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ABSTRACT. The purpose of this work is to design a suitable methodology to

solve selected optimization tasks from the field of gas transport in pipeline sys-
tems. The modifications of evolution strategies algorithm to solve such optimiza-
tion problems was developed. Testing of algorithm has been realized by a software
implementation on the model of the real transmission pipeline system.

1. Introduction

According to predictions of renowned institutions it is expected that natural
gas will be one of the most important energy resources in the future. Findings
of International Gas Union [1], The European Union of the Natural Gas Indus-
try [2] or U.S. Energy Information Administration [3] anticipate approximately
linear increase in the gas consumption. The increasing demand leads to growing
gas production and therefore growing transport to customers. Thus transport
costs are rising up and it is necessary to optimize the effectiveness of the gas
transportation.

In this paper, we are focusing on the problems connected with high pressure
gas transmission systems (the gas pressure in pipelines is higher than 0.4 MPa),
namely, on problems related to finding maximal flow through the network, mini-
mal energy or gas consumption, minimal operational costs at requested transport
conditions, and problems leading to multi-objective optimization.

The aim of this paper was to find an appropriate methodology for solving se-
lected optimization tasks arising during gas transportation. We propose a modi-
fied algorithm of evolution strategies, which can solve a large class of steady-state
optimization problems. The software implementation of the algorithm was tested
on the model of real gas transmission network.
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2. Related works

Steady-state optimization problems in gas pipelines transportation comprise
a relatively well-known area of research. Coherent overview can be found in [4].
In almost every case, the problem is defined as a problem of mathematical pro-
gramming, which is solved by various deterministic and stochastic optimization
methods. For instance P r a t t and W i l s o n in [5] apply the mixed integer
linear programming, P a r c e l and R y a n in [6] apply the generalized reduced
gradient method (GRG) and F l o r e s - V i l l a r r e a l and R ı́ o s - M e r c a d o
in [7] apply GRG for cyclic and non-cyclic pipeline topology.

The most successful approach till now is based on dynamic programming
methods (DP). In 1968 authors W o n g and L a r s o n published papers [8], [9],
where they for the first time applied DP to solve stationary optimization prob-
lems on linear and tree pipeline topologies. First commercially successful pro-
gram based on DP was developed by Z i mm e r [10] in 1975. Works [11], [12]
from the field of chemical engineering inspired to try using DP also for cyclic
pipeline topologies. Compact review of development in this field can be found
in C a r t e r’ s work [13]. From the point of view of practical use, the DP based
approaches are suitable and widely employed especially for simple problems on
linear and tree pipeline topologies. On cyclic pipeline topologies, there is an
interesting approach that combines DB with a network-based heuristic [14].

Authors in [15] solved multi-objective optimization with two objectives: max-
imal outflow and minimal energy consumption. They defined mathematical pro-
gramming problem and solved it by a particle swarm optimization and a genetic
algorithm. Model was tested on real-world problem, however, the network con-
sisted from only four identical parallel compressors with coolers and one pipe.

From our point of view, previously mentioned approaches have some disadvan-
tages. A physical model of gas flow was heavily simplified. It takes into account
neither temperature changes due to compression and surrounding environment
interaction nor elevation of pipes. But, for instance, in [15] authors showed that
almost 25 % of saving energy was achieved by optimal cooling gas after its
compression. Moreover, the model of compressor station is usually significantly
simplified and therefore markedly inaccurate. Finally, listed approaches were
designed to solve specific problems mostly for specific pipeline topologies.

3. Motivation

For better understanding our motivation we now briefly show the basics of
the models mentioned earlier. A pipeline system is modeled as a directed graph

G = (E, V ),
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where the set of edges E represents components (compressor stations, pipes,
valves, check-valves, control-valves) and the set of nodes V represents inter-
section points of segments, inlet nodes (delivery points) and outlet nodes (gas
demanding points). Now consider pressure variables pv for all v ∈ V and flow
variables qe for all edges e ∈ E. Further, consider variables fc and Nc that
represent gas consumption and power of all c ∈ Ec where Ec ⊂ E is the set
of all compressor stations. Finally consider binary variables s ∈ {0, 1} for all
components that can be switched on and off (compressors, valves).

There are many conditions which have to be satisfied in form of equalities and
inequalities. They represent physical properties of gas flow, physical properties
of components or special conditions of concrete solving problem. For example,
for all nodes i ∈ V the first law of Kirchhoff must be observed:

∑

e∈δ+(i)

qe =
∑

e∈δ−(i)

qe ,

where δ+(i) means the set of ingoing segments of node i and δ−(i) means the
set of outgoing segments of node i. Further, for all nodes i ∈ V we set lower and
upper bounds for the pressure pmin

i ≤ pi ≤ pmax
i and lower and upper bounds

for the gas flow qmin
i ≤ qi ≤ qmax

i . From the momentum equation, one can derive
formula for steady-state flow in one pipe without declination:

p2in − p2out = kq |q| ,
where pin is the pressure at the inlet point of the pipe, pout is the pressure at the
outlet point of the pipe, q is the gas flow through the pipe and the coefficient k
represents physical properties of the pipe.

The most complex set of boundaries is for compressor stations. The inlet
pressure pinc

, outlet pressure poutc of a compressor station and the gas flow qc
through the compressor station have to satisfy:

(pinc
, poutc , qc) ∈ Dc ⊂ R

3, c ∈ Ec ,

where Dc is the feasible domain for compressor station c. Dc is non-convex
domain determined by working map of all compressor units. Also, for each com-
pressor unit there are several other technical constrains, such as minimum and
maximum revolution, power constrains, etc.

For instance, in [16] there are 43 different equalities and inequalities constrains
that have to be satisfied by all or some subset of pressure and flow variables.
With the model of the Slovak transit pipeline system, where there are 574 edges
and 400 nodes, it would be more than 2,000 variables and more than 10,000
constrains to be satisfied. And we still do not consider the gas temperature
variables, pipeline elevation, physical properties of surrounding environment,
etc. Furthermore, in the work by M ö l l e r [16] all nonlinear relations have to be
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linearized to enable using the mixed integer linear programming. To avoid the
problem with simplification of physical properties and relations and to reduce
dimensionality of optimizing problem, we have developed another methodology
described below.

4. The principle of proposed optimization method

Our approach to find optimal solution of steady-state optimization problems
is based on dividing problems into two levels: local level—an optimization of
compressor station itself, and global level—an optimization of pipeline network
as a whole. These two levels lead to the following decomposition for finding
solution:

• deterministic part, represented by steady-state simulation, which includes
local optimization of compressor stations;

• stochastic part, in our case represented by evolution strategies algorithm
(ES), employing results of the deterministic part to assign value of fitness
function to candidate solution and verify its feasibility.

In our approach we use steady-state simulation as a complex highly compli-
cated fitness function. There are some assumptions which need to be satisfied.
Namely, the steady-state simulation has to be able to calculate steady-state,
where the following items are set:

• pressure or flow boundary condition at every inlet and outlet node;

• temperature boundary condition at every inlet node;

• pressure restrictions at all nodes;

• compression ratios of all compressor stations;

• for every type of compressor – its minimum and maximum number, mini-
mum and maximum revolution, surge and choke safety limits;

• power restriction for power unit of every type of compressor;

• ambient temperature that determines restriction of its drive in compressor
stations;

• control pressure of every control valve, etc.

Furthermore, for a given set of compression ratios of compressor stations,
a steady-state simulation has to be able to find locally optimal state of each
compressor station. In other words, for a chosen criterion (energy consumption,
gas consumption, operation cost) and given compression ratio on a compressor
station, the steady-state simulation has to be able to find optimal numbers and
types of running compressor units, its revolutions and their mutual connections.
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Last but not least assumption is that the steady-state simulation has to be
reasonably fast due to a very high required number of evaluations of fitness
function.

For a purpose of this paper we consider the steady-state simulation with
local optimization as a black box. For decision parameters, together with all
preassigned parameters (boundary conditions, compression ratios, settings of
regulators, state of the valves, etc.), this one determines whether these input
parameters define feasible solution and assigns a value of fitness function to
candidate solution.

We just sum up that we use a steady-state simulation based on a complete
one-dimensional model of turbulent gas flow. Its implementation is based on the
modified Hardy Cross method, and we achieve an acceleration of the simulation
by a hierarchical simplification of a network (a multilevel network method). One
can find further details in [17] and [18]. Of course, it is possible to use other
implementation of steady-state simulation satisfying all given assumptions.

In the stochastic part, we employ the method of evolution strategies to find a
set of decision parameters that minimize (maximize) value of the fitness function.

4.1. Single-objective optimization

By a number of numerical tests, we choose for implementation of ES modi-
fied (μ + λ)-ES with self-adaptive standard deviations and without correlated
mutation. The symbol μ represents the number of parents in population and λ
represents the number of offspring in population. The symbol “+” means that
all parents and all offspring fight against each other for survival. There is also
another representation of selection pressure in ES, denoted by symbol “,”, de-
noting that only new offspring fight against each other for their survival. By
“self-adaptive standard deviations” we mean that the standard deviation σ is
also evolved.

An individual (a candidate solution) in the ES is represented by a vector of
real numbers. If the number of decision parameters is n then the individual will
be represented by 2n real numbers X = (x,σ) where first n numbers represent
decision parameters and the rest n numbers appropriate standard deviations.

As it was mentioned before, the value of fitness function for individual X will
be obtained by calculation of steady-state simulation together with information
whether the parameter x represents feasible solution or not.

It is suitable to have initial population well distributed over subset of design
space representing feasible solutions. In the Fig. 1, there is a fitness function over
domain of feasible solutions for particular problem on the Slovak transmission
pipeline system, where we restrict the problem to just two dimensions—only
two compressor stations (CS 1 and CS 3) are running out of four. Compression
ratios K1 and K3 are on the horizontal axes and on the vertical axis there is
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Figure 1. Gas consumption of compressor stations CS 1 and CS 3
(in kg/s), while compressor stations CS 2 and CS 4 are bypassed.

gas consumption in kilograms per second. As one can see, the fitness function is
quite complicated and non-continuous. In many cases, its domain is too narrow
(cf. Fig. 3).

Therefore, there can be a problem to find an initial population by random
generating of individuals. But numerical tests show that if an initial generation
consists of just one individual, it is sufficient to start evolution without losing
search and convergence properties of the algorithm.

Numerical tests also show that, for creating a new individual, an approach
of one parent and self-adaptive standard deviation seems to be the most appro-
priate. The parent is chosen randomly from populations of parents by uniform
distribution. Subsequently, the mutation of the standard deviation σ′ is calcu-
lated in the first step from σ by

σ′ = σeN(0,Δσ), (1)

where Δσ is the parameter of the method. S c h w e f e l in [19] recommended to
set it to

Δσ =
1√
2
√
n
,

where n is the number of decision parameters. Expression N(0, Δσ) represents
the normal distribution with mean 0 and the standard deviation Δσ. After that
we can compute decision parameters for new offspring by formula:

x′ = x+N(0, σ′). (2)
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Now, it is necessary to decide whether the new decision parameters x′ define
feasible solution and in that case assign value of the fitness function to this
new offspring. This means that we have to run the steady-state simulation with
decision parameters x′ and with all other preassigned parameters. If these input
parameters do not represent feasible solution, it is necessary to calculate from
(1) and (2) new decision parameters x′ and run another steady-state simulation.

It is obvious that a calculation of steady-state simulations is the most time
consuming component of suggested optimization approach. When it is not pos-
sible to accelerate steady-state simulation by itself, there are fundamentally two
ways to accelerate optimization calculation as a whole: by reducing number of
required steady-state simulations and by parallel run of steady-state simulations.

• Optimal generating of candidate solutions: the goal is to find an optimal
modification of ES and optimal value of control parameters of ES algorithm
to minimize the required number of steady-state optimizations. To enable
comparison between different modifications of ES and different values of
control parameters, we have introduced the parameter successfulness. It is
the ratio between the number of all feasible solutions and the number of all
candidates for solution during whole optimization calculations. Using this
parameter, various types of offspring production were numerically tested
and control parameters were analyzed;

• Parallel computing: modern multiprocessor architecture allows running in-
dependent steady-state simulations. It substantially accelerates the opti-
mization.

To prevent the algorithm from premature convergence, we have introduced
the modification of ES. It is a combination of principle of (μ + λ)-ES and
(μ, λ)-ES modifications. There is a new control parameter called maximal age
and every individual has a new integer parameter age initially randomly selected
from the interval (maximal age

2 ,maximal age) by uniform distribution. When a
new individual representing feasible solution occurs, it gets a randomly chosen
integer representing the age that can be achieved by it. Every time this indi-
vidual becomes parent in a new generation, its age is decreased by one. When
its age reaches zero, it “dies” and cannot become a parent in the next genera-
tion.

Since, in general, a value of optimal solution is unknown, as a termination
condition is chosen either a total number of generations or an overall computing
time. After satisfying one of the terminal conditions, the individual with the best
value of fitness function till now will be set as the solution of the optimization
process.
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4.2. Multi-objective optimization

It is obvious that most of real-world engineering problems lead to multi-
objective optimization problems (MOP). For example, in area of stationary op-
timization problems in gas transmission pipeline systems, it is the common prob-
lem to find minimal gas consumption together with preservation of the current
line pack (a total mass of gas in a whole pipeline system). Optimal solution
which significantly changes the line pack is often inapplicable.

Despite the generality and robustness of our approach, it is necessary to make
some modifications that enable us to solve MOP. Representation of an individ-
ual does not need any modification, except that the fitness value is no longer
represented by only one real number but rather by a vector of real numbers. It is
due to the fact that in the case of k criteria, the value of fitness function should
be represented by a vector of k real numbers. Due to this, some modification
has to be done, namely the process of choosing new parents from population.
Usually, we are searching for a set of solutions, called Pareto optimal solutions.
It has been established by Italian economist Vilfredo P a r e t o.

We will say that feasible solution of MOP x dominates other feasible solution
y if, for i = 1, 2, . . . , k, fi(x) ≥ fi(y) and simultaneously there exist at least one
i such as fi(x) > fi(y). Let’s assume P is the subset of set of feasible solutions.
Feasible solution that is not dominated by any other feasible solution from P
will be called non-dominated according to set P . A subset of all non-dominated
solutions from set of all feasible solutions is called the Pareto optimal set and
its image in domain of the fitness function is called the Pareto front.

Consider results from various fields of research [20] that solved MOP by using
evolutionary and stochastic methods on different real world engineering MOP.
A mix of two ideas: elitism and diversification of a population can be observed.

Note: The elitism is such a principle that just the best individuals should
become parents.

In our single-objective optimization, a new parent is selected according to its
fitness function value. In MOP modification we will select parents from non-
-dominated individuals according to all feasible solutions obtained so far. The
set of all non-dominated solutions will be an approximation of the Pareto front.
If the number of non-dominated individuals is equal to μ, these individuals be-
come parents. But how to perform selection when the number of non-dominated
individuals is smaller or higher than μ? In these two cases we suggest solutions
in agreement with the principle of elitism and diversification of population:

• the number of non-dominated solutions is higher than μ: parents are chosen
from set of non-dominated individuals to achieve a uniform cover of the
Pareto front. It means that we skip non-dominated solutions which have
the nearest neighbor the non-dominated solution;
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• the number of non-dominated solutions is lower than μ: required parents
are added as the nearest feasible solutions to the approximation of the
Pareto front.

After satisfying one of the terminal conditions, all non-dominated individuals
obtained so far will be the result—the approximation of the Pareto optimal
solutions.

5. Numerical tests

In this section we present numerical tests and convergence properties of se-
lected problems related to the real-world transmission pipeline system on a model
of the Slovak pipeline system (Fig. 2). It consists of 161 pipes with 2268 km of
total length, 400 nodes including approximately 20 inlet and/or outlet nodes,
395 valves and 14 control valves. There are four complex compression stations in
line (“gunbarrel” or linear network topology). Every compressor station consists
of some number of 6 different types of compressor units that can be connected
parallel, serial or parallel-serial.

Figure 2. A segment of a model of the Slovak transmission pipeline system.

Algorithm and its modifications were written in C++ language as an embed-
ded module of the software MARTI Studio. Tests were performed on PC with
Intel Core i7-4771 CPU 3.5 GHz processor with 16 GB RAM. All results were
processed in Excel and Matlab.

Although the proposed algorithm is able to solve wide class of steady-state
optimization problems in gas pipeline transport, we had chosen minimal en-
ergy consumption problem to enable a comparison of results with the dynamic
programming algorithm.
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5.1. Numerical analysis of control parameters for single-objective
optimization

Figure 3. The section of the fitness function for fixed compression ratios
in compressor stations CS 2 and CS 4 (K2 = 1.25, K4 = 1.25).

The proposed algorithm has five basic control parameters: the number of
generations, number of parents, number of offspring, maximal age and initial
value of the standard deviation σ. Tested problem was to find the minimal
energy consumption at fixed transport conditions. The decision parameters are
compression ratios of four compressor stations.

The problem simulates the real task and gives us a good picture of typical
problems for which the proposed optimization approach was developed. A section
of fitness function is showed in the Fig. 3. We can see that the fitness function
and its domain of feasible solutions are neither continuous nor smooth. Also, the
domain is too narrow.

Different values of control parameters were tested by 100 independent op-
timization runs with the same conditions. The full results of numerical tests
(including the problem of maximal outlet and the multi-objective problem) can
be found in the PhD thesis [21].

Number of generations

We performed 100 independent runs for each of following numbers of gen-
erations: 5, 10, 25, 50, 75, 100 and 150. Each time control parameters were:
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5 parents, 10 offspring, maximal age 10 and starting sigma 0.05. As it was ex-
pected, convergence properties of the proposed algorithm were getting better
with an increasing number of generations but the overall computation time was
increasing as well. With the number of generations 50, the standard deviation
of solutions was approximately 0.6 (Table 1). That means that the maximal dif-
ference between the best and the worst solution was under 5� and from the
practical point of view it was an acceptable precision. With the number of gen-
erations 50, the overall computation time was, on average, less than 3 minutes.
Numerical tests indicate that average overall computation time was growing
approximately linearly with the number of generations but the standard de-
viation of overall computation time was growing approximately exponentially.
A successfulness of generating a new individual was slightly rising up with the
growing number of generations, but the standard deviation of successfulness of
generating new individual was growing too. Therefore, the optimal value of the
number of generations was between 50 and 100. Although the standard deviation
of solutions was still decreasing for value higher than 100 generations, it led to
disproportionately long computation times.

Table 1. The standard deviation of optimal solutions obtained in depen-
dency on the number of generations.

Numbers of generations 5 10 25 50 75 100 150

Standard deviation [MW] 6.411 5.426 1.622 0.607 0.470 0.224 0.121

Number of individuals in every generation

We performed 100 independent runs for each of following pairs of parents/off-
-spring: 1/1, 1/2, 1/5, 2/2, 2/4, 5/50, 5/10, 5/20, 10/20 and 10/50. Each time
the control parameters were: 50 generations, maximal age 50 and 0.05 starting σ.
The number of individuals has similar influence on convergence properties as the
number of generations. In general, bigger populations lead to better convergence
properties but also to longer computation time, which is unfavorable (Fig. 4,
Fig. 5). When the number of parents was at least 5 and the number of offspring
was at least 10, the standard deviation of solutions was less than 0.75. That
means that the maximal difference between optimal solutions was less than 1 %.
Furthermore, numerical tests indicate that the number of offspring would be
at least twice as large as the number of parents. Successfulness of generating
new individuals with growing population was slowly increasing, but it led to
more requiring steady-state optimizations and thus to longer overall computation
time. It follows that as optimal values we can put the number of parents 5 and
the number of offspring 10.
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Figure 4. Statistical properties of optimal solutions in dependency on the
number of individuals.

Figure 5. Statistical properties of overall computation time in dependency
on the number of individuals.
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Maximal age of parents

We performed 100 independent runs for each of the following numbers of
maximal age: 2, 5, 10, 20, 30, 50 and 75. Each time the control parameters were:
75 generations, 5 parents, 10 offspring and 0.05 starting σ. Numerical tests have
shown that when the maximal age of parents was less than 5 then convergent
properties of the proposed algorithm were significantly getting worse (Table 2).
On the other hand, maximal age of parents greater than 20 significantly wors-
ened the standard deviation of overall computation time (Table 3). From the
statistical point of view, there was no influence of maximal age of parents on
successfulness of generating new individuals. It follows that an optimal value of
maximal age seems to be around 10 % of the number of generations.

Table 2. The standard deviation of optimal solutions in dependency on the

maximal age of parents.

Maximal age of parents 2 5 10 20 30 50 75

Standard deviation [MW] 1.676 0.598 0.460 0.312 0.385 0.323 0.470

Table 3. The standard deviation of overall computation time in depen-
dency on the maximal age of parents.

Maximal age of parents 2 5 10 20 30 50 75

Standard deviation [s] 36.33 35.99 36.61 52.87 60.30 54.25 65.82

Initial value of the standard deviation

We performed 100 independent runs for each of following numbers of ini-
tial σ: 0.005, 0.01, 0.025, 0.05, 0.075, 0.1 and 0.5. Each time the control pa-
rameters were: 75 generations, 5 parents, 10 offspring and 10 maximal age. For
a value of initial σ it is necessary to take into account a range of feasible val-
ues of design parameters. In this particular problem, we had four design pa-
rameters that represent compressor ratios on four compressor stations. Every
design parameter was limited by interval [1, 1.5]. Therefore, according to (2),
it was not suitable to use an initial value of σ higher than 1. It follows from
numerical tests that the standard deviation of optimal solutions (Table 4) is
reasonable for initial sigma from interval [0.025, 0.5]. Overall computation time
was slowly increasing (Fig. 6) with increasing value of initial σ. For σ greater
than 0.1 overall computation time began to increase faster also with the stan-
dard deviation of overall computation time. The successfulness of generating
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new individual was slowly decreasing for growing value of initial σ. When we
sum up these observations, as an optimum value of initial σ can be consid-
ered value 0.05. It is 1 % of range of boundary interval for design parame-
ters.

Table 4. The standard deviation of optimal solutions in dependency on
value of initial σ.

Initial value of σ 0.005 0.01 0.025 0.05 0.075 0.1 0.5

Standard deviation [MW] 6.442 6.038 1.050 0.378 0.294 0.484 2.354

Figure 6. Statistical properties of overall computation time in dependency
on initial σ.

Summary

When one set the recommended values of control parameters: 75 generations,
5 parents, 10 offspring, 0.05 initial σ and 10 maximal age, then 100 independent
runs of proposed algorithm typically look like in Fig. 7, where the value of best
solutions over generations can be observed. In the Table 5, there are statistical
properties of considered 100 independent runs. In comparison to an optimal
solution obtained by algorithm of dynamic programming, we obtained solutions
with precision of 5 significant digits. Furthermore, the proposed algorithm and
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the algorithm of dynamic programming found exactly the same numbers and
types of running compressor units and their mutual connections in compressor
stations. Differences are only in revolutions of running compressors, but the
maximal difference was 28 revolutions per minute.

Table 5. Statistical properties of optimal solutions, overall computation
time and successfulness after 100 independent runs with control parameters
as follows: 75 generations, 5 parents, 10 offspring, 0.05 initial σ and 10
maximal age.

Energy
consump-
tion [MW]

K1 K2 K3 K4 Overall
time [s]

Success-
fulness
[%]

Minimum 1029.00 1.439 1.301 1.139 1.439 102.3 8.35

Maximum 1031.49 1.440 1.313 1.166 1.440 306.6 27.47

Mean 1029.32 1.439 1.307 1.157 1.439 167.5 16.50

Median 1029.18 1.440 1.306 1.157 1.440 163.1 16.24

Std. dev. 0.4604 7.8e-5 2.6e-3 4.9e-3 7.8e-5 36.6 3.43

Figure 7. Values of the best candidates for solution in dependence on
generations for 100 independent runs with control parameters as follows:
75 generations, 5 parents, 10 offspring, 0.05 initial σ and 10 maximal age.
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6. Conclusion

In this paper an implementation of the stochastic population method of evo-
lution strategies has been considered for solving a wide class of stationary opti-
mization problems in the field of a gas transport in transmission pipeline systems.
Namely, we developed it with focus on following problems:

• finding of maximal outflow;

• minimization problems (e.g., finding minimal gas consumption at certain
transport conditions);

• multi-objective optimization (e.g., minimal energy consumption and pre-
scribed line pack).

In the well-known approaches (in most cases, it is the model of nonlinear pro-
gramming or mixed-integer linear programming) a treatment of systems with
complicated compressor stations leads to a problem with too many design pa-
rameters. This could lead to enormous increase of computation time and to
non-practical solutions.

One of the basic results of this work is the effective elimination of large number
of design parameters and its substitution by smaller—even optimal—number of
design parameters. Specifically, instead of searching for optimal numbers and
types of running compressor units, its revolutions and their mutual connections
in compressor stations directly, we try to find out a set of compression ratios
for all compressor stations. As a consequence, this approach leads to nontrivial
acceleration of calculation.

Further properties of an implementation of the proposed algorithm:

Implementation in a form of end product

Proposed algorithm was implemented in C++ programming language as an
embedded module in software MARTI Studio—a general tool for solving tasks
in gas industry. It was designed to allow users to define their own design vector
and fitness function for individual optimization problems.

Parallel computing

Implementation on multiprocessor architecture enables to keep computation
time small enough to preserve its usability for practical use.

Heuristics for an improvement of convergence properties

To improve convergence properties of proposed algorithm we have included the
notion of maximal age. It is combination of (μ + λ)-ES and (μ, λ)-ES and had
been developed to prevent the algorithm from premature convergence.
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Testing of proposed algorithm on real-world problems and numerical
analysis of control parameters

Due to long-term cooperation with the gas transport industry we had possibil-
ity of testing algorithm on models and data from practice and solving practical
problems. We had performed complex numerical analysis of control parameters
on these problems to estimate optimal values of control parameters. The re-
sults were verified by dynamic programming algorithm as it guarantees (see [4])
reaching the global optimum.

Modifications of algorithm for solving multi-objective optimization
problems

It is obvious that real-world optimizing problems are in most cases of a multi-
objective nature. Therefore it is natural to modify the proposed algorithm to
enable solving such multi-objective problems.

Universality of proposed solution

It is easy to modify the proposed algorithm. In this paper we have introduced
a method based on an algorithm of evolution strategies. But the principle of
proposed algorithm enables us to use other global optimization methods as well.
For instance, we start experiment with algorithm of differential evolution and
with hybrid method: evolution strategies are utilized to create population that
can serve as the initial generation for differential evolution.
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