

Mathematical Publications

DOI: 10.1515/tmmp-2017-0001 Tatra Mt. Math. Publ. **68** (2017), 1–11

COMPARISON OF SOME FAMILIES OF REAL FUNCTIONS IN ALGEBRAIC TERMS

Malgorzata Filipczak — Gertruda Ivanova

ABSTRACT. We compare families of functions related to the Darboux property (functions having the A-Darboux property) with family of strong Świątkowski functions using the notions of strong c-algebrability. We also compare families of functions associated with density topologies.

1. Introduction

We will work with real functions defined on the real line, so if we write "function", then we mean $f: \mathbb{R} \to \mathbb{R}$. Throught the whole paper, when open or closed sets are mentioned, we mean the Euclidean topology in \mathbb{R} . We denote by \overline{A} (Int(A)) the closure (interior) of the set A.

Recall that a function f is quasi-continuous at a point x if for every neighbourhood U of x and for every neighbourhood Y of f(x) there exists a nonempty open set $G \subset U$ such that $f(G) \subset V$. A function f is quasi-continuous (briefly $f \in \mathcal{Q}$) if it is quasi-continuous at each point. The notion of quasi-continuity was introduced by S. Kempisty in 1932 [12].

A function $f: \mathbb{R} \to \mathbb{R}$ is called a *strong Świątkowski function* if for each interval $(a,b) \subset \mathbb{R}$ and for each λ between f(a) and f(b) there exists a point $x \in (a,b)$ such that $f(x) = \lambda$ and f is continuous at x [17]. Hence, the family \mathcal{D}_s of strong Świątkowski functions is situated somewhere in the road between the family \mathcal{C} of all continuous functions and the family $\mathcal{D}\mathcal{Q}$ of all Darboux quasi-continuous functions.

The notion of strong Świątkowski property was introduced by A. Maliszewski in [17]. He showed that \mathcal{D}_s is dense in $\mathcal{D}\mathcal{Q}$, so \mathcal{D}_s is "not so far" from $\mathcal{D}\mathcal{Q}$ (for more information about this class, see [16]–[19]).

^{© 2017} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 26A15, 54C08.

 $^{{\}bf K\,e\,y\,w\,o\,r\,d\,s:}\ \, {\bf Darboux\,property,\,strong\,\,\dot{S}wi\dot{a}tkowski\,property,\,quasi-continuity,\,strong\,\,algebrability.}$

On the other hand, J. Wódka [27] proved that the set $(\mathcal{D}Q \setminus \mathcal{D}_s) \cup \{\Theta\}$ contains a **c**-generated algebra, i.e., $\mathcal{D}Q$ is much larger than \mathcal{D}_s if we compare these families in algebraic terms.

In this paper, we will generalize the result obtained by J. W ó d k a. We will compare, in algebraic terms, \mathcal{D}_s and \mathcal{DQ} with the family \mathcal{D}_{ap} of approximately Darboux functions and the family \mathcal{D}_{J-ap} of J-approximately Darboux functions. We will use the exponential-like method introduced in [2].

Let $\mathcal{B}r$ denotes a family of all sets having the Baire property, and $n \cdot A$ stands for a set $\{n \cdot a : a \in A\}$. We will write $\{a, b\}$ instead of $(\min\{a, b\}, \max\{a, b\})$.

2. A-continuity and A-Darboux property

We start with the definition which helps us describe approximate continuity and J-approximate continuity as well as quasi-continuity in the same way.

Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$, where $\mathcal{P}(\mathbb{R})$ is a power set of \mathbb{R} .

DEFINITION 1 ([10]). We say that f is \mathcal{A} -continuous at the point $x \in \mathbb{R}$ if for each open set $V \subset \mathbb{R}$ with $f(x) \in V$ there exists a set $A \in \mathcal{A}$ such that $x \in A$ and $f(A) \subset V$. We say that f is \mathcal{A} -continuous $(f \in \mathcal{C}_{\mathcal{A}})$ if f is \mathcal{A} -continuous at each point $x \in \mathbb{R}$.

Remind that x is a density point of a measurable set $A \subset \mathbb{R}$ when

$$\lim_{h \to 0^+} \frac{m\left(A \cap [x - h, x + h]\right)}{2h} = 1$$

and the family of all measurable sets which any point is its density point is a topology called the density topology.

Now, let \mathcal{I} be a σ -ideal of sets of the first category. We will say that a property holds \mathcal{I} -almost everywhere (briefly \mathcal{I} -a.e.) if the set of all points which do not have this property belongs to \mathcal{I} .

We will say that a sequence $\{f_n\}_{n\in\mathbb{N}}$ of functions with the Baire property converges with respect to \mathcal{I} to some real function f with the Baire property $(f_n \xrightarrow[n \to \infty]{\mathfrak{I}} f)$ if every subsequence $\{f_{m_n}\}_{n\in\mathbb{N}}$ of $\{f_n\}_{n\in\mathbb{N}}$ contains a subsubsequence $\{f_{m_{p_n}}\}_{n\in\mathbb{N}}$ which converges to f \mathcal{I} -a.e. (see [21]).

The point 0 is an \mathcal{I} -density point of A if

$$\chi_{(n\cdot A)\cap(-1,1)} \xrightarrow[n\to\infty]{\mathfrak{I}} \chi_{(-1,1)}$$

We say that x is an \mathcal{I} -density point of A if 0 is an \mathcal{I} -density point of $A - x = \{a - x : a \in A\}$. Put $\Phi_{\mathcal{I}}(A) = \{x \in \mathbb{R} : x \text{ is an } \mathcal{I}\text{-density point of } A\}$.

The family $\tau_{\mathfrak{I}} = \{A \subset \mathbb{R} : A \in \mathcal{B}r \wedge A \subset \Phi_{\mathfrak{I}}(A)\}$, called the \mathfrak{I} -density topology, was studied in [21], [22] and [25].

A set $A \subset \mathbb{R}$ is said to be semi-open if there is an open set U such that $U \subset A \subset \overline{U}$ (see [15]). It is not difficult to see that A is semi-open if and only if $A \subset \overline{Int(A)}$. The family of all semi-open sets will be denoted by \mathcal{S} . A function f is semi-continuous if for each open set V the set $f^{-1}(V)$ is semi-open [15].

In [20], A. Neubrunnová proved that f is semi-continuous if and only if it is quasi-continuous.

Now, we are in the position to describe all the mentioned classes of functions using the notion of A-continuity.

Remark 2. A-continuity coincides with:

- (1) classical continuity whenever $A = \tau_e$;
- (2) approximate continuity whenever $A = \tau_d$;
- (3) \Im -approximate continuity whenever $\mathcal{A} = \tau_{d_{\mathcal{I}}}$;
- (4) quasi-continuity whenever A = S.

DEFINITION 3 ([10]). We will say that f has the \mathcal{A} -Darboux property $(f \in \mathcal{D}_{\mathcal{A}})$ if for each interval $(a,b) \subset \mathbb{R}$ and each $\lambda \in \langle f(a), f(b) \rangle$ there exists a point $x \in (a,b)$ such that $f(x) = \lambda$ and f is \mathcal{A} -continuous at x.

If $\mathcal{A} = \mathcal{P}(\mathbb{R})$ then $\mathcal{D}_{\mathcal{A}}$ is a family \mathcal{D} of all Darboux functions. If \mathcal{A} is the Euclidean topology τ_e , then $\mathcal{D}_{\mathcal{A}}$ is a family \mathcal{D}_s of functions having strong Świątkowski property. If \mathcal{A} is the density topology τ_d , then $\mathcal{D}_{\mathcal{A}}$ is a family \mathcal{D}_{ap} of functions with the so called ap-Darboux property introduced by Z. Grande in [6]. If \mathcal{A} is the \mathcal{I} -density topology, then $\mathcal{D}_{\mathcal{A}}$ is a family of \mathcal{I} -ap Darboux functions investigated by G. Ivanova and E. Wagner-Bojakowska in [7] and [9]. In [10], it is shown that if $\mathcal{A} = \mathcal{S}$, then $\mathcal{D}_{\mathcal{A}} = \mathcal{D}\mathcal{Q}$.

It is easy to see that

$$\mathcal{D}_s \subset \mathcal{D}_{ap} \cap \mathcal{D}_{\mathcal{I}-ap} \subset \mathcal{D}_{ap} \cup \mathcal{D}_{\mathcal{I}-ap} \subset \mathcal{D}.$$

In [7], it is proved that all these inclusions are proper.

In [10], it is proved that for some families A we also have $\mathcal{D}_{A} \subset \mathcal{D}\mathcal{Q}$. Let us briefly describe these results. We say that the set A is of the first category at the point x if there exists an open neighbourhood G of x such that $A \cap G$ is of the first category (see [13]). D(A) will denote the set of all points x such that A is not of the first category at x.

DEFINITION 4 ([10]). We will say that a family $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$ has the (*)-property, if

- (1) $\tau_e \subset \mathcal{A} \subset \mathcal{B}r$;
- (2) $A \subset D(A)$ for each $A \in \mathcal{A}$.

It is not difficult to see that a wide class of topologies has the (*)-property. For example, the Euclidean topology, J-density topology, topologies constructed

in [14] by E. Łazarow, R. A. Johnson and W. Wilczyński or the topology constructed by R. Wiertelak in [23]. Certain families of sets, which are not topologies, have the (*)-property: the family of semi-open sets is a good example. On the other hand, the density topology does not have this property.

3. Algebrability

To compare families \mathcal{D}_s , $\mathcal{D}Q$, \mathcal{D}_{ap} and $\mathcal{D}_{\mathcal{I}-ap}$ in algebraic terms, we need some definitions.

DEFINITION 5 ([3]). Let \mathcal{L} be a linear commutative algebra. We say that $A \subset \mathcal{L}$ is strongly \mathfrak{c} -algebrable if $A \cup \{\Theta\}$ contains a \mathfrak{c} -generated algebra B that is isomorphic with a free algebra. We denote by $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}$ the set of generators of this free algebra.

Let us remark that the set $X = \{x_{\alpha} : \alpha < \mathfrak{c}\}$ is the set of generators of some free algebra contained in $A \cup \{\Theta\}$ if and only if the set \widetilde{X} of elements of the form $x_{\alpha_1}^{k_1} x_{\alpha_2}^{k_2} \dots x_{\alpha_n}^{k_n}$ is linearly independent and all linear combinations of elements from \widetilde{X} are in $A \cup \{\Theta\}$.

In [2] there was presented a useful method of proving that a fixed family is strongly c-algebrable. We say that a function f is exponential-like (briefly $f \in \mathcal{E}$) whenever f is given by the formula

$$f(x) = \sum_{i=1}^{m} a_i e^{\beta_i x},$$

for some distinct nonzero real numbers β_1, \ldots, β_m and some nonzero real numbers a_1, \ldots, a_m (see [1]).

It is not difficult to check that:

LEMMA 6 ([1]). For every positive integer m, any exponential-like function f, and each $c \in \mathbb{R}$, the preimage $f^{-1}[\{c\}]$ is finite. Consequently, f is not constant in any subinterval of \mathbb{R} . In particular, there exists a decomposition of \mathbb{R} to a finite number of intervals such that the function f is strictly monotone on each of them.

Exponential-like functions may be used to prove \mathfrak{c} -algebrability of a fixed family of functions in the following way:

THEOREM 7 ([1]). Let $\mathfrak{F} \subset \mathbb{R}^{\mathbb{R}}$ and assume that there exists a function $F \in \mathfrak{F}$ such that $f \circ F \in \mathfrak{F} \setminus \{\Theta\}$ for every exponential-like function f [1]. Then, \mathfrak{F} is strongly \mathfrak{c} -algebrable.

4. Comparison of classes related to Darboux property

In [8], it is shown that the family \mathcal{DQ} is strongly porous (so, it is very small from the topological point of view) in the family $\mathcal{DB}a$ of Darboux functions having the Baire property. Therefore, $\mathcal{DB}a \setminus \mathcal{DQ}$ is "topologically large". Let us show that it is large also in algebraic terms. For this purpose, we need the following lemma:

LEMMA 8 ([11]). There exists a Darboux Baire 1 function $F: \mathbb{R} \xrightarrow{onto} [0,1]$ such that

- (1) F vanishes \Im -a.e. on (0,1);
- (2) F vanishes on $\mathbb{R}\setminus(0,1)$;
- (3) $[0,1] \setminus F^{-1}(\{0\})$ is a first category set dense in [0,1].

Indeed, let $\{C_n\}$ be a sequence of pairwise disjoint closed and nowhere dense subsets of [0,1] of cardinality continuum such that for each interval $(a,b) \subset [0,1]$ there exists $n \in \mathbb{N}$ with $C_n \subset (a,b)$. Obviously, the set $C = \bigcup_{n \in \mathbb{N}} C_n$ is of type F_{σ} and is bilaterally c-dense-in-itself. Therefore, (see [4]) there exists a function $F \in \mathcal{DB}_1$ such that F(x) = 0 if $x \notin C$ and $0 < F(x) \le 1$ for $x \in C$ (for details, see [11]).

Using this function, we can prove strong \mathfrak{c} -algebrability of the family $\mathfrak{DB}a \setminus \mathfrak{DQ}$:

THEOREM 9. The family $\mathbb{DB}a \setminus \mathbb{DQ}$ is strongly \mathfrak{c} -algebrable.

Proof. Let F be the function defined above. Fix an exponential-like function f. By Theorem 7, to prove that $\mathcal{DB}a \setminus \mathcal{DQ}$ is strongly \mathfrak{c} -algebrable, it is suffices to show that $f \circ F \in \mathcal{DB}a \setminus \mathcal{DQ}$.

As f is continuous and $F \in \mathcal{DB}_1$, $f \circ F \in \mathcal{DB}a$. To show that $f \circ F$ is not quasi-continuous, fix an open set V such that $0 \notin f^{-1}(V)$ and $V \cap (f \circ F)(\mathbb{R}) \neq \emptyset$. The set $F^{-1}(f^{-1}(V))$ is a nonempty set of the first category, so it is not semi-open, and due to A. Neubrunnová's result [20], the function $f \circ F$ is not quasi-continuous.

Put $\mathcal{P} := \{\mathcal{D}, \mathcal{D}\mathcal{B}a\}$, and $\mathcal{P}_{\mathcal{A}} := \{\mathcal{D}_{\mathcal{A}} : \mathcal{A} \text{ has the (*)-property}\}$. As for each \mathcal{A} with the (*)-property, the family $\mathcal{D}_{\mathcal{A}}$ is contained in $\mathcal{D}\mathcal{Q}$ (see [10]), it is easy to see that for any $\mathcal{F}_1 \in \mathcal{P}$ and $\mathcal{F}_2 \in \mathcal{P}_{\mathcal{A}}$ we have $\mathcal{D}\mathcal{B}a \subset \mathcal{F}_1$ and $\mathcal{F}_2 \subset \mathcal{D}\mathcal{Q}$. Consequently, by the latter theorem, we obtain

COROLLARY 10. If $\mathcal{F}_1 \in \mathcal{P}$ and $\mathcal{F}_2 \in \mathcal{P}_A$ then the family $\mathcal{F}_1 \setminus \mathcal{F}_2$ is strongly \mathfrak{c} -algebrable.

Remind that any family from $\mathcal{P}_{\mathcal{A}}$ is strongly porous in any family from \mathcal{P} [8]. Therefore, if $\mathcal{F}_1 \in \mathcal{P}$ and $\mathcal{F}_2 \in \mathcal{P}_{\mathcal{A}}$, then $\mathcal{F}_1 \setminus \mathcal{F}_2$ is residual (so, "topologically large") in \mathcal{F}_1 .

Let us now consider some subfamilies of the family \mathcal{B}_1 of all Baire 1 functions. In [11], it is shown that a strong Świątkowski function need not be Baire 1, so no family from $\mathcal{P}_{\mathcal{A}}$ is contained in \mathcal{B}_1 . Put $\mathcal{P}'_{\mathcal{A}} := \{\mathcal{D}_{\mathcal{A}} \cap \mathcal{B}_1 : \mathcal{A} \text{ has the (*)-property}\}$ and $\mathcal{D}\mathcal{B}_1$ —the family of all Darboux Baire 1 functions. In [11], it is proved that each family from $\mathcal{P}'_{\mathcal{A}}$ is strongly porous, so "topologically small", in $\mathcal{D}\mathcal{B}_1$. Using the function from Lemma 8, we can show, in the same way as in Theorem 9, that:

THEOREM 11. If $\mathfrak{F} \in \mathfrak{P}'_{\mathcal{A}}$ then the family $\mathfrak{DB}_1 \setminus \mathfrak{F}$ is strongly \mathfrak{c} -algebrable.

J. Wé d ka proved in [27] that the family $\mathcal{DQ} \setminus \mathcal{D}_s$ is strongly \mathfrak{c} -algebrable. We will show that both $(\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_{\mathfrak{I}}}) \setminus \mathcal{D}_s$ and $\mathcal{D}_s \setminus (\mathcal{C}_{\tau_d} \cup \mathcal{C}_{\tau_{\mathfrak{I}}})$ are strongly \mathfrak{c} -algebrable, too.

Recall that a set A is called a right-interval set if A is a union of intervals (a_n, b_n) with $\lim_{n\to\infty} a_n = 0$ and $0 < b_{n+1} < a_n < b_n$ for each $n \in \mathbb{N}$. Suppose that $A = \bigcup_{n=1}^{\infty} (a_n, b_n)$ is a right-hand interval set and $b_1 = 1$.

Put

$$t_A(x) = \begin{cases} 1 & \text{for } x \leq 0, \\ 1 - \frac{1}{n} & \text{for } x \in [a_n, b_n], \quad n \in \mathbb{N}, \\ 0 & \text{for } x = \frac{a_n + b_{n+1}}{2}, \ n \in \mathbb{N} \text{ and for } x \in [b_1, \infty), \\ \text{linear} & \text{on the intervals } \left[b_{n+1}, \frac{a_n + b_{n+1}}{2}\right], \ \left[\frac{a_n + b_{n+1}}{2}, a_n\right], \ n \in \mathbb{N} \end{cases}$$

and

$$F_A(x) = \begin{cases} t_A(x-m) - m & \text{if } m \text{ is even and } x \in [m, m+1], \\ 1 - x & \text{if } m \text{ is odd and } x \in (m, m+1). \end{cases}$$

Note that F_A is not continuous at any even m, and F_A is continuous at any other point. Moreover, $F_A \notin \mathcal{D}_s$.

LEMMA 12. Let f be an exponential-like function. If A is a right-hand interval set, then $f \circ F_A \notin \mathcal{D}_s$.

Proof. Fix an exponential-like function f and a right-hand interval set A. We will show that $f \circ F_A$ is not continuous and does not belong to \mathcal{D}_s . By Lemma 6, there exists an even number $m \in \mathbb{Z}$ such that f is strictly monotone on (-m, -m+2). Without loss of generality, we can assume that f is strictly increasing on this interval.

Observe that $f \circ F_A$ is not continuous at m. Indeed, let (a,b) be an arbitrary interval such that m-1 < a < m < b < m+1. Then

$$f\circ F_{A}\left(\left(a,b\right)\right)\supset f\left(\left[-m,-m+1\right]\right).$$

Since f is strictly monotone and continuous on [-m, -m+1], f([-m, -m+1]) is a nondegenerate interval. Let $\epsilon < \operatorname{diam}(f([-m, -m+1]))/3$. Then,

$$\left(f\left(F_{A}\left(m\right)\right)-\epsilon,f\left(F_{A}\left(m\right)\right)+\epsilon\right)\not\supseteq f\left(F_{A}\left(a,b\right)\right),$$

for each (a, b) such that m - 1 < a < m < b < m + 1.

Let us show that $f \circ F_A \notin \mathcal{D}_s$. For this purpose, fix numbers a_0 and b_0 such that $m-1 < a_0 < m < b_0 < m+1$. Then, we have $F_A(a_0) > F_A(m) > F_A(b_0)$ and $F_A(m) = -m+1$. As f is strictly increasing on (-m, -m+2), we obtain $f(F_A(a_0)) > f(F_A(x)) > f(F_A(m)) > f(F_A(y)) > f(F_A(b_0))$ for all $x \in (a_0, m)$ and $y \in (m, b_0)$, so on the interval (a_0, b_0) the function $f \circ F_A$ has value f(-m+1) only at the point m. Note that $f \circ F_A$ is not continuous at m. Therefore, $f \circ F_A$ is not a strong Świątkowski function.

Fix $f \in \mathcal{C}_{\tau_d}$. It is well-known [26] that f has the Darboux property. Since f is approximately continuous at any point, $f \in \mathcal{D}_{ap}$. Analogously, from the fact that $\mathcal{C}_{\tau_d} \subset \mathcal{D}$ [21], we obtain that $\mathcal{C}_{\tau_{\mathcal{I}}} \subset \mathcal{D}_{\mathfrak{I}-ap}$.

As $\tau_{\mathcal{I}}$ has the (*)-property, $\mathfrak{D}_{\mathcal{I}-ap} \subset \mathfrak{DQ}$. Thus,

$$\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_{\mathfrak{I}}} \subset \mathcal{D}_{ap} \cap \mathcal{D}_{\mathfrak{I}-ap} \subset \mathcal{D} \mathfrak{Q}.$$

Observe that families $\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_{\mathcal{I}}}$ and \mathcal{D}_s are incomparable.

EXAMPLE 13. If 0 is a right-hand density point and a right-hand \mathcal{I} -density point of a right-hand interval set A, then $t_A \in (\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_g}) \setminus \mathcal{D}_s$.

Proof. Indeed, t_A is continuous at any point $x \neq 0$. Moreover, t_A is approximately continuous and \mathcal{I} -approximately continuous at zero. On the other hand, $1 \in t_A((-1/2,1/2))$ and the only point x_0 such that $t_A(x_0) = 1$ is equal to 0, and t_A is not continuous at zero.

Example 14. There exists a function belonging to $\mathcal{D}_s \setminus (\mathcal{C}_{\tau_d} \cup \mathcal{C}_{\tau_g})$.

Proof. Suppose that A is a right-hand interval set at 0 such that 0 is a right-hand density point and \mathcal{I} -density point of A. Put

$$\hat{t}_A(x) = \begin{cases} 1 & \text{for } x = \frac{a_n + b_{n+1}}{2}, \ n \in \mathbb{N}, \text{ and for } x \leq 0, \\ 0 & \text{for } x \in [a_n, b_n], \quad n \in \mathbb{N}, \text{ and for } x \in (b_1, \infty), \\ \text{linear on intervals } \left[b_{n+1}, \frac{a_n + b_{n+1}}{2}\right], \left[\frac{a_n + b_{n+1}}{2}, a_n\right], \ n \in \mathbb{N} \end{cases}$$

and

$$\hat{F}_A(x) = \begin{cases} \hat{t}_A(x-m) - m & \text{if } m \text{ is even and } x \in [m, m+1], \\ 1 - x & \text{if } m \text{ is odd and } x \in (m, m+1). \end{cases}$$

Then, \hat{F}_A is neither approximately nor \mathcal{I} -approximately continuous at each $m \in \mathbb{Z}$ and has the strong Świątkowski property, so $\hat{F}_A \in \mathcal{D}_s \setminus (\mathcal{C}_{\tau_d} \cup \mathcal{C}_{\tau_{\mathcal{I}}})$.

Using functions F_A and \hat{F}_A considered in Example 13 and Example 14, we obtain that families $(\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_g}) \setminus \mathcal{D}_s$ and $\mathcal{D}_s \setminus (\mathcal{C}_{\tau_d} \cup \mathcal{C}_{\tau_g})$ are strongly \mathfrak{c} -algebrable. Indeed, using the exponential method, we obtain the following facts:

THEOREM 15. The family $(\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_1}) \setminus \mathcal{D}_s$ is strongly \mathfrak{c} -algebrable.

Proof. Suppose that A is a right-hand interval set such that $b_1 = 1$ and 0 is right-hand density and \mathcal{I} -density point of A. Let f be an exponential-like function. It is easy to check that $f \circ F_A$ is approximately and \mathcal{I} -approximately continuous. By Lemma 12, we obtain $f \circ F_A \in (\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_J}) \setminus \mathcal{D}_s$.

COROLLARY 16. Let

$$\mathcal{P} = \{ \mathcal{DQ}, \mathcal{D}_{\mathcal{I}-ap}, \mathcal{D}_{ap}, \mathcal{D}_{ap} \cap \mathcal{D}_{\mathcal{I}-ap}, \mathcal{C}_{\tau_d}, \mathcal{C}_{\tau_d} \cup \mathcal{D}_s, \mathcal{C}_{\tau_{\mathcal{I}}}, \mathcal{C}_{\tau_{\mathcal{I}}} \cup \mathcal{D}_s, \mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_{\mathcal{I}}}, (\mathcal{C}_{\tau_d} \cap \mathcal{C}_{\tau_{\mathcal{I}}}) \cup \mathcal{D}_s \}.$$

Each $\mathfrak{F} \in \mathfrak{P}$ contains $\mathfrak{C}_{\tau_d} \cap \mathfrak{C}_{\tau_g}$. Therefore, by the latter theorem, the family $\mathfrak{F} \setminus \mathfrak{D}_s$ is strongly \mathfrak{c} -algebrable for any \mathfrak{F} belonging to \mathfrak{P} .

THEOREM 17. The family $\mathcal{D}_s \setminus (\mathcal{C}_{\tau_d} \cup \mathcal{C}_{\tau_g})$ is strongly \mathfrak{c} -algebrable.

Proof. Fix an exponential-like function f, and let \hat{F}_A be the function from Example 14. Let us show that $f \circ \hat{F}_A \in \mathcal{D}_s$. Indeed, fix $(a,b) \subset \mathbb{R}$ such that $f(\hat{F}_A(a)) \neq f(\hat{F}_A(b))$, and $\lambda \in f(\hat{F}_A(a))$, $f(\hat{F}_A(b)) > f(\hat{F}_A(b)) > f(\hat{F}_A(b))$. Then, as $f \circ \hat{F}_A(a) = f(\hat{F}_A(a))$ the Darboux property, there exists a point $f(\hat{F}_A(a)) = f(\hat{F}_A(a)) = f(\hat{F}_A(a))$.

If $x' \notin \mathbb{Z}$ or x' is odd, then put x = x'. It is easy to see that $f \circ \hat{F}_A$ is continuous at x.

Assume that there exists even m such that x' = m. Let us show that there exists a point $x \in (x', b)$ such that $f \circ \hat{F}_A(x) = \lambda$. Indeed, we can find a point $x \in (x', b)$ with $\hat{F}_A(x) = 1 - m$, so $f(\hat{F}_A(x)) = f(\hat{F}_A(m)) = \lambda$.

It is easy to see that $f \circ \hat{F}_A$ is continuous at x, so it has the strong Świątkowski property.

We will show that $f \circ \hat{F}_A$ is neither approximately nor \mathbb{J} -approximately continuous. By Lemma 6, there exists an even number $m \in \mathbb{Z}$ such that f is strictly monotone on [-m, -m+1]. Without loss of generality, we can assume that f is strictly increasing function on this interval, so f(-m) < f(1-m). Let $\epsilon \in (0, f(1-m) - f(-m))$. Then,

$$A + m \subset \mathbb{R} \setminus \left[\hat{F}_A^{-1} \left(f^{-1} \left(\left(f(\hat{F}_A(m)) - \epsilon, f(\hat{F}_A(m)) + \epsilon \right) \right) \right) \right],$$

so m is a right-hand dispersion and a right-hand \mathcal{I} -dispersion point of A+m, and $f \circ \hat{F}_A$ is neither approximately nor \mathcal{I} -approximately continuous at m. \square

THEOREM 18. The family $\mathfrak{DQ} \setminus (\mathfrak{D}_{ap} \cup \mathfrak{D}_{\mathfrak{I}-ap})$ is strongly \mathfrak{c} -algebrable.

Proof. Let $B = \bigcup_{n=1}^{\infty} (a_n, b_n)$ be a right-hand interval set such that 0 is a density and an \mathfrak{I} -density point of the set $(-1,0] \cup B$.

We will use a function f_B which is a modification of t_B .

Let

$$f_B(x) = \begin{cases} 1 & \text{for } x \leq 0, \\ 0 & \text{for } x \in [a_n, b_n], \quad n \in \mathbb{N}, \text{ and for } x \in (b_1, \infty), \\ 1 - \frac{1}{n} & \text{for } x = \frac{a_n + b_{n+1}}{2}, \ n \in \mathbb{N}, \\ \text{linear on intervals } \left[b_{n+1}, \frac{a_n + b_{n+1}}{2}\right], \ \left[\frac{a_n + b_{n+1}}{2}, a_n\right], \ n \in \mathbb{N}. \end{cases}$$

Now, we use the function

$$F_B(x) = \begin{cases} f_B\left(x-m\right) - m, & \text{if m is even and $x \in [m,m+1]$,} \\ 1 - x & \text{if m is odd and $x \in (m,m+1)$.} \end{cases}$$

It is not difficult to see that $F_B \in \mathfrak{DQ}$.

Fix an exponential-like function f. Then, as f is continuous, $f \circ F_B \in \mathcal{DQ}$. There exists an even number $m \in \mathbb{Z}$ such that f is strictly monotone on (-m, -m+2). Again, we can assume that f is strictly increasing on this interval.

Let
$$y_0 = f(-m)$$
 and $y_1 = f \circ F_B(m) = f(-m+1)$. Observe that $F_B(B) = \{0\}$, so $f(F_B(B+m)) = \{y_0\}$ and $y_0 < y_1$.

Fix $\epsilon \in (0, y_1 - y_0)$ and put $W = (y_1 - \epsilon, y_1 + \epsilon)$. The complement of the set $F_B^{-1}\left(f^{-1}\left(W\right)\right)$ contains the set B+m. As $f\left(F_B\left(m\right)\right) = y_1$ and m is a right-hand density and a right-hand \mathcal{I} -density point of B+m, $f\circ F_B$ is neither approximately nor \mathcal{I} -approximately continuous at m. Therefore, as $f\circ F_B$ assumes value -m on the interval (m-1,m+1) only at the point m, we obtain $f\circ F_B\in \mathcal{DQ}\setminus (\mathcal{D}_{ap}\cup \mathcal{D}_{\mathcal{J}-ap})$.

COROLLARY 19. Put $\mathcal{P} = \{\mathcal{D}_{\mathfrak{I}-ap}, \mathcal{D}_{ap}, \mathcal{D}_{ap} \cup \mathcal{D}_{\mathfrak{I}-ap}, \mathcal{C}_{\tau_d}, \mathcal{C}_{\tau_{\mathfrak{I}}}, \mathcal{C}_{\tau_d} \cup \mathcal{C}_{\tau_{\mathfrak{I}}}\}$. If $\mathcal{F} \in \mathcal{P}$, then the family $\mathcal{DQ} \setminus \mathcal{F}$ is strongly \mathfrak{c} -algebrable.

REFERENCES

- [1] BALCERZAK, M.—BARTOSZEWICZ, A.—FILIPCZAK, M.: Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), 263–269.
- [2] BARTOSZEWICZ, A.—BIENIAS, M.—FILIPCZAK, M.—GŁĄB, S.: Strong c-algebrability of strong Sierpiński-Zygmunt, smooth nowhere analytic and other sets of functions, J. Math Anal. Appl. 412 (2014), 620-630.
- BARTOSZEWICZ, A.—GŁĄB, S.: Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), 827-835.

- [4] BRUCKNER, A. M.: Differentiation of Real Functions, in: Lecture Notes in Math., Vol. 659, Springer, Berlin, 1978.
- [5] FILIPCZAK, M.—IVANOVA, G.—WÓDKA, J.: Comparison of some families of real functions in porosity terms, Math. Slovaca (to appear).
- [6] GRANDE, Z.: On a subclass of the family of Darboux functions, Colloq. Math. 117 (2009), 95-104.
- IVANOVA, G.: Remarks on some modification of the Darboux property, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 72 (2014), 91–100.
- [8] IVANOVA, G.—KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: Comparison of some subfamilies of functions having the Baire property, Tatra Mt. Math. Publ. 65 (2016), 151–159.
- [9] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Darboux property, Math. Slovaca 66 (2016), 79–88.
- [10] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Świątkowski property, Tatra Mt. Math. Publ. 58 (2014), 101–109.
- [11] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some subclasses of the family of Darboux Baire 1 functions, Opuscula Math. 34 (2014), 777-788.
- [12] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
- [13] KURATOWSKI, A.—MOSTOWSKI, A.: Set Theory with an Introduction to Descriptive Set Theory. Warszawa, PWN, 1976.
- [14] ŁAZAROW, E.—JOHNSON, R. A.—WILCZYŃSKI, W.: Topologies related to sets having the Baire property, Demonstratio Math. 21 (1989), 179-191.
- [15] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [16] MALISZEWSKI, A.: Darboux Property and Quasi-Continuity: A Uniform Approach. WSP, Słupsk, 1996.
- [17] MALISZEWSKI, A.: On the limits of strong Świgtkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87–93.
- [18] MALISZEWSKI, A.: On the averages of Darboux functions, Trans. Amer. Math. Soc. 350 (1998), 2833–2846.
- [19] MALISZEWSKI, A.: Sums and products of quasi-continuous functions, Real Anal. Exchange 21 (1995/1996), 320-329.
- [20] NEUBRUNNOVÁ, A.: On certain generalizations of the notion of continuity, Matematický časopis 23 (1973), 374–380.
- [21] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. 125 (1985), 167-173.
- [22] POREDA, W.—WAGNER-BOJAKOWSKA, E.—WILCZYŃSKI, W.: Remarks on J-density and J-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985), 553-563.
- [23] WIERTELAK, R.: A generalization of density topology with respect to category, Real Anal. Exchange 32 (2006/2007), 273–286.
- [24] WILCZYŃSKI, W.: A generalization of the density topology, Real Anal. Exchange 8 (1982/1983), 16-20.

COMPARISON OF SOME FAMILIES OF REAL FUNCTIONS IN ALGEBRAIC TERMS

- [25] WILCZYŃSKI, W.: A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984/1985), 241-265.
- [26] WILCZYŃSKI, W.: Density topologies, in: Handbook of Measure Theory, Vol. I and II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 675-702.
- [27] WÓDKA, J.: Subsets of some families of real functions and their algebrability, Linear Algebra Appl. 459 (2014), 454-464.

Received November 19, 2015

Małgorzata Filipczak
Faculty of Mathematics and
Computer Sciences
Łódź University
Stefana Banacha 22
PL-90-238 Łódź
POLAND

E-mail: malfil@math.uni.lodz.pl

Gertruda Ivanova Institute of Mathematics Pomeranien University in Stupsk Kozietulskiego 6-7 PL-76-200 Stupsk POLAND

E-mail: gertruda@apsl.edu.pl