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AVERAGE OPERATORS

ON RECTANGULAR HERZ SPACES

Carolina Espinoza-Villalva — Martha Guzmán-Partida

ABSTRACT. We introduce a family of Herz type spaces considering rectangles
instead of balls and we study continuity properties of some average operators
acting on them.

1. Introduction

Herz spaces have been studied for many years. The roots of this subject lie on
the pioneering work of N. W i e n e r [11], A. B e u r l i n g [2] and C. H e r z [9].
Later, these spaces were generalized by other mathematicians in order to study
continuity properties of classical operators in harmonic analysis, as well as to de-
velop local versions of Hardy spaces and bounded mean oscillation spaces.

There are several definitions of Herz space. The following is classical and cor-
responds to the inhomogeneous setting: a measurable function f belongs to the
Herz space Kα

p,q (R
n), 1 ≤ p, q < ∞, α ∈ R if

‖f‖Kα
p,q

:=

( ∞∑
k=0

2nkαq ‖fχCk
‖qp
)1/q

< ∞ , (1)

and for q = ∞,

‖f‖Kα
p,∞

:= sup
k≥0

(
2nkα ‖fχCk

‖p
)
< ∞ . (2)

Here, C0 is the open unit ball B1 (0) and Ck = B2k (0) \B2k−1 (0), k ∈ N.

Setting α = −1/p in (2), we obtain the space Bp (Rn) that also can be char-
acterized by mean of the condition [5], [7]

sup
R≥1

⎛
⎜⎝ 1

|BR (0)|
∫

BR(0)

|f (x)|p dx

⎞
⎟⎠
1/p

< ∞ (3)
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and the quantity on the left hand side of (3) defines an equivalent norm to
‖f‖

K
−1/p
p,∞

that is usually denoted by ‖f‖Bp . With any of these norms, Bp (Rn)

turns out to be a Banach space. Moreover, for 1 ≤ p1 < p2 < ∞ we have the
inclusions Bp2 (Rn) ⊂ Bp1 (Rn) and L∞ (Rn) ⊂ Bp (Rn) for every p.

In this work we will restrict to the context of the space Bp (Rn) for 1 ≤ p < ∞.
Our aim is to explore what happens when we consider rectangles with sides par-
allel to the coordinate axes instead of balls in (3). As we will see below, although
we obtain a smaller space than Bp (Rn), it is still appropriate to study continu-
ity properties of some classical operators. In the context of the present paper,
we study continuity properties of some discrete and continuous versions of the
classical Hardy average operator. This operator has been extensively studied
by many authors on different function spaces. We restrict ourself to consider the
most simple versions of this operator in order to make the reading of the present
paper easy.

The manuscript is organized as follows: the second section is devoted to in-
troduce the rectangular Herz spaces and to give some examples. In the third
section we introduce average operators to be considered and we prove the con-
tinuity of these averages on our spaces.

We will employ standard notation along this work and we will also adopt
the convention to denote a constant that could be changing line by line by C.

2. Rectangular Herz spaces

For 1 ≤ p < ∞, we define the following space

Bp (Rn) =
{
f ∈ Lp

loc (R
n) : ‖f‖Bp < ∞},

where

‖f‖Bp := sup
Rj≥1

j=1,...,n

⎡
⎢⎣ 1

R1 · · ·Rn

∫
[−R1,R1]×···×[−Rn,Rn]

|f (x)|p dx

⎤
⎥⎦
1/p

. (4)

If the context does not cause confusion, we will simply write Bp. Notice that for
n = 1, the spaces Bp (R) and Bp (R) coincide.

Standard arguments (see [1], for example) allow us to see that (Bp, ‖·‖Bp) is
a Banach space. Moreover, it is clear that Bp ⊂ Bp and ‖·‖Bp ≤ ‖·‖Bp since
Lebesgue measure of balls and cubes are comparable.

����������� 1	 The space Bp (Rn) is properly contained in Bp (Rn) when n≥2.
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P r o o f. For the sake of clarity, we will consider the case n = 2.

Let f : R2 → R be the function defined as follows:

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x /∈ ([−1, 1]× R
) ∪ (R× [−1, 1]

)
,

1 if x ∈ ([−1, 1]× [−1, 1]
)
,

21/p if x ∈ ([−1, 1]× (1, 2]
)

∪ ([−1, 1]× [−2,−1)
)

∪ ((1, 2]× [−1, 1]
)

∪ ([−2,−1)× [−1, 1]
)
,

...

n1/p if x ∈ ([−1, 1]× (n− 1, n]
)

∪ ([−1, 1]× [−n,−n+ 1)
)

∪ ((n− 1, n]× [−1, 1]
)

∪ ([−n,−n+ 1)× [−1, 1]
)
, n ≥ 2.

Take R ≥ 1. We can find k ∈ N such that k ≤ R < k + 1 and thus

1∣∣∣[−R,R]
2
∣∣∣

∫
[−R,R]2

|f (x)|p dx ≤ 1

4k2

∫
[−(k+1),k+1]2

|f (x)|p dx

=
1

4k2
[
1 · 22 + 2 · 23 + 3 · 23 + · · ·+ (k + 1) · 23]

≤ 2

k2
[
1 + 2 + · · ·+ (k + 1)

]
=

(k + 1) (k + 2)

k2
≤ 6

which shows that f ∈ Bp
(
R

2
)
. However, if we now consider rectangles of the

form [−1, 1]× [−L,L] for L ≥ 2, we can pick m ∈ N such that m ≤ L < m + 1
and therefore

1

|[−1, 1]× [−L,L]|
∫

[−1,1]×[−L,L]

|f (x)|p dx =
1

4L

∫
[−1,1]×[−L,L]

|f (x)|p dx

≥ 1

4 (m+ 1)

∫
[−1,1]×[−m,m]

|f (x)|p dx

=
1

4 (m+ 1)

[
1 · 22+ 2 · 22+ · · ·+m · 22]

= m/2 → ∞ if m → ∞,

that is, f /∈ Bp
(
R

2
)
. �
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Using the idea of the previous example, we can get a characterization of the
space Bp (Rn). To this end, consider the following subsets of Rn:

Cj1,j2,...,jn = Cj1× Cj2× · · · × Cjn

where

C0 = [−1, 1] and Cj =
{
x ∈ R : 2j−1< |x| ≤ 2j

}
for j ∈ N .

For 1 ≤ p < ∞ and f ∈ Lp
loc (R

n) define

‖f‖∗Bp := sup
ji≥0

i=1,2,...,n

2−
(j1+j2+···+jn)

p

∥∥fχCj1,j2,...,jn

∥∥
p
.

Now, we can state the following characterization.

����������� 2	 f ∈ Bp (Rn) if and only if ‖f‖∗Bp < ∞. Moreover, ‖f‖Bp and
‖f‖∗Bp are equivalent norms.

P r o o f. Assume that ‖f‖∗Bp < ∞. For i = 1, . . . , n, let Ri > 1 and choose ji ∈ N

such that
2ji−1 < Ri ≤ 2ji .

We have that ∫
∏

n
i=1[−Ri,Ri]

|f (x)|p dx ≤
j1∑

k1=0

j2∑
k2=0

· · ·
jn∑

kn=0

∫
Ck1,k2,...,kn

|f (x)|p dx

≤
j1∑

k1=0

j2∑
k2=0

· · ·
jn∑

kn=0

2k1+k2+···+kn
(‖f‖∗Bp

)p

≤ C2j1+j2+···+jn
(‖f‖∗Bp

)p
≤ CR1R2 · · ·Rn

(‖f‖∗Bp

)p
.

Hence, f ∈ Bp (Rn) and ‖f‖Bp ≤ C ‖f‖∗Bp .

Conversely, if f ∈ Bp (Rn), i = 1, . . . , n and ji ≥ 0,∥∥fχCj1,j2,...,jn

∥∥p
p
=

∫
∏

n
i=1[−2ji ,2ji ]

|f (x)|p dx

≤ C ‖f‖pBp 2
j1+j2+···+jn

which implies that

‖f‖∗Bp = sup
ji≥0

i=1,2,...,n

2−
(j1+j2+···+jn)

p

∥∥fχCj1,j2,...,jn

∥∥
p
≤ C ‖f‖Bp .

This concludes the proof. �
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3. Continuity of average operators

Average integral operators were considered by H a r d y, L i t t l e w o o d and
P ó l y a in [8]. They proved the following classical inequality:

∞∫
0

(
F (x)

x

)p
dx ≤

(
p

p− 1

)p 1∫
0

fp (x) dx,

where 1 < p < ∞, F (x) =
∫ x

0
f (t) dt, f ≥ 0 and the constant

(
p

p−1

)p
is the best

possible.

The operator Hϕ introduced by C a r t o n- L e b r u n and F o s s e t in [3] and
by X i a o in [10] is closely related to this operator, which is pointwisely defined
as follows:

Hϕf (x) :=

1∫
0

f (tx)ϕ (t) dt. (5)

X i a o in [10] proved continuity of Hϕ under appropriate conditions on ϕ
on Lp (Rn) and BMO (Rn) for 1 ≤ p ≤ ∞. It is our goal to prove continuity
of this and other related operators in our rectangular Herz spaces.

We will start by considering the following discrete version of (5).

Let{rk}∞k=1be a sequence in(0,1]which is strictly decreasing and limk→∞rk=0.

If f : Rn−→ R is a Lebesgue measurable function and ϕ : {rk : k ∈ N}−→ (0,∞)
is any function, consider the operator Hd

ϕ formally defined as

Hd
ϕf (x) =

∞∑
k=1

ϕ (rk) f (rkx) .

Now, notice that a necessary and sufficient condition for the existence of Hd
ϕ as

a bounded operator on Lp (Rn) is that
∞∑
k=1

r
−n/p
k ϕ (rk) < ∞. (6)

Indeed, assuming the convergence of the series in (6), given f ∈ Lp (Rn),
1 ≤ p < ∞, and using Minkowski inequality, we obtain

∥∥Hd
ϕf
∥∥
p
≤

∞∑
k=1

ϕ (rk)

⎛
⎝ ∫

Rn

|f (rkx)|p dx
⎞
⎠
1/p

= ‖f‖p
∞∑
k=1

r
−n/p
k ϕ (rk) ,

which implies that∥∥Hd
ϕ

∥∥
Lp→Lp ≤

∞∑
k=1

r
−n/p
k ϕ (rk) .
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Conversely, if Hd
ϕ is bounded on Lp (Rn), as X i a o in [10], we can consider

the function
fε (x) = |x|−n

p−ε
χ{|x|>1},

where 0 < ε < 1. It turns out that ‖fε‖p = Cn

pε , Cn an n-dimensional constant

and

Hd
ϕfε (x) =

( ∞∑
k=1

r
− n

p −ε

k ϕ (rk)

)
|x|−n

p
−ε

χ{|x|>1}.

Thus, the same procedure as done in [10] shows that

∥∥Hd
ϕ

∥∥p
Lp→Lp ‖fε‖pp ≥

[
εε

∞∑
k=1

r
−n

p −ε

k ϕ (rk)

]p
‖fε‖pp

and therefore, ∥∥Hd
ϕ

∥∥
Lp→Lp ≥

[
εε

∞∑
k=1

r
−n

p −ε

k ϕ (rk)

]
≥ εε

∞∑
k=1

r
− n

p

k ϕ (rk)

for any 0 < ε < 1. Now, letting ε → 0, we obtain

∥∥Hd
ϕ

∥∥
Lp→Lp ≥

∞∑
k=1

r
− n

p

k ϕ (rk) .

We have proved the following result.


�����
 3	 The operator Hd
ϕ is a bounded operator on Lp (Rn), 1 ≤ p < ∞,

if and only if
∑∞

k=1 r
−n

p

k ϕ (rk) < ∞. In such a case,

∥∥Hd
ϕ

∥∥
Lp→Lp =

∞∑
k=1

r
− n

p

k ϕ (rk) .

We can also consider the following generalization of the operator Hd
ϕ.

Let Φ:
{
r
(1)
k1

: k1 ∈ N
}×· · ·×{r(n)kn

: kn ∈ N
} −→ (0,∞) be any function where,

for every j = 1, . . . , n, the sequence
{
r
(j)
kj

}∞
kj=1

⊂ (0, 1] is strictly decreasing and

limkj→∞ r
(j)
kj

= 0. For a Lebesgue measurable function f : R
n −→ R, define

formally

H
d
Φf (x) =

∞∑
k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)
f
(
r
(1)
k1

x1, . . . , r
(n)
kn

xn

)
. (7)

With the same proof as in Theorem 3, we can show:


�����
 4	 The operator H
d
Φ is a bounded operator on Lp (Rn), 1 ≤ p < ∞,

if and only if
∞∑

k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)(
r
(1)
k1

)−1/p

. . .
(
r
(n)
kn

)−1/p

< ∞ .
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In such a case,

∥∥Hd
Φ

∥∥
Lp→Lp =

∞∑
k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)(
r
(1)
k1

)−1/p

. . .
(
r
(n)
kn

)−1/p

.

Now, we will study the action of the operator H
d
Φ on our rectangular Herz

spaces defined in the previous section.

For these spaces, the proof of the continuity of the operator Hd
Φ is even easier.

We provide it for the sake of completeness.


�����
 5	 The operator H
d
Φ is a bounded operator on Bp (Rn), 1 ≤ p < ∞,

if and only if

∞∑
k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)
< ∞ . (8)

In such a case,∥∥Hd
Φ

∥∥
Bp→Bp =

∞∑
k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)
.

P r o o f. Assuming condition (8), taking Rj>1, j=1, . . . , n, and using Minkow-
ski inequality, we can see that
⎡
⎢⎣ 1

R1 · · ·Rn

∫

[−R1,R1]×···×[−Rn,Rn]

∣∣Hd
Φf (x)

∣∣pdx
⎤
⎥⎦
1/p

≤
∞∑

k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)
⎡
⎢⎣ 1

R1 · · ·Rn

∫

[−R1,R1]×···×[−Rn,Rn]

∣∣∣f
(
r
(1)
k1

x1, . . . , r
(n)
kn

xn

)∣∣∣p dx
⎤
⎥⎦
1/p

≤
∞∑

k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)
‖f‖Bp ,

and hence, ∥∥Hd
Φ

∥∥
Bp ≤

∞∑
k1=1

· · ·
∞∑

kn=1

Φ
(
r
(1)
k1

, . . . , r
(n)
kn

)
.

Now, if the operator H
d
Φ is bounded on Bp (Rn), it is susfficient to consider

the function f0 ≡ 1 because, in such a case, we easily obtain the required reverse
inequality. �

Our next goal is to generalize the operator given by (7). Before doing this,
we will define another class of rectangular spaces closely related to Bp.
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���������� 6	 For 1 ≤ p < ∞, we define

CMOp (Rn) =
{
f ∈ Lp

loc (R
n) : ‖f‖CMOp < ∞},

where

‖f‖CMOp := sup
Rj≥1

j=1,...,n

⎡
⎢⎣ 1

R1 · · ·Rn

∫
[−R1,R1]×···×[−Rn,Rn]

|f (x)− fR1···Rn
|p dx

⎤
⎥⎦
1/p

, (9)

and fR1...Rn
is the average of f on [−R1, R1]× · · · × [−Rn, Rn].

It is not difficult to show that (CMOp, ‖·‖CMOp) is a Banach space if we iden-
tify functions that differ by a constant almost everywhere on R

n. Also, we obtain
an equivalent norm to ‖·‖CMOp if we consider the quantity

‖f‖∗CMOp := sup
Rj≥1

j=1,...,n

inf
a∈R

⎡
⎢⎣ 1

R1 · · ·Rn

∫
[−R1,R1]×···×[−Rn,Rn]

|f (x)− a|p dx

⎤
⎥⎦
1/p

.

This space is the rectangular version of the space CMOp [4], [7] whose elements
satisfy the condition

sup
R≥1

⎡
⎢⎣ 1

|Q (0, R)|
∫

Q(0,R)

|f (x)− fQ(0,R)|pdx

⎤
⎥⎦
1/p

< ∞ .

Here, Q (0, R) denotes the cube centered at 0 with side length equal to R. Clearly,
Bp⊂ CMOp⊂ CMOp.

Now, we consider the following operator:

For Lebesgue measurable functions f : Rn −→ R, and φ : [0, 1]
n −→ (0,∞),

we define

Hφf (x) :=

∫
[0,1]n

f (t1x1, . . . , tnxn)φ (t1, . . . , tn) dt1 · · · dtn . (10)

Observe that the same proof as given by X i a o in [10] shows that Hφ is
a bounded operator on Lp (Rn), 1 ≤ p < ∞, if and only if∫

[0,1]n

t
−1/p
1 · · · t−1/p

n φ (t1, . . . , tn) dt1 · · ·dtn < ∞ .

We will give equivalent conditions for the boundedness of the operator Hφ on the
spaces Bp and CMOp.
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�����
 7	 The operatorHφ is a bounded operator on Bp(Rn) and CMOp(Rn),
1 ≤ p < ∞, if and only if∫

[0,1]n

φ (t1, . . . , tn) dt1 · · ·dtn< ∞ .

Moreover,

‖Hφ‖Bp→Bp = ‖Hφ‖CMOp→CMOp =

∫
[0,1]n

φ (t1, . . . , tn) dt1 · · ·dtn . (11)

P r o o f. Just for illustration, we prove the equivalence for the space CMOp (Rn).

Suppose that the integral in (11) is finite. Then, for Rj > 1, j = 1, . . . , n and
f ∈ CMOp (Rn), we can easily see that

(Hφf)R1···Rn
=

∫
[0,1]n

ft1R1···tnRn
φ (t1, . . . , tn) dt1 · · ·dtn .

Now, by Minkowski inequality and an appropriate change of variable, we have
that ⎡

⎢⎣ 1

R1 · · ·Rn

∫
[−R1,R1]×···×[−Rn,Rn]

|Hφf (x)− (Hφf)R1···Rn
|p dx

⎤
⎥⎦
1/p

≤
∫

[0,1]n

⎛
⎜⎝ 1

R1 · · ·Rn

∫
[−R1,R1]×···×[−Rn,Rn]

|f (t1x1, . . . , tnxn)− ft1R1···tnRn
|p dx

⎞
⎟⎠
1/p

× φ (t1, . . . , tn) dt1 · · · dtn

≤ ‖f‖CMOp

∫
[0,1]n

φ (t1, . . . , tn) dt1 · · ·dtn ,

which implies that

‖Hφ‖CMOp→CMOp ≤
∫

[0,1]n

φ (t1, . . . , tn) dt1 · · ·dtn .

For the converse, it suffices to consider the function f0 (x) ≡ 1. �

Finally, it should be remarked that Theorems 5 and 7 remain true if we con-
sider homogeneous versions of the spaces Bp and CMOp, that is, those defined
by taking Rj > 0 for every j = 1, . . . , n in (4) and (9).
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