function M : F ([0, 1])n → F ([0, 1]) is shift-
invariant (or stable for translations) if for all λ ∈ [0, 1] and for all (A1, . . . , An) ∈
FNC([0, 1])

n the following holds: M (A1 + λ, . . . , An + λ) = M (A1, . . . , An) + λ
whenever (A1 + λ, . . . , An + λ) ∈ FNC([0, 1])

n.

Recall that for A ∈ F ([0, 1]) and appropriate λ we have (λA)(x)=A (x/λ) and
(A+ λ)(x) = A (x− λ), moreover λA and A+ λ are normal convex fuzzy sets if
A is normal convex fuzzy set.
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���
�� 2.7� OWA operator FW :FNC([0, 1])
n→FNC([0, 1]) given by Def. 2.3

is not homogeneous.

P r o o f.
We give an counterexample. Let λ = 2, A1 = (0.3, 0.4, 0.5), A2 = (0.1, 0.2, 0.3),

W1 = (0.2, 0.3, 0.4) be triangular fuzzy sets in [0, 1], W2 = 1̃ and W = (W1,W2).
Then λA1 = (0.6, 0.8, 1), λA2 = (0.2, 0.4, 0.6) and FW(A1, A2) = (W1 � A1) �
(W2 � A2) = W1 � A2 = W1, FW(λA1, λA2) = (W1 � λA1) � (W2 � λA2) =
W1 � λA2 = λA2, hence FW(λA1, λA2) �= λFW(A1, A2). �

����� 2.8� Let A1, . . . , An ∈ F (R) and λ ∈]0,∞[. Then:
(i) λA1 � · · · � λAn = λ(A1 � · · · �An); and
(ii) λA1 � . . . � λAn = λ(A1 � . . . � An).

P r o o f.
(i) (λA1 � · · · � λAn

)
(z) = sup

x1∨...∨xn=z

(
(λA1)(x1) ∧ · · · ∧ (λAn)(xn)

)
= sup

x1
λ ∨...∨xn

λ = z
λ

(
(A1)(x1/λ) ∧ · · · ∧ (An)(xn/λ)

)
= (A1 � · · · � An)(z/λ) =

(
λ(A1 � · · · �An)

)
(z).

(ii) The proof is analogous. �

��
����
� 2.9� Let λ ∈]0,∞[. If we take λA1, . . . , λAn instead of A1, . . .
. . . , An ∈ F (R) in the equation (3), then we get chain λBn � . . . � λB1

instead of Bn � . . . � B1.

���
�� 2.10� OWA operator FW :FNC([0, 1])
n→FNC([0, 1]) given by Def. 2.3

is not shift-invariant.

P r o o f. We give an counterexample. Let λ = 0.4, A1 = (0.3, 0.4, 0.5), A2 =

(0.1, 0.2, 0.3), W1 = (0.2, 0.3, 0.4) be triangular fuzzy sets in [0, 1], W2 = 1̃ and
W = (W1,W2). Then A1 + λ = (0.7, 0.8, 0.9), A2 + λ = (0.5, 0.6, 0.7) and
FW(A1, A2) = (W1 � A1) � (W2 � A2) = W1 � A2 = W1, FW(A1 + λ,
A2 + λ) =

(
W1 � (A1 + λ)

) � (
W2 � (A2 + λ)

)
= W1 � (A2 + λ) = A2 + λ,

hence FW(A1 + λ,A2 + λ) �= FW(A1, A2) + λ. �

����� 2.11� Let A1, . . . , An ∈ F (R) and λ ∈ R. Then:
(i) (A1 + λ) � · · · � (An + λ) = (A1 � · · · �An) + λ; and
(ii) (A1 + λ) � . . . � (An + λ) = (A1 � . . . �An) + λ.
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P r o o f.
(i)

(
(A1 + λ) � · · · � (An + λ)

)
(z) = sup

x1∨···∨xn=z(
(A1 + λ)(x1) ∧ · · · ∧ (An + λ)(xn)

)
= sup

(x1−λ)∨···∨(xn−λ)=z−λ(
(A1)(x1 − λ) ∧ · · · ∧ (An)(xn − λ)

)
= (A1 � · · · � An)(z − λ)

=
(
(A1 � · · · � An) + λ

)
(z).

(ii) The proof is analogous. �

��
����
� 2.12� Let λ ∈ R. If we take A1 + λ, . . . , An + λ instead of A1, . . .
. . . , An ∈ F (R) in the equation (3), then we get chain Bn + λ � . . . � B1 + λ
instead of Bn � . . . � B1.

2.4. Operators for numbers and intervals

We show that OWA operator FW given by Def. 2.3 is an extension of Yager’s
OWA operator on [0, 1], moreover, FW is closed on the set of all closed subinter-
vals of [0, 1].

���
�� 2.13� Let w1, . . . , wn, a1, . . . , an ∈ [0, 1], w = (w1, . . . , wn), W =
(w̃1, . . . , w̃n). Let FW be the corresponding OWA operator given by Def. 2.3 and
OWAw : [0, 1]n → [0, 1] be the standard Yager’s OWA operator for real numbers
given by the equation (1). Then

FW(ã1, . . . , ãn) ≡ OWAw(a1, . . . , an), for all w1, . . . , wn

such that FW and OWAw are defined.

P r o o f. Operators FW and OWAw are defined simultaneously if and only if
weighting vector (w̃1, . . . , w̃n) is distributive and w1+· · ·+wn = 1, i.e., according
to Proposition 2.2, wk = 1 for some k ∈ {1, . . . , n} and wi = 0 for all i ∈
{1, . . . , n}−{k}. Then FW(ã1, . . . , ãn) = (0̃�B1)� · · · � (0̃�Bk−1)� (1̃�Bk)�
(0̃�Bk+1)� · · ·� (0̃�Bn) = Bk = ãσ(k) ≡ 0 · aσ(1) + · · ·+0 · aσ(k−1) +1 · aσ(k) +
0 · aσ(k+1) + · · · + 0 · aσ(n) = OWAw(a1, . . . , an). Recall that Bi = ãσ(i) for all
i ∈ {1, . . . , n}. �

From now on, I([0, 1]) = {[a, b] | 0 ≤ a ≤ b ≤ 1}, ˜[a, b] stands for the charac-
teristic function of [a, b] and K stands for the set of all characteristic functions

of the closed subintervals of [0, 1]. Recall that (K,�,�,�, 0̃, 1̃) is a subalgebra
of FNC , see [10].

���
�� 2.14� Let W be a distributive weighting vector in (K,�,�,�, 0̃, 1̃) and
FW the OWA operator given by Def. 2.3. If A1, . . . , An ∈ K, then FW(A1, . . .
. . . , An) ∈ K.
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3. Type-1 OWA operators

In this section, we deal with the type-1 OWA operator (T1-OWA, for short)
introduced in [13] and further developed in [14] and [15].

3.1. Definition (the second approach)

A binary operation on [0, 1] is called a t-norm if it is commutative, associative,
non-decreasing in each component and 1 acts as identity element.

���������� 3.1� Given a weighting vector W = (W1, . . . ,Wn) ∈ F ([0, 1])n, an
associated type-1 OWA operator of dimension n is a mapping ΦW : F (X)n →
F (X) given by

ΦW(A1, . . . , An)(y) = sup
n∑

i=1
wiaσ(i)=y

(
W1(w1) ∗ · · · ∗Wn(wn) ∗A1(a1) ∗ · · · ∗An(an)

)
,

where ∗ is a t-norm, wi = wi/
∑n

j=1wj , and σ : {1, . . . , n} → {1, . . . , n} is a

permutation such that aσ(i) is the i-th largest element in the set {a1, . . . , an}.
Remark. The second approach to avoiding the lack of a linear order in definition
of OWA operator is based on a delaying of application of a linear order in the
following way: we do not order input elements (fuzzy sets A1, . . . , An ∈ F (X))
before calculation of ΦW(A1, . . . , An)(y), but we only order elements a1, . . . an ∈
X (real numbers) later during the calculation. The reason is clear, there exists
a linear order on X, however, there does not exist such an order on F (X). But,
this means that overlapping input fuzzy sets are ordered in various ways during
the individual partial calculations of the sum

∑n
k=1wiaσ(i). Thus a fixed weight

Wi is not strictly assigned to the particular input Aσ(i), which is a property of
standard OWA operator. That is the price we pay for avoiding the non-existence
of linear order on the set of fuzzy sets by the second approach.

Example 2. Let the weighting vector W = (W1,W2,W3,W4) ∈ FNC([0, 1])
4

and inputs A1, A2, A3, A4 ∈ FNC([0, 1]) be given by Figure 3. Let ∗ stand for
minimum. Then the result of type-1 OWA operator ΦW(A1, A2, A3, A4) is de-
picted in Figure 3 (red dashed line). The example and figure are taken from [13].

3.2. Algebraic properties

���
�� 3.2� Let W1, . . . ,Wn ∈ FNC([0, 1]), ΦW : FNC([0, 1])
n → FNC([0, 1])

be an associated type-1 OWA operator given by Def. 3.1, where ∗ stands for
minimum. Then:

(i) ΦW(0̃, . . . , 0̃) = 0̃;

(ii) ΦW(1̃, . . . , 1̃) = 1̃;
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W W W W

Figure 3. See Example 2.

(iii) A1 � B1, . . . , An � Bn imply ΦW(A1, . . . , An) � ΦW(B1, . . . , Bn),
for all A1, B1, . . . , An, Bn ∈ FNC([0, 1]);

(iv) A1 � . . . � An � ΦW(A1, . . . , An) � A1 � · · · � An, for all A1, . . . , An ∈
FNC([0, 1]);

(v) ΦW is a symmetric operator;

(vi) ΦW is an idempotent operator;

(vii) For weighting vector W = (1̃, 0̃, . . . , 0̃) it holds ΦW (A1, . . . , An) = A1�· · ·
· · · �An, and for weighting vector W = (0̃, . . . , 0̃, 1̃) it holds

ΦW (A1, . . . , An) = A1 � . . . �An, for all A1, . . . , An ∈ FNC([0, 1]).

P r o o f.
(i) Since the weights W1, . . . ,Wn are normal, there exist w∗

1 , . . . w
∗
n ∈ [0, 1]

such that Wi(w
∗
i ) = 1 for all i ∈ {1, . . . , n}. Then

ΦW(0̃, . . . , 0̃)(0) = sup
n∑

i=1

wiaσ(i)=0

(
W1(w1) ∗ · · · ∗Wn(wn) ∗ 0̃(a1) ∗ · · · ∗ 0̃(an)

)

≥ W1(w
∗
1) ∗ · · · ∗Wn(w

∗
n) ∗ 0̃(0) ∗ · · · ∗ 0̃(0) = 1.

And for y �= 0 there exists ak �= 0, for some k ∈ {1, . . . , n}, thus 0̃(ak) = 0

and consequently ΦW(0̃, . . . , 0̃)(y) = 0. (ii) The proof is similar to that of (i).
The proof of (iii), (iv) and (vii) follows from [14, Theorem 1, Theorem 2 and the
equations (6)–(7)], and observation that A � B imply A−

α ≤ B−
α , A+

α ≤ B+
α ,

where [A−
α , A

+
α ] denotes α-cut of A. (v) Immediately follows from Def. 3.1.

(vi) The proof follows from [14, Theorems 1 and 2 and the equations (6)–(7)].
�
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3.3. Homogeneity and shift-invariance

���
�� 3.3� OWA operator ΦW : F ([0, 1])n → F ([0, 1]) given by Def. 3.1 is
(i) homogeneous and (ii) shift-invariant.

P r o o f.
(i)ΦW(λA1, . . . , λAn)(y)

= sup
n∑

i=1
wiaσ(i)=y

(
W1(w1) ∗ · · · ∗Wn(wn) ∗ (λA1)(a1) ∗ · · · ∗ (λAn)(an)

)

= sup
n∑

i=1
wi

aσ(i)
λ = y

λ

(
W1(w1) ∗ · · · ∗Wn(wn) ∗A1(a1/λ) ∗ · · · ∗An(an/λ)

)

= ΦW(A1, . . . , An)(y/λ) = λΦW(A1, . . . , An)(y).

(ii) Observe that
∑n

i=1wi = 1. Then

ΦW(A1 + λ, . . . , An + λ)(y)

= sup
n∑

i=1
wiaσ(i)=y

(
W1(w1) ∗ · · · ∗Wn(wn) ∗ (A1 + λ)(a1) ∗ · · · ∗ (An + λ)(an)

)

= sup
n∑

i=1
wi(aσ(i)−λ)=y−λ

(
W1(w1) ∗ · · · ∗Wn(wn) ∗A1(a1 − λ) ∗ · · · ∗An(an − λ)

)

= ΦW(A1, . . . , An)(y − λ) = ΦW(A1, . . . , An)(y) + λ. �

3.4. Operators for numbers and intervals

We are going to show that OWA operator ΦW given by Def. 3.1 is an extension
of Yager’s OWA operator on [0, 1] and is closed on the set of all closed subintervals
of [0, 1].

���
�� 3.4� Let w1, . . . , wn, a1, . . . , an ∈ [0, 1], W = (w̃1, . . . , w̃n) and w =
(w1, . . . , wn) with wj = wj/

∑n
i=1wi, for all j ∈ {1, . . . , n}. Let ΦW be the

corresponding type-1 OWA operator given by Def. 3.1 and OWAw be standard
Yager’s OWA operator for real numbers given by the equation (1). Then

ΦW(ã1, . . . , ãn) ≡ OWAw(a1, . . . , an).

P r o o f.
For y = OWAw(a1, . . . , an) =

∑n
i=1wiaσ(i), we have

ΦW(ã1, . . . , ãn)(y) ≥ 1 ∗ · · · ∗ 1 ∗ 1 ∗ · · · ∗ 1 = 1

and for y �= ∑n
i=1wiaσ(i) it holds

ΦW(ã1, . . . , ãn)(y) = 0.
Hence,

ΦW(ã1, . . . , ãn) ≡
n∑

i=1

wiaσ(i) = OWAw(a1, . . . , an). �
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���
�� 3.5� Let W be a distributive weighting vector in (K,�,�,�, 0̃, 1̃) and
ΦW the OWA operator given by Def. 3.1. If A1, . . . , An ∈ K, then

ΦW(A1, . . . , An) ∈ K.

4. OWA operator for discrete gradual real intervals

In [7] an OWA operator for discrete gradual real intervals in [0, 1] was pro-
posed. It is based on the concepts introduced in [3] and [4]. Note that gradual
interval is more general concept that convex fuzzy set, hence, OWA operators
for gradual intervals are applicable to fuzzy sets, too. We will use the following
notation and terminology.

���������� 4.1 ( [4] )� A gradual real number r̆ is defined by an assignment
function Ar̆ : (0, 1] → R. The set of all gradual real numbers is denoted by
G(R).

We will consider discrete gradual real numbers Ar̆ : {α1, . . . , αk} → R, where
0 < α1 < α2 < . . . < αk = 1. The set of all discrete gradual real numbers is
denoted by DGk(R). We do not distinguish between gradual number and its
assignment function, thus we write r̆(α) instead of Ar̆(α). We have a partial
order on DGk(R): r̆ ≤ s̆ iff r̆(αi) ≤ s̆(αi) for all i = 1, . . . , k.

Gradual interval [4], i.e. interval of gradual real numbers, is defined as follows.

���������� 4.2 ( [4] )� Let x̆−, x̆+ be gradual real numbers such that x̆− ≤ x̆+.

A gradual interval X̆ is the set

X̆ =
{
r̆ ∈ G(R) | x̆− ≤ r̆ ≤ x̆+

}
.

We write X̆ = [x̆−, x̆+]. The set of all gradual intervals will be denoted by
I(G(R)).

If x̆−, x̆+ are discrete gradual numbers on the same set {α1, . . . , αk}, then
[x̆−, x̆+] is called a discrete gradual interval. The set of all discrete gradual inter-
vals is denoted by I

(
DGk(R)

)
. We have a natural partial order on I

(
DGk(R)

)
,

namely [x̆−, x̆+] �2 [y̆−, y̆+] iff (x̆− ≤ y̆− and x̆+ ≤ y̆+), which corresponds to
commonly used partial order of intervals: [a, b] ≤ [c, d] iff a ≤ c and b ≤ d.

4.1. Definition (the third approach)

We proposed a class of linear orders for discrete gradual real numbers in [7]
(this work was generalized in [9]). Based on this class and the concept of admis-
sible order introduced in [1], we also proposed a class of admissible linear orders
for discrete gradual intervals in [9]. We skip details, just note that an admissible
linear order for discrete gradual intervals will be denoted by � in this paper.

111



ZDENKO TAKÁČ

Let 1̆ ∈ DGk([0, 1]) stand for a discrete gradual real number with 1̆(αj) = 1
for all j = 1, . . . , k. The following operations will be of use in this paper:
(x̆+ y̆)(αj) = x̆(αj)+ y̆(αj), (λ+ y̆)(αj) = λ+ y̆(αj), (x̆ · y̆)(αj) = x̆(αj) · y̆(αj)
and (λ · y̆)(αj) = λ · y̆(αj), for all j = 1, . . . , k, where x̆, y̆ ∈ DGk(R) and λ ∈ R.

���������� 4.3� Let w̆ = (w̆1, . . . , w̆n) ∈ DGk([0, 1])
n with w̆1 + · · ·+ w̆n = 1̆

be a weighting vector of discrete gradual numbers. A discrete gradual inter-

vals OWA operator (DGIOWA, for short) associated with w̆ is a mapping G
�
w̆ :

I
(
DGk([0, 1])

)n → I
(
DGk([0, 1])

)
defined by

G
�
w̆

(
[x̆−

1 , x̆
+
1 ], . . . , [x̆

−
n , x̆

+
n ]
)
=

n∑
i=1

w̆i · [x̆−
(i), x̆

+
(i)], (4)

where [x̆−
(i), x̆

+
(i)], i = 1, . . . , n, denotes the ith greatest component of the input(

[x̆−
1 , x̆

+
1 ], . . . , [x̆

−
n , x̆

+
n ]
)
with respect to an admissible order �.

Remark. The third approach to avoiding the lack of a linear order in defini-
tion of OWA operator is based on a discretization of inputs. The inputs of OWA

operator G
�
w̆ given by Definition 4.3 are discrete gradual intervals for which we

have a linear order, so definition of the operator G
�
w̆ can be done as a straight-

forward extension of standard Yager’s OWA operator for real numbers. Note
that the set of all normal convex fuzzy sets in [0, 1] is a subset of the set of all

gradual intervals in [0, 1]. Hence, the operator G
�
w̆ can also be applied to fuzzy

sets. The drawback of the approach lays in the fact that the weights are only
gradual numbers, not gradual intervals. That is the price we pay for avoiding
the non-existence of linear order on the set of fuzzy sets by the third approach.

Example 3. Let w̆ = (w̆1, w̆2, w̆3) ∈ DGk([0, 1])
n with w̆1 + w̆2 + w̆3 = 1̆ be

a weighting vector of discrete gradual numbers w̆1, w̆2, w̆3 given by Figure 4.
Let inputs A1, A2, A3 be discrete gradual intervals given by Figure 4. Then the

result of DGIOWA operator G
�
w̆(A1, A2, A3) is depicted in Figure 4. For more

detailed explanation see [9, Example 5].

4.2. Algebraic properties

In the following theorem we will use both the partial order �2 and the ad-
missible (that is linear) order � on I

(
DGk([0, 1])

)
.

���
�� 4.4� For any operatorG
�
w̆ on I

(
DGk([0, 1])

)
given by Def. 4.3 it holds:

(i) G
�
w̆

(
[0̆, 0̆], . . . , [0̆, 0̆]

)
= [0̆, 0̆];

(ii) G
�
w̆

(
[1̆, 1̆], . . . , [1̆, 1̆]

)
= [1̆, 1̆];
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Figure 4. See Example 3.

(iii) [x̆−
1 , x̆

+
1 ] �2 [y̆−1 , y̆

+
1 ], . . . , [x̆

−
n , x̆

+
n ] �2 [y̆−n , y̆

+
n ] imply

G
�
w̆

(
[x̆−

1 , x̆
+
1 ], . . . , [x̆

−
n , x̆

+
n ]
) �2 G

�
w̆

(
[y̆−1 , y̆

+
1 ], . . . , [y̆

−
n , y̆

+
n ]
)
,

for all [x̆−
1 , x̆

+
1 ], [y̆

−
1 , y̆

+
1 ], . . . , [y̆

−
n , y̆

+
n ] ∈ I

(
DGk([0, 1])

)
.

(iv) X̆1∧ · · ·∧ X̆n �2 G
�
w̆

(
X̆1, . . . , X̆n

)
�2 X̆1∨ . . .∨ X̆n, for all X̆1, . . . , X̆n ∈

I (DGk([0, 1])), where ∧ and ∨ stand for meet and join with respect to
partial order �2, respectively.

(v) G
�
w̆ is a symmetric operator.

(vi) G
�
w̆ is an idempotent operator.

(vii) For weighting vector w̆ = (1̆, 0̆, . . . , 0̆) it holds

G
�
w̆

(
X̆1, . . . , X̆n

)
= max�

(
X̆1, . . . , X̆n

)
,

and for weighting vector w̆ = (0̆, . . . , 0̆, 1̆) it holds

G
�
w̆

(
X̆1, . . . , X̆n

)
= min�

(
X̆1, . . . , X̆n

)
,

for all X̆1, . . . , X̆n ∈ I
(
DGk([0, 1])

)
, where max� and min� stand for max-

imum and minimum with respect to linear order �, respectively.

P r o o f. For proof of items (i)–(iii) see [9, Theorem 3.9] and the rest straight-
forwardly follows from Def. 4.3 and properties of discrete gradual intervals. �

4.3. Homogeneity and shift-invariance

Observe that λX̆ = λ[x̆−, x̆+] = [λx̆−, λx̆+] and X̆ + λ = [x̆−, x̆+] + λ =
[x̆− + λ, x̆+ + λ].

���
�� 4.5� OWA operator G
�
w̆ : I

(
DGk([0, 1])

)n → I
(
DGk([0, 1])

)
given

by Def. 4.3 is homogeneous, i.e., if (λX̆1, . . . , λX̆n) ∈ I
(
DGk([0, 1])

)n
, then

G
�
w̆(λX̆1, . . . , λX̆n) = λG

�
w̆(X̆1, . . . , X̆n), for all λ ∈]0,∞[ and (X̆1, . . . , X̆n) ∈

I
(
DGk([0, 1])

)n
.
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P r o o f.

G
�
w̆

(
λ[x̆−

1 , x̆
+
1 ], . . . , λ[x̆

−
n , x̆

+
n ]
)
=

n∑
i=1

w̆iλ[x̆
−
(i), x̆

+
(i)]=λG

�
w̆

(
[x̆−

1 , x̆
+
1 ], . . . , [x̆

−
n , x̆

+
n ]
)
.

�
���
�� 4.6� OWA operator G

�
w̆ : I

(
DGk([0, 1])

)n → I
(
DGk([0, 1])

)
given

by Def. 4.3 is shift-invariant, i.e., if (X̆1 + λ, . . . , X̆n + λ) ∈ I
(
DGk([0, 1])

)n
,

then G
�
w̆(X̆1 + λ, . . . , X̆n + λ) = G

�
w̆(X̆1, . . . , X̆n) + λ, for all λ ∈ [0, 1] and

(X̆1, . . . , X̆n) ∈ I
(
DGk([0, 1])

)n
.

P r o o f.

G
�
w̆

(
[x̆−

1 , x̆
+
1 ] + λ, . . . , [x̆−

n , x̆
+
n ] + λ

)
=

n∑
i=1

w̆i([x̆
−
(i), x̆

+
(i)] + λ)

=

n∑
i=1

(w̆i[x̆
−
(i), x̆

+
(i)] + w̆iλ)

= G
�
w̆

(
[x̆−

1 , x̆
+
1 ], . . . , [x̆−

n , x̆
+
n ]
)
+ λ.

�

4.4. Operators for numbers and intervals

���
�� 4.7� Let w = (w1, . . . , wn) ∈ [0, 1]n with w1 + · · · + wn = 1, and
let w̆ = (w̆1, . . . , w̆n) with w̆i(αj) = wi for all i = 1, . . . , n, j = 1, . . . , k. Let

G
�
w̆ be the corresponding OWA operator on I

(
DGk([0, 1])

)
given by Def. 4.3 and

OWAw be the standard Yager’s OWA operator for real numbers given by the
equation (1). Then

G
�
w̆ ([x̆1, x̆1], . . . , [x̆n, x̆n]) ≡ OWAw (x1, . . . , xn) ,

where � stands for an admissible (linear) order on I
(
DGk([0, 1])

)
and

x̆i(αj) = xi for all i = 1, . . . , n, j = 1, . . . , k.

P r o o f. See Theorem 3.10 in [9]. �
���
�� 4.8� Let w1, . . . , wn ∈ [0, 1] with w1 + · · · + wn = 1, and let w̆ =

(w̆1, . . . , w̆n), where w̆i(αj) = wi for all i = 1, . . . , n, j = 1, . . . , k. Let G
�
w̆ be

the corresponding OWA operator on I
(
DGk([0, 1])

)
given by Def. 4.3.

Let x−
i , x

+
i ∈ [0, 1] be such that x−

i ≤ x+
i for all i = 1, . . . , n. Then there ex-

ist y−, y+ ∈ [0, 1] with y− ≤ y+ such that

G
�
w̆

(
[x̆−

1 , x̆
+
1 ], . . . , [x̆

−
n , x̆

+
n ]
)
= [y̆−, y̆+],

where x̆−
i (αj) = x−

i , x̆+
i (αj) = x+

i for all i = 1, . . . , n, j = 1, . . . , k, and
y̆−(αj) = y−, y̆+(αj) = y+ for all j = 1, . . . , k.
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Remark. Note that, for some appropriate admissible orders of intervals and dis-

crete gradual intervals, the operator G
�
w̆ is an extension of the so-called IVOWA

operator [2], which is an operator on the set of all closed subintervals of [0, 1].
However, we do not have sufficient tools in this paper to enable us to give the
exact results in this direction (see [9, Theorem 3.10]).

5. Properties of OWA operators

In the previous sections, we introduced the definitions of three different OWA

operators for fuzzy sets in [0, 1], namely FW (L-OWA), ΦW (type-1 OWA) and

G
�
w̆ (DGIOWA), and proved some their properties that have not been studied

in the literature yet. Table 1 summarizes the proved properties and also a few
properties proved by other authors in the past.

In the first part of Table 1 (lines 1–3) the inputs, outputs and weights are
summarized. Although there are different types of inputs and outputs for the
three operators, normal convex fuzzy sets are encompassed in each of them.
The only exception is that the weights of DGIOWA operator are not fuzzy sets,
they are just gradual numbers.

The second part of Table 1 (lines 4–6) concerns with three basic properties
of each aggregation function, that is boundary conditions and monotonicity.
According to these properties, the three operatorsL-OWA,T1-OWA andDGIOWA

are rightly called aggregation functions.

In the third part of Table 1 (lines 7–11) frequently used algebraic properties of
aggregation functions are included. We can see that all the three operators have
desired algebraic properties, namely they are between minimum and maximum,
they are exactly minimum or maximum for some special weighting vector, and
they are symmetric and idempotent.

The fourth part of Table 1 (lines 12–13) deals with linearity of aggregation
functions, that is homogeneity and shift-invariance. The result is that OWA

operator defined by the first approach (L-OWA) is neither homogeneous nor
shift-invariant, but operators defined by the second (T1-OWA) and the third
(DGIOWA) approach are both, hence they are linear aggregation functions.

According to the last part of Table 1 (lines 14–15) all the three defined OWA

operators are extensions of standard Yager’s operator, more precisely if all the
inputs and weights are numbers from [0, 1] then all the three operators give the
same result as Yager’s OWA operator. Moreover, the three operators are closed
on the set of all subintervals of [0, 1].
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Table 1. The summary of properties of the three OWA operators.

OPERATOR L-OWA T1-OWA DGIOWA

PROPERTY Def. 2.3 Def. 3.1 Def. 4.3

Inputs FNC([0, 1]) F (X) I
(
DGk([0, 1])

)
Weights FNC([0, 1]) F ([0, 1]) DGk([0, 1])

Output FNC([0, 1]) F (X) I
(
DGk([0, 1])

)
OWA(0, . . . , 0) = 0 Th. 2.4 (i) Th. 3.2 (i) Th. 4.4 (i)

OWA(1, . . . , 1) = 1 Th. 2.4 (ii) Th. 3.2 (ii) Th. 4.4 (ii)

Non-decreasingness Th. 2.4 (iii) Th. 3.2 (iii) Th. 4.4 (iii)

min ≤ OWA ≤ max Th. 2.4 (iv) Th. 3.2 (iv) Th. 4.4 (iv)

Symmetry Th. 2.4 (v) Th. 3.2 (v) Th. 4.4 (v)

Idempotency Th. 2.4 (vi) Th. 3.2 (vi) Th. 4.4 (vi)

OWA(1,0,...,0) = max Th. 2.4 (vii) Th. 3.2 (vii) Th. 4.4 (vii)

OWA(0,...,0,1) = min Th. 2.4 (vii) Th. 3.2 (vii) Th. 4.4 (vii)

Homogeneity xxx Th. 3.3 (i) Th. 4.5

Shift-invariance xxx Th. 3.3 (ii) Th. 4.6

Standard OWA on [0, 1] Th. 2.13 Th. 3.4 Th. 4.7

OWA on intervals Th. 2.14 Th. 3.5 Th. 4.8

6. Conclusion

Various ways of extension of Yager’s OWA operator from [0, 1] to the set of
all normal convex fuzzy sets in [0, 1] are presented. The focus of this paper is to
describe the methods of dealing with the lack of a linear order on the set of all
fuzzy sets and defining OWA operators on the set. The three approaches were
investigated, namely L-OWA operator on any complete lattice endowed with a
t-norm and a t-conorm [5], type-1 OWA operator for aggregating linguistic infor-
mation based on the extension principle [13], and DGIOWA operator for discrete
gradual real intervals in [0, 1] [9]. We have adapted the three approaches to
the set of all normal convex fuzzy sets in [0, 1], proved some of their algebraic
properties, studied their linearity (homogeneity and shift-invariance) and dis-
cussed how they perform on [0, 1] and the set of interval fuzzy sets in [0, 1].
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As it can be seen from the summarization in Table 1, all the three approaches
to avoiding the lack of a linear order when defining OWA operator on the set of
fuzzy sets have led to operator with desired algebraic properties, two of them are
also linear, and finally all of them are extensions of standard Yager’s operator
on [0, 1] and are closed on the set of all subintervals of [0, 1].
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