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ON SOME DENSITY TOPOLOGY WITH RESPECT

TO AN EXTENSION OF LEBESGUE MEASURE

Katarzyna Flak — Jacek Hejduk — Sylwia Tomczyk

ABSTRACT. This paper presents a density type topology with respect to an
extension of Lebesgue measure involving sequence of intervals tending to zero.
Some properties of such topologies are investigated.

Let R denote a set of real numbers, N a set of natural numbers, and λ
a Lebesgue measure on R. By L we understand a family of Lebesgue measur-
able sets, by L a family of Lebesgue measurable null sets, and by |I| a length
of an interval I. By μ we denote any complete extension of Lebesgue measure
λ, by Sμ a domain of function μ, and by Iμ a family of μ-null sets. If A, B are
families of subsets of the space X, then we use notation A � B = {C ⊂ X :
C = A \ B,A ∈ A, B ∈ B} and AΔB = {C ⊂ X : C = AΔB,A ∈ A, B ∈ B},
where Δ is an operation of the symmetric difference. It is well-known that if A
is σ-algebra of sets in X and B is σ-ideal of sets in X, then the family AΔB is
the smallest σ-algebra containing A ∪ B.

It is clear that x0 ∈ R is a density point of a set A ∈ L if

lim
h→0+

λ(A ∩ [x0 − h, x0 + h])

2h
= 1.

It is equivalent to

lim
h1→0+,h2→0+,

h1+h2>0

λ(A ∩ [x0 − h1, x0 + h2])

h1 + h2
= 1.

The above condition can be written as in [8]:

∀{Jn}n∈N

(
0 ∈

⋂
n∈N

Jn ∧ |Jn| −→
n→∞

0

)
=⇒ lim

n→∞

λ(A ∩ (Jn + x0))

|Jn|
= 1,

where {Jn}n∈N is a sequence of closed intervals.
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Let A ∈ L and Φd(A) = {x ∈ R : x is a density point of A}. Then the family
Td =

{
A ∈ L : A ⊂ Φd(A)

}
is a topology called density topology (see [8]).

We say that a sequence of closed intervals J = {Jn}n∈N is convergent to 0 if
diam

{
{0} ∪ Jn

}
−→
n→∞

0. We will consider sequences of closed intervals.

Let J = {Jn}n∈N be a sequence of closed intervals convergent to zero. We say
that the point x0 ∈ R is a J-density point of a set A ∈ L, if

lim
n→∞

λ(A ∩ (Jn + x0))

|Jn|
= 1.

Let ΦJ(A) = {x ∈ R : x is a J-density point of a set A}.
Having regard to the results of the paper [4], we obtain the following proper-

ties:

�������� 1� If A ∈ L, then ΦJ(A) ∈ Fσδ, so ΦJ(A) ∈ L.

�������� 2� For arbitrary sets A,B ∈ L and arbitrary sequence J of intervals
convergent to zero, we obtain that

a) ΦJ (R) = R, ΦJ (∅) = ∅,
b) λ(AΔB) = 0 ⇒ ΦJ(A) = ΦJ(B),

c) ΦJ (A ∩ B) = ΦJ (A) ∩ ΦJ (B),

d) λ
(
ΦJ(A) \A

)
= 0.

From the above property we conclude that for an arbitrary sequence of inter-
vals tending to zero, operator ΦJ is an almost lower density operator on (R,L,L)
(see [3]).

The paper [4] also contains the proofs of the following two theorems:

	
����� 1 (cf. [4])� If J = {Jn}n∈N is a sequence of intervals tending to zero,
then the family

TJ =
{
A ∈ L : A ⊂ ΦJ(A)

}
is a topology such that Tnat � TJ , where Tnat denotes a natural topology on R.
Topology TJ described above will be called the topology generated by the opera-
tor ΦJ on the space (R,L,L).

For an arbitrary sequence J = {Jn}n∈N tending to zero we define

α(J) = lim sup
n→∞

diam{{0} ∪ Jn}
|Jn|

.

	
����� 2 (cf. [4])� If J = {Jn}n∈N is a sequence of intervals tending to zero
such that α(J) < ∞, then for an arbitrary A ∈ L,

λ
(
ΦJ(A)ΔA

)
= 0.
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Taking into account Property 2 and Theorem 2, we conclude that if α(J) < ∞,
then operator ΦJ is the lower density operator on space (R,L,L) (see [4]).

Let J = {Jn}n∈N be a sequence of intervals tending to zero. Let A ∈ Sμ.
We say that a point x0 ∈ R is a J-density point of the set A if

lim
n→∞

μ(A ∩ (Jn + x0))

|Jn|
= 1.

Let Φμ
J(A) = {x ∈ R : x is a J-density point of the set A}.

�������� 3 (cf. [4])� For an arbitrary sequence of intervals J = {Jn}n∈N

tending to zero and for an arbitrary set A ∈ Sμ we obtain that Φμ
J (A) ∈ L.

P r o o f. Let A ∈ Sμ. Then, x ∈ Φμ
J(A) if and only if

∀k∈N∃m∈N∀n>m
μ(A ∩ (Jn + x))

|Jn|
≥ 1− 1

k
.

Hence,

Φμ
J (A) =

⋂
k∈N

⋃
m∈N

⋂
n>m

{
x ∈ R :

μ(A ∩ (Jn + x))

|Jn|
≥ 1− 1

k

}
.

A function f(x) = μ
(
A∩ (Jn + x)

)
is continuous for a fixed n ∈ N, furthermore,

it satisfies Lipschitz’s condition. In fact, for every x1, x2 we have∣∣f(x1)− f(x2)| = |μ
(
A ∩ (Jn + x1)

)
− μ

(
A ∩ (Jn + x2)

)∣∣
≤
∣∣μ(A ∩ ((Jn + x1))Δ(Jn + x2))

)∣∣
≤
∣∣μ((Jn + x1)

)
Δ
(
Jn + x2)

)∣∣
≤ 2|x1 − x2|. (1)

Hence, Φμ
J (A) ∈ Fδσ, so in particular, Φμ

J (A) ∈ L. �

Directly from the definition of the operator Φμ
J , we can deduce the following

property.

�������� 4� For any sequence of intervals J = {Jn}n∈N tending to zero and
any sets A,B ∈ Sμ we obtain:

a) Φμ
J (R) = R, Φμ

J (∅) = ∅,
b) Φμ

J (A ∩ B) = Φμ
J (A) ∩ Φμ

J (B),

c) μ(AΔB) = 0 ⇒ Φμ
J (A) = Φμ

J (B).

Now, we prove another property of the operator Φμ
J for a sequence of intervals

J = {Jn}n∈N tending to zero and such that 0 ∈ Jn for any n ∈ N. Let I0 denote
a family of all sequences of intervals tending to zero and containing zero.
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����� 3� If J ∈ I0, then for any A ∈ Sμ such that A ⊂ Φμ
J (A) we obtain

μ
(
Φμ

J(A) \A
)
= 0.

P r o o f. Let A ⊂ R be bounded. So, there exists an interval K such that A ⊂ K.
Now, we show that for any 0 < ε < λ(K) the family

K(ε) =

{
H ⊂ K : μ(H ∩ A) >

(
1− ε

λ(K)

)
λ(H)

}
,

where H is a closed interval, is a Vitali cover of the set A.

This is a consequence of the fact that if x ∈ A, then x ∈ Φμ
J (A), namely,

∀η>0∃δ>0∀|Jn|<δ
μ(A ∩ (Jn + x))

λ(Jn)
> 1− η.

Putting η = ε
λ(K)

, we find arbitrary short intervals such that (Jn + x) ∈ K(ε),

and x belongs to the interval (Jn + x) for any n ∈ N.

Hence, from the Vitali theorem there exists a sequence of closed, pairwise
disjoint intervals {Pn}n∈N from the family K(ε) such that

λ

(
A \

∞⋃
n=1

Pn

)
= 0.

Then,

μ

( ∞⋃
n=1

(Pn \A)
)

≤
∞∑

n=1

μ
(
Pn \ (A ∩ Pn)

)
≤ ε

λ(K)

∞∑
n=1

λ(Pn) ≤ ε
λ(K)

λ(K)
= ε.

Let

C =

(
A \

∞⋃
n=1

Pn

)
∪

∞⋃
n=1

Pn.

Then, A ⊂ C, C is Lebesgue measurable set and μ(C \A) < ε. Therefore,

∀n∈N∃Cn∈L,
A⊂Cn

μ(Cn \A) < 1

n
,

so,

A ⊂
∞⋂

n=1

Cn and μ

( ⋂
n∈N

Cn \A
)

= 0.

Then,

A =
⋂
n∈N

Cn \
( ⋂

n∈N

Cn \A
)
.

Putting

B =

∞⋂
n=1

Cn, D =

∞⋂
n=1

Cn \A,

we obtain

A = B \D, where B ∈ L and μ(D) = 0.
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At the same time, μ
(
Φμ

J(A) \A
)
= 0, because μ

(
Φμ

J(A) \A
)
= μ

(
Φμ

J (B \D) \
(B \ D)

)
= μ

(
Φμ

J (B) \ B
)

= λ
(
ΦJ (B) \ B

)
. If J ∈ I0, then α(J) = 1,

so from Theorem 2, we obtain λ
(
ΦJ(B) \B

)
= 0. �

	
����� 4� If J ∈ I0, then the family

T μ
J =

{
A ∈ Sμ : A ⊂ Φμ

J (A)
}

is a topology on R containing topology Td.

P r o o f. By Property 4, we obtain that ∅, R ∈ T μ
J , and T μ

J is closed under inter-
section. Let {At}t∈T ⊂ T μ

J . We show that
⋃

t∈T At ∈ T μ
J . The pair (Sμ, Iμ)

satisfies ccc, because the measure μ is σ-finite, so it has the hull property.
Let B ⊂

⋃
t∈T At be a measurable kernel. Then, μ

(
(B ∩At)ΔAt

)
= 0. Hence,

B ⊂
⋃
t∈T

At ⊂
⋃
t∈T

Φμ
J (At) =

⋃
t∈T

Φμ
J (B ∩ At) ∈ Φμ

J (B),

but μ
(
Φμ

J (B) \ B
)

= 0, then
⋃

t∈T At ∈ Sμ, and consequently,
⋃

t∈T At ⊂
Φμ

J (
⋃

t∈T At), which means that
⋃

t∈T At ∈ T μ
J . Obviously, Td ⊂ T μ

J . �

	
����� 5� For any sequence J ∈ I0 we have

T μ
J = TJ � Iμ,

where TJ is a topology generated by the operator ΦJ on the space (R,L,L).

P r o o f. Let A=B \C, B∈TJ , C∈Iμ. Then, A ∈ Sμ and Φμ
J(A) = Φμ

J(B \C) =
Φμ

J (B) ⊃ B ⊃ B \ C = A, so A ∈ T μ
J .

Let A∈T μ
J , then A∈Sμ and A⊂Φμ

J(A). From the proof of Theorem 3, we have

A = D \ E, where D ∈ L and E ∈ Iμ.
At the same time, A = Φμ

J(A) \
(
Φμ

J (A) \ A
)
= Φμ

J (D \ E) \ F = Φμ
J(D) \ F =

ΦJ (D) \ F, where F = Φμ
J(A) \ A. Since J ∈ I0, then α(J) = 1, so ΦJ is

the lower density operator on (R,L,L). It implies that ΦJ

(
ΦJ (D)

)
= ΦJ (D).

Hence, ΦJ (D) ∈ TJ . From Theorem 3 we have F ∈ Iμ, so A ∈ TJ � Iμ. �
Now, we quote a theorem on extension of measure.

	
����� 6 (see [6])� Let (X,S, μ) be a measurable space with a σ-finite mea-
sure μ. Let J ⊂ 2X be a σ-ideal such that μ∗(B) = 0 for B ∈ J, where μ∗ is
an inner measure induced by μ. Then, the function μ′ defined on σ-field SΔJ by
μ′(AΔB) = μ(A), where A ∈ S, B ∈ J, is an extension of the measure μ, and
if μ is a complete measure, then μ′ is a complete measure as well.

����

��� 1� If μ is a complete extension of Lebesgue measure, then the func-
tion μ′ defined on σ-field LΔIμ, where Iμ is σ ideal of μ-zero sets by μ′(AΔB) =
λ(A), where A ∈ L, B ∈ Iμ, is a complete extension of Lebesgue measure.
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Let μ be a complete extension of Lebesgue measure. Let us recall the definition
of the density operator on the space (R, Sμ, Iμ).

���������� 1� We shall say that operator Φ: Sμ → 2X is the lower density
operator on the space (R, Sμ, Iμ) if the following conditions are satisfied:

a) Φ(R) = R, Φ(∅) = ∅,
b) ∀A,B∈Sµ

Φ(A ∩ B) = Φ(A) ∩ Φ(B),

c) ∀A,B∈Sµ
μ(AΔB) = 0 ⇒ Φ(A) = Φ(B),

d) ∀A∈Sµ
μ
(
AΔΦ(A)

)
= 0.

Similarly to Theorem 4, we can prove the following theorem (see [4]).

	
����� 7� If Φ: Sμ → 2R is the lower density operator on (R, Sμ, Iμ), then
the family TΦ =

{
A ∈ Sμ : A ⊂ Φ(A)

}
is a topology on R.

We now justify that topology T μ
J generated by operator Φμ

J can also be gen-
erated by some lower density operator on the space (R,LΔIμ, Iμ).

	
����� 8� If J ∈ I0 and T μ
J is a topology generated by the operator Φμ

J , then
there exists a complete extension μ′ of Lebesgue measure such that Sμ′ ⊂ Sμ,
Iμ′ = Iμ, and Φμ′ =Φμ

J |Sµ′ , where Φμ
J |Sµ′ denotes the restriction of Φμ

J to the

family Sμ′ , is the lower density operator on (R, Sμ′ , Iμ′) and topology Tμ′ ={
A ∈ Sμ′ : A ⊂ Φμ′(A)

}
is identical to the topology T μ

J .

P r o o f. Let μ′ be a measure defined on σ-field Sμ′ = LΔIμ as in Corollary 1.
Then Sμ′ ⊂ Sμ, and clearly Iμ′ = Iμ. To prove that Φμ′ =Φμ

J |Sµ′ is the lower

density operator on (R, Sμ
′ , Iμ′ ) by Property 4, it is sufficient to show condi-

tion d) from Definition 1. Let A ∈ Sμ′ , then A = BΔC, where B ∈ L, C ∈ Iμ.
At the same time, Φμ′(A)ΔA = Φμ′(BΔC)Δ(BΔC) = Φμ

J(B)ΔBΔC. By The-
orem 2 we get Φμ

J(B)ΔB ∈ Iμ, so Φμ(A)ΔA ∈ Iμ. Hence, Φμ(A)ΔA ∈ Iμ′ .
We show that T μ

J = Tμ′ . Let A ∈ T μ
J . Then, by Theorem 5 we have A = B \ C,

where B ∈ L and C ∈ Iμ. Since Iμ = Iμ′ , we get that A ∈ Sμ′ and Φμ′(A) =
Φμ′(B \ C) = Φμ′(B) = Φμ

J(B) = Φμ
J (B \ C) = Φμ

J (A) ⊃ A. Hence, A ∈ Tμ′ .
Let A ∈ Tμ′ . Then, A ∈ Sμ′ and A ⊂ Φμ′(A). Clearly, A ∈ Sμ, because Sμ′ ⊂ Sμ

and Φμ′(A) = Φμ
J (A). Thus, A ∈ T μ

J . �

If J ∈ I0, then, by the previous theorem, it follows that the topology T μ
J

coincides with the topology generated by the operator Φμ
J |LΔIµ

which is the
lower density operator on (R,LΔIμ, Iμ). Hence in the light of the properties
of an abstract density topology generated by the lower density operator which
are presented in Theorem 25.3 and Theorem 25.9 in [3], we obtain the following
theorem.
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����� 9� Let J ∈ I0. Let T μ
J be a topology generated by an operator Φμ

J on
(R, Sμ, Iμ). Then :

a) A ∈ Iμ if and only if A is T μ
J -closed and T μ

J -nowhere dense;

b) If A ∈ Iμ, then A is T μ
J -closed and T μ

J -discrete;

c) Iμ = K(T μ
J ), where K(T μ

J ) is a family of the first category sets with respect
to topology T μ

J ;

d) Bor(T μ
J ) = B(T μ

J ) = LΔIμ, where Bor(T μ
J ) is a family of Borel sets,

B(T μ
J ) is a family of Baire sets with respect to the topology T μ

J ;

e) (R, T μ
J ) is a Baire space;

f) A is T μ
J -compact if and only if A is finite;

g) (R, T μ
J ) is not a first countable, not a second countable, and not a separable

space;

h) (R, T μ
J ) is not a Lindelöf space;

i) intTΦ
µ
J

(A) = A ∩ Φμ
J(KA), A ⊂ R, KA-μ-measurable kernel of the set A;

j) intTΦ
µ
J

(A) = A ∩ Φμ
J(A), A ∈ Sμ.

As a consequence of the previous theorem, we obtain that in the case of
a measure μ such that Sμ = LΔIμ and a sequence J ∈ I0, topology T μ

J gener-
ated by the operator Φμ

J is such that B(T μ
J ) = LΔIμ, K(T μ

J ) = Iμ, (R, T μ
J ) is

a Baire space. It is easy to see that the family of nonempty T μ
J -open and pair-

wise disjoint sets is at most countable. Hence, in the case Sμ = LΔIμ, topology
T μ
J is a von Neumann topology associated with the measure μ (see [8]). We can

prove the following theorem.

	
����� 10� Let J ∈ I0 and let and T μ
J be a topology generated by the opera-

tor Φμ
J . Then, the next conditions are equivalent:

a) Φμ
J is a lower density operator on (R, Sμ, Iμ);

b) Sμ = LΔIμ;
c) T μ

J is a von Neumann topology with respect to the measure μ.

P r o o f. a) ⇒ b) Of course, LΔIμ ⊂ Sμ. Let A ∈ Sμ. Then, AΔΦμ
J(A) ∈ Iμ.

From Property 3 we have Φμ
J (A) ∈ L, so A ∈ LΔIμ.

The implication b) ⇒ c) is a consequence of the previous theorem.

We prove the implication c) ⇒ a). By Property 4, it suffices to prove that
AΔΦμ

J (A) ∈ Iμ for A ∈ Sμ.

If T μ
J is a von Neumann topology with respect to the measure μ, then Sμ =

B(T μ
J ) = LΔIμ so A ∈ LΔIμ. Hence A = BΔC, where B ∈ L and C ∈ Iμ.

Therefore BΔCΔΦμ
J (BΔC) = BΔΦμ

J (B)ΔC ∈ Iμ, because BΔΦμ
J(B) ∈ L

by Theorem 2. �
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Now, we discuss some results related separation axioms.

For any sequence J ∈ I0 we have that Tnat ⊂ T μ
J . Hence, the space (R, T μ

J )
is Hausdorff. Paper [2] demonstrates that the space (R, TJ ) is regular, and in
paper [5] it was shown that (R, TJ ) is completely regular for any sequence of in-
tervals J tending to zero such that α(J) < ∞. So, for any sequence J ∈ I0,
the space (R, TJ ) is regular.

Investigating paper [7], we get that for J ∈ I0 the family of TJ -continuous
functions and T μ

J -continuous functions with value in a topological regular space
are equal. It implies that if (R, TJ ) is a regular space, then the space (R, T μ

J ) is
regular if and only if T μ

J = TJ . Finally, we get

�������� 5� For any sequence J ∈ I0, the following conditions are equivalent:

a) (R, T μ
J ) is completely regular;

b) (R, T μ
J ) is regular;

c) T μ
J = TJ ;

d) Iμ = L.

P r o o f. a ⇒ b is obvious. Let (R, T μ
J ) be regular. Let A ∈ T μ

J . Then A = V \B,
if V ∈ TJ and B ∈ Iμ. Let us assume that A /∈ TJ . Then, B ∈ Iμ \ L. Let C be
a measurable hull of B. We see that ΦJ(C) \B �= ∅ because otherwise ΦJ (C) ⊂
B ⊂ C would be measurable. Let x ∈ ΦJ (C) \ B. Since the space (R, Tμ) is
regular and B is Tμ-closed, then there exist V1, V2 ∈ Tμ, V1 ∩V2 = ∅ and x ∈ V1,
B ⊂ V2. Since V1 = W1 \D1, V2 = W2 \D2, where W1,W2 ∈ TJ , D1, D2 ∈ Iμ
we get W1 ∩ W2 = ∅. Then, W1 ⊂ R \ W2 and C ∩ W1 ⊂ C \ W2 ⊂ C \ B.
From the definition of a hull, λ(C \W2) = 0. This implies that ΦJ (C ∩W1) =
ΦJ (C)∩ΦJ (W2) = ∅. At the same time, x ∈ ΦJ (C)∩W1 ⊂ ΦJ (C)∩ΦJ (W2) = ∅,
which is a contradiction. Since TJ ⊂ T μ

J , implication b ⇒ c has been proved.
Let T μ

J = TJ and A ∈ Iμ \L. Then, X \A ∈ T μ
J . Hence X \A ∈ TJ and finally,

A ∈ L. So, A ∈ L. Since L ⊂ Iμ, implication c ⇒ d has been proved. If Iμ = L,
then T μ

J = TJ . Since J ∈ I0, then by Theorem 13 in [5], (R, T μ
J ) is completely

regular. �

It is worth mentioning that there exist extensions of the Lebesgue measure
maintaining Lebesgue null sets.

	
����� 11 (cf. [1])� Under the Continuum Hypothesis there exists a nonsep-
arable extension of the Lebesgue measure on R whose null sets coincide with the
null sets of the Lebesgue measure.

	
����� 12� Let J ∈ I0. Then the space (R, T μ
J ) is not normal.
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P r o o f. By Theorem 3.15 in [2], we conclude that the space (R, TJ ) is not nor-
mal. Hence there are TJ -closed sets F1, F2 �= ∅ and F1 ∩ F2 = ∅ such that for
any open set V1, V2 ∈ TJ such that F1 ⊂ V1, F2 ⊂ V2, we obtain V1 ∩ V2 �= ∅.
The sets F1, F2 are also T μ

J -closed. In case (R, T μ
J ) is a normal space, then there

are sets W1,W2 ∈ T μ
J such that F1 ⊂ W1, F2 ⊂ W2, W1 ∩W2 = ∅. Since by the

form of the topology T μ
J , W1 = V1 \ Z1, W2 = V2 \ Z2, where V1, V2 ∈ TJ and

Z1, Z2 ∈ Iμ. We conclude that V1, V2 are disjoint and also F1 ⊂ V1, F2 ⊂ V2.
This contradiction finishes the proof. �
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