

TATRA MOUNTAINS

Mathematical Publications

DOI: 10.1515/tmmp-2017-0009 Tatra Mt. Math. Publ. **68** (2017), 103–111

ON SOME DENSITY TOPOLOGY WITH RESPECT TO AN EXTENSION OF LEBESGUE MEASURE

Katarzyna Flak — Jacek Hejduk — Sylwia Tomczyk

ABSTRACT. This paper presents a density type topology with respect to an extension of Lebesgue measure involving sequence of intervals tending to zero. Some properties of such topologies are investigated.

Let \mathbb{R} denote a set of real numbers, \mathbb{N} a set of natural numbers, and λ a Lebesgue measure on \mathbb{R} . By \mathcal{L} we understand a family of Lebesgue measurable sets, by \mathbb{L} a family of Lebesgue measurable null sets, and by |I| a length of an interval I. By μ we denote any complete extension of Lebesgue measure λ , by S_{μ} a domain of function μ , and by \mathcal{I}_{μ} a family of μ -null sets. If \mathcal{A} , \mathcal{B} are families of subsets of the space X, then we use notation $\mathcal{A} \ominus \mathcal{B} = \{C \subset X : C = A \setminus B, A \in \mathcal{A}, B \in \mathcal{B}\}$, where Δ is an operation of the symmetric difference. It is well-known that if \mathcal{A} is σ -algebra of sets in X and \mathcal{B} is σ -ideal of sets in X, then the family $\mathcal{A}\Delta\mathcal{B}$ is the smallest σ -algebra containing $\mathcal{A} \cup \mathcal{B}$.

It is clear that $x_0 \in \mathbb{R}$ is a density point of a set $A \in \mathcal{L}$ if

$$\lim_{h\to 0^+}\frac{\lambda(A\cap [x_0-h,x_0+h])}{2h}=1.$$

It is equivalent to

$$\lim_{\substack{h_1 \to 0^+, h_2 \to 0^+, \\ h_1 + h_2 > 0}} \frac{\lambda(A \cap [x_0 - h_1, x_0 + h_2])}{h_1 + h_2} = 1.$$

The above condition can be written as in [8]:

$$\forall_{\{J_n\}_{n\in\mathbb{N}}} \left(0 \in \bigcap_{n\in\mathbb{N}} J_n \wedge |J_n| \underset{n\to\infty}{\longrightarrow} 0 \right) \Longrightarrow \lim_{n\to\infty} \frac{\lambda(A \cap (J_n + x_0))}{|J_n|} = 1,$$

where $\{J_n\}_{n\in\mathbb{N}}$ is a sequence of closed intervals.

^{© 2017} Mathematical Institute, Slovak Academy of Sciences. 2010 Mathematics Subject Classification: 54A10, 26A15, 54A20. Keywords: \mathcal{J} -density topologies, \mathcal{J} -approximately continuous functions.

Let $A \in \mathcal{L}$ and $\Phi_d(A) = \{x \in \mathbb{R} : x \text{ is a density point of } A\}$. Then the family $\mathcal{T}_d = \{A \in \mathcal{L} : A \subset \Phi_d(A)\}$ is a topology called density topology (see [8]). We say that a sequence of closed intervals $J = \{J_n\}_{n \in \mathbb{N}}$ is convergent to 0 if $\dim\{\{0\} \cup J_n\} \xrightarrow[n \to \infty]{} 0$. We will consider sequences of closed intervals.

Let $J = \{J_n\}_{n \in \mathbb{N}}$ be a sequence of closed intervals convergent to zero. We say that the point $x_0 \in \mathbb{R}$ is a J-density point of a set $A \in \mathcal{L}$, if

$$\lim_{n \to \infty} \frac{\lambda(A \cap (J_n + x_0))}{|J_n|} = 1.$$

Let $\Phi_J(A) = \{x \in \mathbb{R} : x \text{ is a } J\text{-density point of a set } A\}.$

Having regard to the results of the paper [4], we obtain the following properties:

PROPERTY 1. If $A \in \mathcal{L}$, then $\Phi_J(A) \in \mathcal{F}_{\sigma\delta}$, so $\Phi_J(A) \in \mathcal{L}$.

PROPERTY 2. For arbitrary sets $A, B \in \mathcal{L}$ and arbitrary sequence J of intervals convergent to zero, we obtain that

- a) $\Phi_J(\mathbb{R}) = \mathbb{R}, \ \Phi_J(\emptyset) = \emptyset,$
- b) $\lambda(A\Delta B) = 0 \Rightarrow \Phi_J(A) = \Phi_J(B),$
- c) $\Phi_J(A \cap B) = \Phi_J(A) \cap \Phi_J(B)$,
- d) $\lambda(\Phi_J(A) \setminus A) = 0.$

From the above property we conclude that for an arbitrary sequence of intervals tending to zero, operator Φ_J is an almost lower density operator on $(\mathbb{R}, \mathcal{L}, \mathbb{L})$ (see [3]).

The paper [4] also contains the proofs of the following two theorems:

THEOREM 1 (cf. [4]). If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero, then the family

 $\mathcal{T}_J = \left\{ A \in \mathcal{L} \colon A \subset \Phi_J(A) \right\}$

is a topology such that $\mathcal{T}_{nat} \subsetneq \mathcal{T}_J$, where \mathcal{T}_{nat} denotes a natural topology on \mathbb{R} . Topology \mathcal{T}_J described above will be called the topology generated by the operator Φ_J on the space $(\mathbb{R}, \mathcal{L}, \mathbb{L})$.

For an arbitrary sequence $J=\{J_n\}_{n\in\mathbb{N}}$ tending to zero we define

$$\alpha(J) = \limsup_{n \to \infty} \frac{\operatorname{diam}\{\{0\} \cup J_n\}}{|J_n|}.$$

THEOREM 2 (cf. [4]). If $J = \{J_n\}_{n \in \mathbb{N}}$ is a sequence of intervals tending to zero such that $\alpha(J) < \infty$, then for an arbitrary $A \in \mathcal{L}$,

$$\lambda (\Phi_J(A)\Delta A) = 0.$$

ON SOME DENSITY TOPOLOGY ...

Taking into account Property 2 and Theorem 2, we conclude that if $\alpha(J) < \infty$, then operator Φ_J is the lower density operator on space $(\mathbb{R}, \mathcal{L}, \mathbb{L})$ (see [4]).

Let $J = \{J_n\}_{n \in \mathbb{N}}$ be a sequence of intervals tending to zero. Let $A \in S_{\mu}$. We say that a point $x_0 \in \mathbb{R}$ is a J-density point of the set A if

$$\lim_{n \to \infty} \frac{\mu(A \cap (J_n + x_0))}{|J_n|} = 1.$$

Let $\Phi_J^{\mu}(A) = \{x \in \mathbb{R} : x \text{ is a } J\text{-density point of the set } A\}.$

PROPERTY 3 (cf. [4]). For an arbitrary sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}}$ tending to zero and for an arbitrary set $A \in S_{\mu}$ we obtain that $\Phi^{\mu}_{J}(A) \in \mathcal{L}$.

Proof. Let $A \in S_{\mu}$. Then, $x \in \Phi_{J}^{\mu}(A)$ if and only if

$$\forall_{k \in \mathbb{N}} \exists_{m \in \mathbb{N}} \forall_{n > m} \frac{\mu(A \cap (J_n + x))}{|J_n|} \ge 1 - \frac{1}{k}.$$

Hence,

$$\Phi_J^{\mu}(A) = \bigcap_{k \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \left\{ x \in \mathbb{R} \colon \frac{\mu(A \cap (J_n + x))}{|J_n|} \ge 1 - \frac{1}{k} \right\}.$$

A function $f(x) = \mu(A \cap (J_n + x))$ is continuous for a fixed $n \in \mathbb{N}$, furthermore, it satisfies Lipschitz's condition. In fact, for every x_1, x_2 we have

$$|f(x_1) - f(x_2)| = |\mu(A \cap (J_n + x_1)) - \mu(A \cap (J_n + x_2))|$$

$$\leq |\mu(A \cap ((J_n + x_1))\Delta(J_n + x_2)))|$$

$$\leq |\mu((J_n + x_1))\Delta(J_n + x_2))|$$

$$\leq 2|x_1 - x_2|. \tag{1}$$

Hence, $\Phi_J^{\mu}(A) \in F_{\delta\sigma}$, so in particular, $\Phi_J^{\mu}(A) \in \mathcal{L}$.

Directly from the definition of the operator Φ_J^{μ} , we can deduce the following property.

PROPERTY 4. For any sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}}$ tending to zero and any sets $A, B \in S_{\mu}$ we obtain:

- a) $\Phi_J^{\mu}(\mathbb{R}) = \mathbb{R}, \ \Phi_J^{\mu}(\emptyset) = \emptyset,$
- b) $\Phi_J^{\mu}(A \cap B) = \Phi_J^{\mu}(A) \cap \Phi_J^{\mu}(B)$,
- c) $\mu(A\Delta B) = 0 \Rightarrow \Phi_J^{\mu}(A) = \Phi_J^{\mu}(B)$.

Now, we prove another property of the operator Φ_J^{μ} for a sequence of intervals $J=\{J_n\}_{n\in\mathbb{N}}$ tending to zero and such that $0\in J_n$ for any $n\in\mathbb{N}$. Let \mathfrak{I}^0 denote a family of all sequences of intervals tending to zero and containing zero.

THEOREM 3. If $J \in \mathfrak{I}^0$, then for any $A \in S_{\mu}$ such that $A \subset \Phi_J^{\mu}(A)$ we obtain $\mu(\Phi_J^{\mu}(A) \setminus A) = 0$.

Proof. Let $A \subset \mathbb{R}$ be bounded. So, there exists an interval K such that $A \subset K$. Now, we show that for any $0 < \varepsilon < \lambda(K)$ the family

$$\mathcal{K}(\varepsilon) = \left\{ H \subset K \colon \mu(H \cap A) > \left(1 - \frac{\varepsilon}{\lambda(K)}\right) \lambda(H) \right\},\,$$

where H is a closed interval, is a Vitali cover of the set A.

This is a consequence of the fact that if $x \in A$, then $x \in \Phi_I^{\mu}(A)$, namely,

$$\forall_{\eta>0}\exists_{\delta>0}\forall_{|J_n|<\delta}\ \frac{\mu(A\cap(J_n+x))}{\lambda(J_n)}>1-\eta.$$

Putting $\eta = \frac{\varepsilon}{\lambda(\mathcal{K})}$, we find arbitrary short intervals such that $(J_n + x) \in \mathcal{K}(\varepsilon)$, and x belongs to the interval $(J_n + x)$ for any $n \in \mathbb{N}$.

Hence, from the Vitali theorem there exists a sequence of closed, pairwise disjoint intervals $\{P_n\}_{n\in\mathbb{N}}$ from the family $\mathcal{K}(\varepsilon)$ such that

$$\lambda \left(A \setminus \bigcup_{n=1}^{\infty} P_n \right) = 0.$$

Then,

$$\mu\bigg(\bigcup_{n=1}^{\infty}(P_n\setminus A)\bigg)\leq \sum_{n=1}^{\infty}\mu\big(P_n\setminus (A\cap P_n)\big)\leq \frac{\varepsilon}{\lambda(\mathcal{K})}\sum_{n=1}^{\infty}\lambda(P_n)\leq \varepsilon\frac{\lambda(\mathcal{K})}{\lambda(\mathcal{K})}=\varepsilon.$$

Let

$$C = \left(A \setminus \bigcup_{n=1}^{\infty} P_n\right) \cup \bigcup_{n=1}^{\infty} P_n.$$

Then, $A \subset C$, C is Lebesgue measurable set and $\mu(C \setminus A) < \varepsilon$. Therefore,

$$\forall_{n \in \mathbb{N}} \exists_{\substack{C_n \in \mathcal{L}, \\ A \subset C_n}} \mu(C_n \setminus A) < \frac{1}{n},$$

so,

$$A \subset \bigcap_{n=1}^{\infty} C_n$$
 and $\mu\left(\bigcap_{n \in \mathbb{N}} C_n \setminus A\right) = 0.$

Then,

$$A = \bigcap_{n \in \mathbb{N}} C_n \setminus \left(\bigcap_{n \in \mathbb{N}} C_n \setminus A\right).$$

Putting

$$B = \bigcap_{n=1}^{\infty} C_n, \qquad D = \bigcap_{n=1}^{\infty} C_n \setminus A,$$

we obtain

$$A = B \setminus D$$
, where $B \in \mathcal{L}$ and $\mu(D) = 0$.

At the same time, $\mu(\Phi_J^{\mu}(A) \setminus A) = 0$, because $\mu(\Phi_J^{\mu}(A) \setminus A) = \mu(\Phi_J^{\mu}(B \setminus D) \setminus (B \setminus D)) = \mu(\Phi_J^{\mu}(B) \setminus B) = \lambda(\Phi_J(B) \setminus B)$. If $J \in \mathfrak{I}^0$, then $\alpha(J) = 1$, so from Theorem 2, we obtain $\lambda(\Phi_J(B) \setminus B) = 0$.

THEOREM 4. If $J \in \mathfrak{I}^0$, then the family

$$\mathcal{T}_J^{\mu} = \left\{ A \in S_{\mu} \colon A \subset \Phi_J^{\mu}(A) \right\}$$

is a topology on \mathbb{R} containing topology \mathcal{T}_d .

Proof. By Property 4, we obtain that \emptyset , $\mathbb{R} \in \mathcal{T}_J^{\mu}$, and \mathcal{T}_J^{μ} is closed under intersection. Let $\{A_t\}_{t\in T} \subset \mathcal{T}_J^{\mu}$. We show that $\bigcup_{t\in T} A_t \in \mathcal{T}_J^{\mu}$. The pair $(S_{\mu}, \mathcal{I}_{\mu})$ satisfies ccc, because the measure μ is σ -finite, so it has the hull property. Let $B \subset \bigcup_{t\in T} A_t$ be a measurable kernel. Then, $\mu((B \cap A_t)\Delta A_t) = 0$. Hence,

$$B \subset \bigcup_{t \in T} A_t \subset \bigcup_{t \in T} \Phi_J^{\mu}(A_t) = \bigcup_{t \in T} \Phi_J^{\mu}(B \cap A_t) \in \Phi_J^{\mu}(B),$$

but $\mu(\Phi_J^{\mu}(B) \setminus B) = 0$, then $\bigcup_{t \in T} A_t \in S_{\mu}$, and consequently, $\bigcup_{t \in T} A_t \subset \Phi_J^{\mu}(\bigcup_{t \in T} A_t)$, which means that $\bigcup_{t \in T} A_t \in \mathcal{T}_J^{\mu}$. Obviously, $\mathcal{T}_d \subset \mathcal{T}_J^{\mu}$.

Theorem 5. For any sequence $J \in \mathfrak{I}^0$ we have

$$\mathcal{T}_J^\mu = \mathcal{T}_J \ominus \mathcal{I}_\mu,$$

where \mathcal{T}_J is a topology generated by the operator Φ_J on the space $(\mathbb{R}, \mathcal{L}, \mathbb{L})$.

Proof. Let $A = B \setminus C$, $B \in \mathcal{T}_J$, $C \in \mathcal{I}_\mu$. Then, $A \in S_\mu$ and $\Phi_J^\mu(A) = \Phi_J^\mu(B \setminus C) = \Phi_J^\mu(B) \supset B \supset B \setminus C = A$, so $A \in \mathcal{T}_J^\mu$.

Let $A \in \mathcal{T}_J^{\mu}$, then $A \in S_{\mu}$ and $A \subset \Phi_J^{\mu}(A)$. From the proof of Theorem 3, we have

$$A = D \setminus E$$
, where $D \in \mathcal{L}$ and $E \in \mathcal{I}_{\mu}$.

At the same time, $A = \Phi_J^{\mu}(A) \setminus (\Phi_J^{\mu}(A) \setminus A) = \Phi_J^{\mu}(D \setminus E) \setminus F = \Phi_J^{\mu}(D) \setminus F = \Phi_J(D) \setminus F$, where $F = \Phi_J^{\mu}(A) \setminus A$. Since $J \in \mathfrak{I}^0$, then $\alpha(J) = 1$, so Φ_J is the lower density operator on $(\mathbb{R}, \mathcal{L}, \mathbb{L})$. It implies that $\Phi_J(\Phi_J(D)) = \Phi_J(D)$. Hence, $\Phi_J(D) \in \mathcal{T}_J$. From Theorem 3 we have $F \in \mathcal{I}_\mu$, so $A \in \mathcal{T}_J \ominus \mathcal{I}_\mu$.

Now, we quote a theorem on extension of measure.

THEOREM 6 (see [6]). Let (X, S, μ) be a measurable space with a σ -finite measure μ . Let $J \subset 2^X$ be a σ -ideal such that $\mu_*(B) = 0$ for $B \in J$, where μ_* is an inner measure induced by μ . Then, the function μ' defined on σ -field $S\Delta J$ by $\mu'(A\Delta B) = \mu(A)$, where $A \in S$, $B \in J$, is an extension of the measure μ , and if μ is a complete measure, then μ' is a complete measure as well.

COROLLARY 1. If μ is a complete extension of Lebesgue measure, then the function μ' defined on σ -field $\mathcal{L}\Delta\mathcal{I}_{\mu}$, where \mathcal{I}_{μ} is σ ideal of μ -zero sets by $\mu'(A\Delta B) = \lambda(A)$, where $A \in \mathcal{L}$, $B \in \mathcal{I}_{\mu}$, is a complete extension of Lebesgue measure.

KATARZYNA FLAK — JACEK HEJDUK — SYLWIA TOMCZYK

Let μ be a complete extension of Lebesgue measure. Let us recall the definition of the density operator on the space $(\mathbb{R}, S_{\mu}, \mathcal{I}_{\mu})$.

DEFINITION 1. We shall say that operator $\Phi: S_{\mu} \to 2^{X}$ is the lower density operator on the space $(\mathbb{R}, S_{\mu}, \mathcal{I}_{\mu})$ if the following conditions are satisfied:

- a) $\Phi(\mathbb{R}) = \mathbb{R}, \ \Phi(\emptyset) = \emptyset,$
- b) $\forall_{A,B\in S_{\mu}} \Phi(A\cap B) = \Phi(A) \cap \Phi(B),$
- c) $\forall_{A,B \in S_n} \mu(A\Delta B) = 0 \Rightarrow \Phi(A) = \Phi(B),$
- d) $\forall_{A \in S_n} \mu(A\Delta\Phi(A)) = 0.$

Similarly to Theorem 4, we can prove the following theorem (see [4]).

THEOREM 7. If $\Phi: S_{\mu} \to 2^{\mathbb{R}}$ is the lower density operator on $(\mathbb{R}, S_{\mu}, \mathcal{I}_{\mu})$, then the family $\mathcal{T}_{\Phi} = \{A \in S_{\mu} : A \subset \Phi(A)\}$ is a topology on \mathbb{R} .

We now justify that topology \mathcal{T}_J^{μ} generated by operator Φ_J^{μ} can also be generated by some lower density operator on the space $(\mathbb{R}, \mathcal{L}\Delta\mathcal{I}_{\mu}, \mathcal{I}_{\mu})$.

THEOREM 8. If $J \in \mathfrak{I}^0$ and \mathcal{T}_J^{μ} is a topology generated by the operator Φ_J^{μ} , then there exists a complete extension μ' of Lebesgue measure such that $S_{\mu'} \subset S_{\mu}$, $\mathcal{I}_{\mu'} = \mathcal{I}_{\mu}$, and $\Phi_{\mu'} = \Phi_J^{\mu}|_{S_{\mu'}}$, where $\Phi_J^{\mu}|_{S_{\mu'}}$ denotes the restriction of Φ_J^{μ} to the family $S_{\mu'}$, is the lower density operator on $(\mathbb{R}, S_{\mu'}, \mathcal{I}_{\mu'})$ and topology $\mathcal{T}_{\mu'} = \{A \in S_{\mu'} \colon A \subset \Phi_{\mu'}(A)\}$ is identical to the topology \mathcal{T}_J^{μ} .

Proof. Let μ' be a measure defined on σ -field $S_{\mu'} = \mathcal{L}\Delta\mathcal{I}_{\mu}$ as in Corollary 1. Then $S_{\mu'} \subset S_{\mu}$, and clearly $\mathcal{I}_{\mu'} = \mathcal{I}_{\mu}$. To prove that $\Phi_{\mu'} = \Phi_J^{\mu}|_{S_{\mu'}}$ is the lower density operator on $(\mathbb{R}, S_{\mu'}, \mathcal{I}_{\mu'})$ by Property 4, it is sufficient to show condition d) from Definition 1. Let $A \in S_{\mu'}$, then $A = B\Delta C$, where $B \in \mathcal{L}$, $C \in \mathcal{I}_{\mu}$. At the same time, $\Phi_{\mu'}(A)\Delta A = \Phi_{\mu'}(B\Delta C)\Delta(B\Delta C) = \Phi_J^{\mu}(B)\Delta B\Delta C$. By Theorem 2 we get $\Phi_J^{\mu}(B)\Delta B \in \mathcal{I}_{\mu}$, so $\Phi_{\mu}(A)\Delta A \in \mathcal{I}_{\mu}$. Hence, $\Phi_{\mu}(A)\Delta A \in \mathcal{I}_{\mu'}$. We show that $\mathcal{T}_J^{\mu} = \mathcal{T}_{\mu'}$. Let $A \in \mathcal{T}_J^{\mu}$. Then, by Theorem 5 we have $A = B \setminus C$, where $B \in \mathcal{L}$ and $C \in \mathcal{I}_{\mu}$. Since $\mathcal{I}_{\mu} = \mathcal{I}_{\mu'}$, we get that $A \in S_{\mu'}$ and $\Phi_{\mu'}(A) = \Phi_{\mu'}(B \setminus C) = \Phi_J^{\mu}(B) = \Phi_J^{\mu}(B) = \Phi_J^{\mu}(B \setminus C) = \Phi_J^{\mu}(A) \supset A$. Hence, $A \in \mathcal{T}_{\mu'}$. Let $A \in \mathcal{T}_{\mu'}$. Then, $A \in S_{\mu'}$ and $A \subset \Phi_{\mu'}(A)$. Clearly, $A \in S_{\mu}$, because $S_{\mu'} \subset S_{\mu}$ and $\Phi_{\mu'}(A) = \Phi_J^{\mu}(A)$. Thus, $A \in \mathcal{T}_J^{\mu}$.

If $J \in \mathfrak{I}^0$, then, by the previous theorem, it follows that the topology \mathcal{T}_J^μ coincides with the topology generated by the operator $\Phi_J^\mu|_{\mathcal{L}\Delta\mathcal{I}_\mu}$ which is the lower density operator on $(\mathbb{R},\mathcal{L}\Delta\mathcal{I}_\mu,\mathcal{I}_\mu)$. Hence in the light of the properties of an abstract density topology generated by the lower density operator which are presented in Theorem 25.3 and Theorem 25.9 in [3], we obtain the following theorem.

ON SOME DENSITY TOPOLOGY ...

THEOREM 9. Let $J \in \mathfrak{I}^0$. Let \mathcal{T}_J^{μ} be a topology generated by an operator Φ_J^{μ} on $(\mathbb{R}, S_{\mu}, \mathcal{I}_{\mu})$. Then:

- a) $A \in \mathcal{I}_{\mu}$ if and only if A is \mathcal{T}_{J}^{μ} -closed and \mathcal{T}_{J}^{μ} -nowhere dense;
- b) If $A \in \mathcal{I}_{\mu}$, then A is \mathcal{T}_{I}^{μ} -closed and \mathcal{T}_{I}^{μ} -discrete;
- c) $\mathcal{I}_{\mu} = \mathcal{K}(\mathcal{T}_{J}^{\mu})$, where $\mathcal{K}(\mathcal{T}_{J}^{\mu})$ is a family of the first category sets with respect to topology \mathcal{T}_{J}^{μ} ;
- d) $Bor(\mathcal{T}_J^{\mu}) = B(\mathcal{T}_J^{\mu}) = \mathcal{L}\Delta\mathcal{I}_{\mu}$, where $Bor(\mathcal{T}_J^{\mu})$ is a family of Borel sets, $B(\mathcal{T}_J^{\mu})$ is a family of Baire sets with respect to the topology \mathcal{T}_J^{μ} ;
- e) $(\mathbb{R}, \mathcal{T}_I^{\mu})$ is a Baire space;
- f) A is \mathcal{T}_{J}^{μ} -compact if and only if A is finite;
- g) $(\mathbb{R}, \mathcal{T}_J^{\mu})$ is not a first countable, not a second countable, and not a separable space;
- h) $(\mathbb{R}, \mathcal{T}_I^{\mu})$ is not a Lindelöf space;
- i) $int_{\mathcal{T}_{\Phi^{\mu}}}(A) = A \cap \Phi^{\mu}_{J}(\mathcal{K}A), A \subset \mathbb{R}, \mathcal{K}A$ - μ -measurable kernel of the set A;
- j) $int_{\mathcal{T}_{\Phi_J^{\mu}}}(A) = A \cap \Phi_J^{\mu}(A), A \in S_{\mu}.$

As a consequence of the previous theorem, we obtain that in the case of a measure μ such that $S_{\mu} = \mathcal{L}\Delta\mathcal{I}_{\mu}$ and a sequence $J \in \mathfrak{I}^{0}$, topology \mathcal{T}^{μ}_{J} generated by the operator Φ^{μ}_{J} is such that $B(\mathcal{T}^{\mu}_{J}) = \mathcal{L}\Delta\mathcal{I}_{\mu}$, $\mathcal{K}(\mathcal{T}^{\mu}_{J}) = \mathcal{I}_{\mu}$, $(\mathbb{R}, \mathcal{T}^{\mu}_{J})$ is a Baire space. It is easy to see that the family of nonempty \mathcal{T}^{μ}_{J} -open and pairwise disjoint sets is at most countable. Hence, in the case $S_{\mu} = \mathcal{L}\Delta\mathcal{I}_{\mu}$, topology \mathcal{T}^{μ}_{J} is a von Neumann topology associated with the measure μ (see [8]). We can prove the following theorem.

THEOREM 10. Let $J \in \mathfrak{I}^0$ and let and \mathcal{T}^{μ}_J be a topology generated by the operator Φ^{μ}_J . Then, the next conditions are equivalent:

- a) Φ_J^{μ} is a lower density operator on $(\mathbb{R}, S_{\mu}, \mathcal{I}_{\mu})$;
- b) $S_{\mu} = \mathcal{L}\Delta\mathcal{I}_{\mu};$
- c) \mathcal{T}_J^{μ} is a von Neumann topology with respect to the measure μ .

Proof. $a) \Rightarrow b$) Of course, $\mathcal{L}\Delta\mathcal{I}_{\mu} \subset S_{\mu}$. Let $A \in S_{\mu}$. Then, $A\Delta\Phi_{J}^{\mu}(A) \in \mathcal{I}_{\mu}$. From Property 3 we have $\Phi_{J}^{\mu}(A) \in \mathcal{L}$, so $A \in \mathcal{L}\Delta\mathcal{I}_{\mu}$.

The implication $b) \Rightarrow c)$ is a consequence of the previous theorem.

We prove the implication $c) \Rightarrow a$). By Property 4, it suffices to prove that $A\Delta\Phi_J^{\mu}(A) \in \mathcal{I}_{\mu}$ for $A \in S_{\mu}$.

If \mathcal{T}_J^{μ} is a von Neumann topology with respect to the measure μ , then $S_{\mu} = B(\mathcal{T}_J^{\mu}) = \mathcal{L}\Delta\mathcal{I}_{\mu}$ so $A \in \mathcal{L}\Delta\mathcal{I}_{\mu}$. Hence $A = B\Delta C$, where $B \in \mathcal{L}$ and $C \in \mathcal{I}_{\mu}$. Therefore $B\Delta C\Delta\Phi_J^{\mu}(B\Delta C) = B\Delta\Phi_J^{\mu}(B)\Delta C \in \mathcal{I}_{\mu}$, because $B\Delta\Phi_J^{\mu}(B) \in \mathbb{L}$ by Theorem 2.

Now, we discuss some results related separation axioms.

For any sequence $J \in \mathfrak{I}^0$ we have that $\mathcal{T}_{nat} \subset \mathcal{T}_J^{\mu}$. Hence, the space $(\mathbb{R}, \mathcal{T}_J^{\mu})$ is Hausdorff. Paper [2] demonstrates that the space $(\mathbb{R}, \mathcal{T}_J)$ is regular, and in paper [5] it was shown that $(\mathbb{R}, \mathcal{T}_J)$ is completely regular for any sequence of intervals J tending to zero such that $\alpha(J) < \infty$. So, for any sequence $J \in \mathfrak{I}^0$, the space $(\mathbb{R}, \mathcal{T}_J)$ is regular.

Investigating paper [7], we get that for $J \in \mathfrak{I}^0$ the family of \mathcal{T}_J -continuous functions and \mathcal{T}_J^{μ} -continuous functions with value in a topological regular space are equal. It implies that if $(\mathbb{R}, \mathcal{T}_J)$ is a regular space, then the space $(\mathbb{R}, \mathcal{T}_J^{\mu})$ is regular if and only if $\mathcal{T}_J^{\mu} = \mathcal{T}_J$. Finally, we get

PROPERTY 5. For any sequence $J \in \mathfrak{I}^0$, the following conditions are equivalent:

- a) $(\mathbb{R}, \mathcal{T}_I^{\mu})$ is completely regular;
- b) $(\mathbb{R}, \mathcal{T}_I^{\mu})$ is regular;
- c) $\mathcal{T}_J^{\mu} = \mathcal{T}_J;$
- d) $\mathcal{I}_{\mu} = \mathbb{L}$.

Proof. $a\Rightarrow b$ is obvious. Let $(\mathbb{R},\mathcal{T}_J^\mu)$ be regular. Let $A\in\mathcal{T}_J^\mu$. Then $A=V\setminus B$, if $V\in\mathcal{T}_J$ and $B\in\mathcal{I}_\mu$. Let us assume that $A\notin\mathcal{T}_J$. Then, $B\in\mathcal{I}_\mu\setminus\mathcal{L}$. Let C be a measurable hull of B. We see that $\Phi_J(C)\setminus B\neq\emptyset$ because otherwise $\Phi_J(C)\subset B\subset C$ would be measurable. Let $x\in\Phi_J(C)\setminus B$. Since the space $(\mathbb{R},\mathcal{T}_\mu)$ is regular and B is \mathcal{T}_μ -closed, then there exist $V_1,V_2\in\mathcal{T}_\mu$, $V_1\cap V_2=\emptyset$ and $x\in V_1$, $B\subset V_2$. Since $V_1=W_1\setminus D_1$, $V_2=W_2\setminus D_2$, where $W_1,W_2\in\mathcal{T}_J$, $D_1,D_2\in\mathcal{I}_\mu$ we get $W_1\cap W_2=\emptyset$. Then, $W_1\subset\mathbb{R}\setminus W_2$ and $C\cap W_1\subset C\setminus W_2\subset C\setminus B$. From the definition of a hull, $\lambda(C\setminus W_2)=0$. This implies that $\Phi_J(C\cap W_1)=\Phi_J(C)\cap\Phi_J(W_2)=\emptyset$. At the same time, $x\in\Phi_J(C)\cap W_1\subset\Phi_J(C)\cap\Phi_J(W_2)=\emptyset$, which is a contradiction. Since $\mathcal{T}_J\subset\mathcal{T}_J^\mu$, implication $b\Rightarrow c$ has been proved. Let $\mathcal{T}_J^\mu=\mathcal{T}_J$ and $A\in\mathcal{I}_\mu\setminus\mathbb{L}$. Then, $X\setminus A\in\mathcal{T}_J^\mu$. Hence $X\setminus A\in\mathcal{T}_J$ and finally, $A\in\mathcal{L}$. So, $A\in\mathbb{L}$. Since $\mathbb{L}\subset\mathcal{I}_\mu$, implication $c\Rightarrow d$ has been proved. If $\mathcal{I}_\mu=\mathbb{L}$, then $\mathcal{T}_J^\mu=\mathcal{T}_J$. Since $J\in\mathcal{I}_J^0$, then by Theorem 13 in [5], $(\mathbb{R},\mathcal{T}_J^\mu)$ is completely regular.

It is worth mentioning that there exist extensions of the Lebesgue measure maintaining Lebesgue null sets.

THEOREM 11 (cf. [1]). Under the Continuum Hypothesis there exists a nonseparable extension of the Lebesgue measure on \mathbb{R} whose null sets coincide with the null sets of the Lebesgue measure.

THEOREM 12. Let $J \in \mathfrak{I}^0$. Then the space $(\mathbb{R}, \mathcal{T}_J^{\mu})$ is not normal.

ON SOME DENSITY TOPOLOGY...

Proof. By Theorem 3.15 in [2], we conclude that the space $(\mathbb{R}, \mathcal{T}_J)$ is not normal. Hence there are \mathcal{T}_J -closed sets $F_1, F_2 \neq \emptyset$ and $F_1 \cap F_2 = \emptyset$ such that for any open set $V_1, V_2 \in \mathcal{T}_J$ such that $F_1 \subset V_1$, $F_2 \subset V_2$, we obtain $V_1 \cap V_2 \neq \emptyset$. The sets F_1, F_2 are also \mathcal{T}_J^{μ} -closed. In case $(\mathbb{R}, \mathcal{T}_J^{\mu})$ is a normal space, then there are sets $W_1, W_2 \in \mathcal{T}_J^{\mu}$ such that $F_1 \subset W_1, F_2 \subset W_2, W_1 \cap W_2 = \emptyset$. Since by the form of the topology \mathcal{T}_J^{μ} , $W_1 = V_1 \setminus Z_1$, $W_2 = V_2 \setminus Z_2$, where $V_1, V_2 \in \mathcal{T}_J$ and $Z_1, Z_2 \in \mathcal{I}_{\mu}$. We conclude that V_1, V_2 are disjoint and also $F_1 \subset V_1, F_2 \subset V_2$. This contradiction finishes the proof.

REFERENCES

- [1] KHARAZISHVILI, A. B.: A nonseparable extension of the Lebesgue measure without new nullsets, Real Anal. Exchange 33 (2007/2008), 259–268.
- [2] HEJDUK, J.—LORANTY, A.—WIERTELAK, R.: J-approximately continuous functions, Tatra Mt. Math. Publ. 62 (2015), 45–55.
- [3] HEJDUK, J.—WIERTELAK, R.: On the abstract density topologies generated by lower and almost lower density operators, in: Traditional and present-day topics in real analysis (M. Filipczak et al., eds.), Łódź University Press, Łódź 2013, pp. 431–447.
- [4] HEJDUK, J.—WIERTELAK, R.: On the generalization of the density topologies on the real line, Math. Slovaca 64 (2014), 1267–1276.
- [5] HEJDUK, J.—WIERTELAK, R.: On some properties of J-approximately continuous functions, Math. Slovaca (to appear).
- [6] MARCZEWSKI, E.: Sur l'extension de la measure lebesguienne, Fund. Math. 25 (1935), 551–558.
- [7] MARTIN, N. F. G.: Generalized condensation points, Duke Math. J. 28 (1961), 507–5014.
- [8] OXTOBY, J. C.: Measure and Category, 2nd edition. Graduate Texts in Math. Vol. 2, Springer-Verlag, Berlin, 1980.

Received February 25, 2017

Lódź University
Faculty of Mathematics and
Computer Science
Banacha 22
PL-90-238 Łódź
POLAND

E-mail: flakk@math.uni.lodz.pl hejduk@math.uni.lodz.pl sylwia.tomczyk.12z@gmail.com