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DISTRIBUTION FUNCTIONS OF RATIO

SEQUENCES.

AN EXPOSITORY PAPER

Oto Strauch

ABSTRACT. This expository paper presents known results on distribution func-
tions g(x) of the sequence of blocks Xn =

( x1
xn

, x2
xn

, . . . , xn
xn

)
, n = 1, 2, . . . , where

xn is an increasing sequence of positive integers. Also presents results of the set
G(Xn) of all distribution functions g(x). Specially:

– continuity of g(x);
– connectivity of G(Xn);
– singleton of G(Xn);

– one-step g(x);
– uniform distribution of Xn, n = 1, 2, . . . ;
– lower and upper bounds of g(x);

– applications to bounds of 1
n

∑n
i=1

xi
xn

;

– many examples, e.g., Xn =
(

2
pn

, 3
pn

, . . . ,
pn−1

pn
, pn
pn

)
, where pn is the nth

prime, is uniformly distributed.
The present results have been published by 25 papers of several authors between
2001–2013.

1. Introduction

Let xn, n=1, 2, . . . , be an increasing sequence of positive integers (by “increas-
ing” we mean strictly increasing). The double sequence xm/xn, m,n = 1, 2, . . .
is called the ratio sequence of xn. It was introduced by T. Š a l á t [16]. He studied
its everywhere density. For further study of the ratio sequences, O. S t r a u c h
and J. T. T ó t h [24] introduced a sequence Xn of blocks

Xn =

(
x1

xn
,
x2

xn
, . . . ,

xn

xn

)
, n = 1, 2, . . .
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and they studied the set G(Xn) of its distribution functions. The motivation is
that the existence of strictly increasing g(x) ∈ G(Xn) implies everywhere density
of xm/xn, the basic problem studied by Š a l á t [16]. Further motivation is that
the block sequences are a tool for study of distribution functions of sequences,
see [20, p. 12, 1.9]. Organization of the paper:

In Section 2 we follow the notations and basic properties of distribution func-
tions used in [5], [12] and [21, p. 1–28, 1.8.23].

In Section 3 we list main properties of g(x) and G(Xn) without proofs.

In Section 4 we add proofs of some properties in Section 3. Specially:

4.1 Basic properties;

4.2 Continuity of g(x) ∈ G(Xn);

4.3 Singleton G(Xn) =
{
g(x)

}
;

4.4 U.d. of Xn;

4.5 One-step d.f.s cα(x);

4.6 Connectivity of G(Xn);

4.7 Boundaries of g(x) ∈ G(Xn);

4.8 Lower and upper d.f.s in G(Xn);

4.9 Construction H ⊂ G(Xn);

4.10 g(x) ∈ G(Xn) with constant intervals;

4.11 Transformation of Xn by 1/x mod 1.

Many examples with xn and G(Xn) are given in Section 5. The paper is com-
pleted in Section 6 with comments on another block sequences.

2. Definitions

• From now on 1 ≤ x1 < x2 < · · · denotes the sequence of positive integers
and x ∈ [0, 1).

• Denote by F (Xn, x) the step distribution function

F (Xn, x) =
#{i ≤ n; xi

xn
< x}

n
,

for x ∈ [0, 1) and for x = 1 we define F (Xn, 1) = 1.

• Denote by A(t) the counting function

A(t) = #{n ∈ N;xn < t}.
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Directly from the definition we obtain

F (Xm, x) =
n

m
F

(
Xn, x

xm

xn

)

for each m ≤ n and

nF (Xn, x)

xxn
=

A(xxn)

xxn

for every x ∈ [0, 1).

• The lower asymptotic density d and the upper asymptotic density d of xn,
n = 1, 2, . . . ,1 are defined as

d = lim inf
t→∞

A(t)

t
= lim inf

n→∞
n

xn
, d = lim sup

t→∞
A(t)

t
= lim sup

n→∞
n

xn
.

• A non-decreasing function g : [0, 1] → [0, 1], g(0) = 0, g(1) = 1 is called
distribution function (abbreviated d.f.). We shall identify any two d.f.s
coinciding at common points of continuity.

• Similarly, the inequality g1(x) ≤ g2(x) we consider only in the common
points of continuity.

• A d.f. g(x) is a d.f. of the sequence of blocks Xn, n = 1, 2, . . . , if there
exists an increasing sequence n1 < n2 < · · · of positive integers such that

lim
k→∞

F (Xnk
, x) = g(x)

a.e. on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding
limit holds for every point x ∈ [0, 1] of continuity of g(x).

• Denote by G(Xn) the set of all d.f.s of Xn, n = 1, 2, . . . If G(Xn) =
{
g(x)

}
is a singleton, the d.f. g(x) is also called the asymptotic d.f. (abbreviated
a.d.f.) of Xn.

• Also for a sequence yn ∈ [0, 1), n = 1, 2, . . . , we have defined in [21, 1.3]
the step d.f.

FN (x) =
#{n ≤ N ; yn ∈ [0, x)}

N

and G(yn) is the set of all possible weak limits FNk
(x) → g(x).

• The lower d.f. g(x) and the upper d.f. g(x) of a sequence Xn, n = 1, 2, . . .
are defined as

g(x) = inf
g∈G(Xn)

g(x), g(x) = sup
g∈G(Xn)

g(x).

1d = d(xn), d = d(xn).
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• If limk→∞ F (Xnk
, x)=g(x) and limk→∞ nk

xnk
=dg we shall call dg as a local

asymptotic density for d.f. g(x).
In this paper we frequently use the following two theorems of Helly

(see the First and Second Helly theorem [21, Th. 4.1.0.10 and Th. 4.1.0.11,
p. 4–5]).

• Helly’s selection principle: For any sequence gn(x), n = 1, 2, . . . , of d.f.s
in [0, 1] there exists a subsequence gnk

(x), k = 1, 2, . . . , and a d.f. g(x)
such that limk→∞ gnk

(x) = g(x) a.e.

• Second Helly theorem: If we have limn→∞ gn(x) = g(x) a.e. in [0, 1], then

for every continuous function f : [0, 1]→R we have limn→∞
∫ 1

0
f(x)dgn(x)=∫ 1

0
f(x) dg(x).

• Note that applying Helly’s selection principle, from the sequence F (Xn, x),
n = 1, 2, . . . , one can select a subsequence F (Xnk

, x), k = 1, 2, . . . , such
that limk→∞ F (Xnk

, x) = g(x) holds not only for the continuity points x
of g(x), but also for all x ∈ [0, 1].

• We will use the one-step d.f. cα(x) with the step 1 at α defined on [0, 1]
via

cα(x) =

{
0, if x ≤ α;

1, if x > α,

while always cα(0) = 0 and cα(1) = 1.

3. Overview of basic results

G(Xn) has the following properties:

1. If g(x) ∈ G(Xn) increases and is continuous at x = β and g(β) > 0, then
there exists 1 ≤ α < ∞ such that αg(xβ) ∈ G(Xn). If every d.f. of G(Xn)
is continuous at 1, then α = 1/g(β), [24, Prop. 3.1, Th. 3.2].

2. Assume that all d.f.s in G(Xn) are continuous at 0 and c1(x) /∈ G(Xn).
Then for every g̃(x) ∈ G(Xn) and every 1 ≤ α < ∞ there exists g(x) ∈
G(Xn) and 0 < β ≤ 1 such that g̃(x) = αg(xβ) a.e. [24, Th. 3.3].

3. Assume that all d.f.s in G(Xn) are continuous at 1. Then all d.f.s in G(Xn)
are continuous on (0, 1], i.e., only possible discontinuity is in 0 [24, Th. 4.1].

4. If d(xn)>0, then every g(x)∈G(Xn) is continuous on [0, 1],
[24, Th. 6.2(iv)].

5. If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≥ x for every
x ∈ [0, 1], [24, Th. 6.2(ii)]. Generally, [3, Th. 6)], every G(Xn) contains
g(x) ≥ x for every x ∈ [0, 1].
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6. If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≤ x for every
x ∈ [0, 1], [24, Th. 6.2].

7. Assume that G(Xn) is singleton, i.e., G(Xn) =
{
g(x)

}
. Then either g(x) =

c0(x) for x ∈ [0, 1]; or g(x) = xλ for some 0 < λ ≤ 1 and x ∈ [0, 1].
Moreover, if d(xn) > 0, then g(x) = x, [24, Th. 8.2].

8. maxg∈G(Xn)

∫ 1

0
g(x) dx ≥ 1

2 , [24, Th. 7.1] (c.f. 5.).

9. Assume that every d.f. g(x) ∈ G(Xn) has a constant value on the fixed
interval (u, v) ⊂ [0, 1] (maybe different). If d(xn) > 0 then all d.f.s inG(Xn)
has infinitely many intervals with constant values, [22].

10. There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) =

{
hα(x);α ∈ [0, 1]

}
, where hα(x) = α, x ∈ (0, 1) is the

constant d.f. [9, Ex. 1].

11. There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that c1(x) ∈ G(Xn) but c0(x) /∈ G(Xn), where c0(x) and c1(x) are
one–jump d.f.s with the jump of height 1 at x = 0 and x = 1, respectively.

12. There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) is non-connected [9, Ex. 2].

13. We have (see [24, Prop. 3.1, Th. 3.2]):
Let g(x) ∈ G(Xn), β ∈ (0, 1), and assuming that

(i) g(x) is continuous at β,
(ii) g(x) increases at β,2

(iii) g(β) > 0,
(iv) all d.f. in G(Xn) are continuous at 1.
Then

g(xβ)

g(β)
∈ G(Xn).

14. Taking the following limits (i)–(iii) for a sequence of indices nk, k = 1, 2, . . .
(i) limk→∞ F (Xnk

, x) = g(x),
(ii) limk→∞ nk

xnk
= dg,

then (see [24, Prop. 6.1]) there exists

(iii) limk→∞
A(xxnk

)

xxnk
= dg(x) and

g(x)

x
dg = dg(x)

for x ∈ [0, 1]. Here the limits (i) and (iii) can be considered for all
x ∈ (0, 1] or all continuity points x ∈ (0, 1] of g(x) and the constant
dg in (ii) we call local density.

2The assumption (ii) can be replaced by a requirement that β is a limit point of xi
xnk

,

i = 1, 2, . . . , nk, k = 1, 2, . . . , where weakly F (Xnk , x) → g(x).
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15. Specially (see [24, Th. 6.2 (iii), (iv)]), if d > 0 then

x
d

d
≤ g(x) ≤ x

d

d

for every x ∈ [0, 1] and furthermore g(x) is everywhere continuous. Thus

d = d > 0 implies u.d. of the block sequence Xn, n = 1, 2, . . .

��������������������

��������������������
0 1

(d/d)x

(d/d)x

16. G(Xn)={xλ} if and only if limn→∞(xk.n/xn)=k1/λ for every k=1, 2, . . .
Here as in 7. we have 0 < λ ≤ 1, [7].

17. If d(xn) > 0, then all d.f.s g(x) ∈ G(Xn) are continuous, nonsingular and
bounded by h1(x) ≤ g(x) ≤ h2(x), where

h1(x) =

⎧⎨
⎩x d

d
if x ∈

[
0, 1−d

1−d

]
,

d
1
x−(1−d)

otherwise,
h2(x) = min

(
x
d

d
, 1

)
.

Furthermore, there exists xn, n = 1, 2, . . . , such that h2(x) ∈ G(Xn) and
for every xn we have h1(x) �∈ G(Xn), [3, Th. 7] and moreover

18. for a given fixed g(x) ∈ G(Xn), x ∈ [0, 1] we have h1,g(x) ≤ g(x) ≤ h2,g(x),
where

h1,g(x) =

{
x d

dg
if x < y0 =

1−dg

1−d ,

x 1
dg

+ 1− 1
dg

if y0 ≤ x ≤ 1,

h2,g(x) = min

(
x

d

dg
, 1

)

[3, Th. 6].

19. These boundaries are established by observing that for every g(x) ∈ G(Xn)

0 ≤ g(y)− g(x)

y − x
≤ 1

dg

for x < y, x, y ∈ [0, 1].
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4. Overview of proofs

In this section we give proofs of some properties described in Section 3.

4.1. Basic properties

Using
xi < xxm ⇐⇒ xi <

(
x
xm

xn

)
xn

and that these inequalities imply i < m, it directly follows from definition
F (Xn, x) that

F (Xm, x) =
n

m
F

(
Xn, x

xm

xn

)
, (1)

for every m ≤ n and x ∈ [0, 1). Also for any increasing sequence of positive
integers xn, n = 1, 2, . . . , we define a counting function A(t) as

A(t) = #{n ∈ N; xn < t}.
Then for every x ∈ (0, 1] we have the equality

nF (Xn, x)

xxn
=

A(xxn)

xxn
, (2)

which we shall use to compute the asymptotic density of xn. We have the lower
asymptotic density d, and the upper asymptotic density d of xn, n = 1, 2, . . . as

d = lim inf
t→∞

A(t)

t
= lim inf

n→∞
n

xn
, d = lim sup

t→∞
A(t)

t
= lim sup

n→∞
n

xn
.

Using Helly’s selection principle from the sequence (m,n) we can select a sub-
sequence (mk, nk) such that F (Xnk

) → g(x), F (Xmk
) → g̃(x) as k → ∞,

furthermore xmk
/xnk

→ β and mk/nk → α, but α may be infinity. These limits
have the following connection.

������� 1 ([24, Prop. 3.1])� Let mk and nk be two increasing integer sequences
satisfying mk ≤ nk, for k = 1, 2, . . . and assume that

(i) limk→∞ F (Xnk
, x) = g(x) a.e.,

(ii) limk→∞ F (Xmk
, x) = g̃(x) a.e.,

(iii) limk→∞
xmk

xnk
= β > 0,

(iv) g(β − 0) > 0.

Then there exists limk→∞ nk

mk
= α < ∞ such that

g̃(x) = αg(xβ) a.e. on [0, 1], and α =
g̃(1− 0)

g(β − 0)
. (3)
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P r o o f. Firstly we prove

lim
k→∞

F

(
Xnk

, x
xmk

xnk

)
= g(xβ). (4)

Denoting βk = xmk
/xnk

and substituting u = xβk, we find

0 ≤
1∫

0

(
F (Xnk

, xβk)− g(xβk)
)2
dx =

1

βk

βk∫
0

(
F (Xnk

, u)− g(u)
)2
du

≤ 1

βk

1∫
0

(
F (Xnk

, u)− g(u)
)2
du → 0,

which leads to
(
F (Xnk

, xβk) − g(xβk)
) → 0 a.e. as k → ∞ (here necessarily

β > 0). Furthermore,
1∫

0

(
F (Xnk

, xβk)− g(xβ)
)2

dx

=

1∫
0

(
F (Xnk

, xβk)− g(xβk) + g(xβk)− g(xβ)
)2
dx

≤ 2

⎛
⎝ 1∫

0

(
F (Xnk

, xβk)− g(xβk)
)2
dx+

1∫
0

(
g(xβk)− g(xβ)

)2
dx

⎞
⎠.

Since g(x) is continuous a.e. on [0, 1] then
(
g(xβk) − g(xβ)

) → 0 a.e. and ap-

plying the Lebesgue theorem of dominant convergence we find
∫ 1

0

(
g(xβk) −

g(xβ)
)2
dx → 0. This gives (4). The existence of the limit limk→∞ nk

mk
= α < ∞

follows from (1) and (iv). Now, let tn ∈ [0, 1) increases to 1 and g̃(x) be con-
tinuous in tn. Then g(xβ) is also continuous in tn and g̃(tn) = αg(tnβ) for
n = 1, 2, . . . . The limit of this equation gives the desired form of α. �

The equality (2) gives

������� 2 ([24, Prop. 6.1])� Assume for a sequence nk, k = 1, 2, . . . that

(i) limk→∞ F (Xnk
, x) = g(x),

(ii) limk→∞ nk

xnk
= dg.

Then there exists

(iii) limk→∞
A(xxnk

)

xxnk
= dg(x) and

g(x) =
x

dg
dg(x). (5)

Here the limits (i) and (iii) can be considered for all x ∈ (0, 1] or all continuity
points x ∈ (0, 1] of g(x).
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4.2. Continuity of g ∈ G(Xn)

If all g ∈ G(Xn) are everywhere continuous on [0, 1], then relation (3) is
of the form

g(xβ)

g(β)
∈ G(Xn). (6)

As a criterion for continuity of all g ∈ G(Xn) we can adapt the Wiener-Schoen-
berg theorem (cf. [12, 6, p. 55]), but here we give the following simple sufficient
condition.

������� 3 ([24, Th. 4.1])� Assume that all d.f.s in G(Xn) are continuous at 1.
Then all d.f.s in G(Xn) are continuous on (0, 1], i.e., the only discontinuity point
can be 0.

P r o o f. Assume that xmk
/xnk

→ β and F (Xnk
, x)→ g(x) as k→∞. If from

(mk, nk) we can select two sequences (m′
k, n

′
k) and (m′′

k, n
′′
k) such that

n′
k/m

′
k→α1 and n′′

k/m
′′
k → α2 with a finite α1 �= α2, then α1g(xβ), α2g(xβ) ∈

G(Xn) and thus one of such d.f. g̃(x) must be discontinuous at 1 (it holds also
for g continuous at β). Thus, assuming that G(Xn) has only continuous d.f.s
at 1, the limits xmk

/xnk
→ β > 0 and F (Xnk

, x) → g(x) imply the conver-
gence of nk/mk. Now by [24, Th. 3.2]: If β is a point of discontinuity of g(x)
with g(β + 0)− g(β − 0) = h > 0, then there exists a closed interval I ⊂ [0, 1],
with length |I| ≥ h such that for every 1

α ∈ I we have αg(xβ) ∈ G(Xn). Thus
g(x) cannot have a discontinuity point in (0, 1]. �

������� 4 ([24, Th. 6.2])�

(i) If d > 0, then there exits g ∈ G(Xn) such that g(x) ≤ x for every x ∈ [0, 1].

(ii) If d > 0, then there exits g ∈ G(Xn) such that g(x) ≥ x for every x ∈ [0, 1].

(iii) If d > 0, then for every g ∈ G(Xn) we have

(d/d)x ≤ g(x) ≤ (d/d)x (7)

for every x ∈ [0, 1].

(iv) If d > 0, then every g ∈ G(Xn) is everywhere continuous in [0, 1].

(v) If d > 0, then for every limit point β > 0 of xm/xn there exist g ∈ G(Xn)
and 0 ≤ α < ∞ such that αg(xβ) ∈ G(Xn).

P r o o f. (i). Assume that nk/xnk
→ d as k → ∞. Select a subsequence n′

k

of nk such that F (Xn′
k
, x) → g(x) a.e. on [0, 1]. Since dg(x) ≤ d a.e. in (5) gives(

g(x)/x
)
d ≤ d a.e., which leads to g(x) ≤ x a.e. and implies g(x) ≤ x for every

x ∈ [0, 1].
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(ii). Similarly to (i), let nk/xnk
→ d as k → ∞. Select a subsequence n′

k

of nk such that F (Xn′
k
, x) → g(x) a.e. on [0, 1]. Since d2(x) ≥ d a.e., (5) im-

plies
(
g(x)/x

)
d ≥ d a.e. again, which gives g(x) ≥ x a.e., whence, g(x) ≥ x

everywhere on x ∈ [0, 1].

(iii). For any g ∈ G(Xn) there exists nk such that F (Xnk
, x) → g(x) a.e.

From nk we can choose a subsequence n′
k such that n′

k/xn′
k
→ d1. Using (5)

and the fact that d ≤ d1 ≤ d and d ≤ d2 ≤ d we have
(
g(x)/x

)
d ≤ d and(

g(x)/x
)
d ≥ d a.e. If d > 0, these inequalities are valid for every x ∈ (0, 1].

(iv). Continuity of g ∈ G(Xn) at 1 follows from [24, Prop. 4.2]: Denote

d(ε) = lim sup
n→∞

#{i ≤ n; (1− ε)xn < xi < xn}
n

.

Every g ∈ G(Xn) is continuous at 1 if and only if limε→0 d(ε) = 0. Since

d(ε) ≤ lim sup
n→∞

ε
xn

n
=

ε

d
,

applying [24, Th. 4.1] = Theorem 3, we have continuity of g in (0, 1]. Continuity
at 0 follows from (7).

(v). It follows from the fact that if d > 0 and limk→∞ xmk
/xnk

= β > 0
for mk < nk, then lim supk→∞ nk/mk < ∞. More precisely, if we pick (m′

k, n
′
k)

from (mk, nk) such that n′
k/m

′
k → α, then

d

dβ
≤ α ≤ d

dβ
. (8)

This is so because if we select (m′′
k, n

′′
k) from (m′

k, n
′
k) such that n′′

k/xn′′
k
→ d1

and m′′
k/xm′′

k
→ d2, then, by

n′′
k

m′′
k

=

n′′
k

xn′′
k

xn′′
k

m′′
k

xm′′
k

xm′′
k

,

we see α = d1/(d2β). �

4.3. Singleton G(Xn) = {g}
For general G(Xn), the connection between G(Xn) and G(xm/xn mod 1) is

open, but for singleton G(Xn) we have

������� 5 ([24, Th. 8.1])� If G(Xn) = {g}, then G(xm/xn mod 1) = {g}.
P r o o f. A proof of the theorem is the same as the proof of [19, Prop. 1, (ii)],
since

lim
n→∞

|Xn|
|X1|+ · · ·+ |Xn| = lim

n→∞
n

n(n+ 1)/2
= 0.

�
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������� 6 ([24, Th. 8.2])� Assume that G(Xn) = {g}. Then either

(i) g(x) = c0(x) for x ∈ [0, 1] or

(ii) g(x) = xλ for some 0 < λ ≤ 1 and x ∈ [0, 1]. Moreover,

(iii) if d > 0 then g(x) = x.

P r o o f. Let G(Xn) = {g}. We divide the proof into the following six steps.

(I). By [24, Th. 7.1], we have
∫ 1

0
g(x)dx ≥ 1

2 which implies g(x) �= c1(x).

(II). g must be continuous on (0, 1), since otherwise [24, Th. 3.2], for a dis-
continuity point β ∈ (0, 1), guarantees the existence of α1 �= α2 such that
α1g(xβ) = α2g(xβ) = g(x) a.e. which is a contradiction.

(III). Assume that g(x) increases in every point β ∈ (0, 1). In this case
relation (5) gives the well-known Cauchy equation g(x)g(β) = g(xβ) for a.e.
x, β ∈ [0, 1] For a monotonic g(x) the Cauchy equation has solutions only of the
type g(x) = xλ.

(IV). Assume that g(x) has a constant value on the interval (γ, δ) ⊂ [0, 1].
For β ∈ (0, 1] g(x) satisfies two conditions: (j) g(x) increases in β and (jj)
g(β) > 0. Then the basic relation (3) gives g(x) = αg(xβ) which implies that
g(x) has a constant value also on β(γ, δ) and if δ ≤ β then also on β−1(γ, δ).
Thus, if (γi, δi), i ∈ I is a system of all intervals (maximal under inclusion)
in which g(x) possesses constant values, then for every i ∈ I there exists j ∈ I
such that β(γi, δi) = (γj , δj) and vice-versa for every j ∈ I, δj ≤ β, there exists
i ∈ I such that β−1(γj , δj) = (γi, δi). This is true also for β = βn1

1 βn2
2 . . . ,

where β1, β2, . . . satisfy (j) and (jj) and n1, n2, . . . ∈ Z. Thus, there exists
0 < θ < 1 such that every such β has the form θn, n ∈ N. The end points γi, δi
(without γi = 0) satisfy (j) and (jj) and thus the intervals (γi, δi) is of the form
(θn, θn−1), n = 1, 2, . . . and all discontinuity points of g(x) are θn, n = 1, 2, . . . ,
a contradiction with (II). For g(x) = c0(x) there exists no β ∈ (0, 1] satisfying
(j) and (jj).

(V). We have the possibilities g(x) = c0(x) and g(x) = xλ for some λ > 0.

Applying [24, Th. 7.1] we have
∫ 1

0
g(x) dx ≥ 1/2 which reduces λ to λ ≤ 1.

(VI). If d > 0, then by [24, Th. 6.2, (i)] = Theorem 4 must be g(x) ≤ x which
is contrary to xλ > x for λ < 1. �

The possibilities (i), (ii) are achievable. Trivially, for xn = [nλ], G(Xn) =
{x1/λ} and for xn satisfying limn→∞ xn/xn+1 = 0 we have G(Xn) =

{
c0(x)

}
.

Less trivially, every lacunary xn, i.e., xn/xn+1 ≤ λ < 1, gives G(Xn) =
{
c0(x)

}
.

The following limit covers all of G(Xn) = {g}.
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������� 7 ([24, Th. 8.3])� The set G(Xn) is a singleton if and only if

lim
m,n→∞

(
1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ xi

xm
− xj

xn

∣∣∣∣
− 1

2m2

m∑
i,j=1

∣∣∣∣ xi

xm
− xj

xm

∣∣∣∣− 1

2n2

n∑
i,j=1

∣∣∣∣ xi

xn
− xj

xn

∣∣∣∣
)

= 0. (9)

P r o o f. It follows directly from the limit (9) in the form

lim
m,n→∞

1∫
0

(
F (Xm, x)− F (Xn, x)

)2
dx = 0,

after applying
1∫

0

(
g(x)− g̃(x)

)2
dx =

1∫
0

1∫
0

|x− y| dg(x) dg̃(y)

− 1

2

1∫
0

1∫
0

|x− y| dg(x) dg(y)− 1

2

1∫
0

1∫
0

|x− y| dg̃(x) dg̃(y)

(10)

for g(x) = F (Xm, x) and g̃(x) = F (Xn, x). �

4.4. U.d. of Xn

By Theorem 5, u.d. of the single block sequenceXn implies the u.d. of the ratio
sequence xm/xn. Applying [24, Th. 6.3, (i)] (d/d)x ≤ g(x) ≤ (d/d)x for every
x ∈ [0, 1], we have

������� 8� If the increasing sequence xn of positive integers has a positive
asymptotic density, i.e., d = d > 0, then the associated ratio sequence xm/xn,
m = 1, 2, . . . , n, n = 1, 2, . . . is u.d. in [0, 1].

Positive asymptotic density is not necessary. According to T. Š a l á t [16]
we can use also a sequence xn with d = 0.

������� 9 ([24, Th. 9.2])� Let xn be an increasing sequence of positive integers
and h : [0,∞) → [0,∞) be a function satisfying

(i) A(x) ∼ h(x) as x → ∞, where

(ii) h(xy) ∼ xh(y) as y → ∞ and for every x ∈ [0, 1], and

(iii) limn→∞ n
h(xn)

= 1.

Then Xn (and consequently xm/xn) is u.d. in [0, 1].
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P r o o f. Starting with (2) F (Xn, x)n = A(xxn) it follows from (i) that

F (Xn, x)n

h(xxn)
→ 1

as n → ∞, then by (ii)
F (Xn, x)n

xh(xn)
→ 1

which gives by (iii) the limit

F (Xn, x)
n

h(xn)
→ x

as n → ∞. �

Assuming only (i) and (ii), we have lim infn→∞ n/h(xn) ≥ 1, since otherwise
nk/h(xnk

) → α < 1 implies F (Xnk
, x) → x/α for every x ∈ [0, 1] which is

a contradiction. Also, G(Xn) ⊂
{
xλ;λ ∈ [0, 1]

}
.

Another criterion can be found by using the so called L2 discrepancy of the
block Xn defined by

D(2)(Xn) =

1∫
0

(
F (Xn, x)− x

)2
dx,

which can be expressed (cf. [19, IV. Appl.]) as

D(2)(Xn) =
1

n2

n∑
i,j=1

F

(
xi

xn
,
xj

xn

)
,

where

F (x, y) =
1

3
+

x2 + y2

2
− x+ y

2
− |x− y|

2
.

Thus

D(2)(Xn) =
1

3
+

1

nx2
n

n∑
i=1

x2
i −

1

nxn

n∑
i=1

xi − 1

2n2xn

n∑
i,j=1

|xi − xj|,

which gives (cf. [19]).

������� 10� For every increasing sequence xn of positive integers we have

lim
n→∞

D(2)(Xn) = 0 ⇐⇒ lim
n→∞

F (Xn, x) = x.

The left hand-side can be divided into three limits (cf. [18, Th. 1])

lim
n→∞

D(2)(Xn) = 0 ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

(i) limn→∞ 1
nxn

∑n
i=1 xi =

1
2
,

(ii) limn→∞ 1
nx2

n

∑n
i=1 x

2
i = 1

3
,

(iii) limn→∞ 1
n2xn

∑n
i,j=1 |xi − xj | = 1

3
.

Weyl’s criterion for u.d. of Xn is not well applicable in our case. It says
(cf. [17, (7)]).
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������� 11� Xn is u.d. if and only if

lim
n→∞

1

n

n∑
k=1

e2πih
xk
xn = 0

for all positive integers h.

4.5. One-step d.f. cα(x)

In [24] there is proved that singleton G(Xn) =
{
c1(x)

}
does not exist, since

(by [24, Th. 7.1]) for every increasing sequence xn of positive integers we have

max
g(x)∈G(Xn)

1∫
0

g(x) dx ≥ 1

2
. (11)

In [24] is also proved (see Th. 8.4, 8.5) that

������� 12�

G(Xn) =
{
c0(x)

}⇐⇒ lim
n→∞

1

nxn

n∑
i=1

xi = 0, (12)

G(Xn) =
{
c0(x)

}⇐⇒ lim
n→∞

1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ xi

xm
− xj

xn

∣∣∣∣ = 0, (13)

G(Xn) ⊂
{
cα(x);α ∈ [0, 1]

}⇐⇒ lim
n→∞

1

n2xn

n∑
i,j=1

|xi − xj| = 0. (14)

P r o o f.

(12).
∫ 1

0
x dg(x) = 1− ∫ 1

0
g(x) dx = 0 only if g(x) = c0(x).

(13). Assume that F (Xmk
, x) → g̃(x) and F (Xnk

, x) → g(x) a.e. as k → ∞.
Riemann-Stieltjes integration yields

1

mknk

mk∑
i=1

nk∑
j=1

∣∣∣∣ xi

xmk

− xj

xnk

∣∣∣∣ =
1∫

0

1∫
0

|x− y| dF (Xmk
, x) dF (Xnk

, y) (15)

which, after using Helly’s theorem, tends to

1∫
0

1∫
0

|x− y| dg̃(x) dg(y) (16)

as k → ∞. Then (16) is equal to 0 if and only if g̃(x) = g(x) = cα(x)

for some fixed α ∈ [0, 1]. By Theorem 6, α must be 0 (d = 0 follows from
Theorem 4, part (i)).
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(14). Again
∫ 1

0

∫ 1

0
|x−y| dg(x) dg(y) = 0 if and only if g(x) = cα(x) for α ∈ [0, 1]

and thus

lim
k→∞

1

nknk

nk∑
i=1

nk∑
j=1

∣∣∣∣ xi

xnk

− xj

xnk

∣∣∣∣ = 0

for every nk → ∞. �

Furthermore, if G(Xn) ⊂
{
cα(x);α ∈ [0, 1]

}
, then d(xn) = 0. Here we prove

that

������� 13 ([9, Th. 6])� Let xn, n=1, 2, . . . , be an increasing sequence of pos-
itive integers. Assume that G(Xn)⊂

{
cα(x);α∈ [0, 1]

}
. Then c0(x) ∈ G(Xn) and

if G(Xn) contains two different d.f.s, then also c1(x) ∈ G(Xn).

P r o o f. We start from the equation (2) (see [24, p. 756, (1)])

F (Xm, x) =
n

m
F

(
Xn, x

xm

xn

)
,

which is valid for every m ≤ n and x ∈ [0, 1]. Assuming, for two increasing
sequences of indices mk ≤ nk, that, as k → ∞
(i) F (Xmk

, x) → cα1
(x) a.e.,

(ii) F (Xnk
, x) → cα2

(x) a.e.,

(iii) nk

mk
→ γ,

(iv)
xmk

xnk
→ β,

(such sequences mk ≤ nk exist by Helly theorem) then we have:

a) If β > 0 and γ < ∞ (see (3) in [24]), then

cα1
(x) = γcα2

(xβ) (13)

for almost all x ∈ [0, 1].

b) If β = 0 and γ < ∞, then by Helly theorem there exists subsequence

(m′
k, n

′
k) of (mk, nk) such that F

(
Xn′

k
, x

xm′
k

xn′
k

)
→ h(x) a.e. and since

F

(
Xnk

, x
xm′

k

xn′
k

)
≤ F (Xnk

, xβ′)

for every β′ > 0 and sufficiently large k, we get h(x) ≤ cα2
(xβ′). Summarizing,

we have
cα1

(x) ≤ γcα2
(xβ′) (14)

for every β′ > 0 a.e. on [0, 1].

We distinguish the following steps (notions (i)–(iv), a) and b) are preserve):

10. Let cα1
(x) ∈ G(Xn), 0 ≤ α1 < 1, and let mk, k = 1, 2, . . . , be an increasing

sequence of positive integers for which
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(i) F (Xmk
, x) → cα1

(x).
Relatively to the mk, we choose an arbitrary sequence nk, mk ≤ nk, such
that

(iii) nk

mk
→ γ, 1 < γ < ∞.

From (mk, nk) we select a subsequence (m′
k, n

′
k) such that

(ii) F (Xn′
k
, x) → cα2

(x) a.e. on [0, 1],

(iv)
xm′

k

xn′
k

→ β for some β ∈ [0, 1].

a) If β > 0, then (13) cα1
(x) = γcα2

(xβ) a.e. is impossible, because γ > 1
and for x > α1 we have cα1

(x) = 1. Thus β = 0.

b) The condition β = 0 implies (14) cα1
(x) ≤ γcα2

(xβ′) for every β′ > 0 and
a.e. on x ∈ [0, 1]. If α2 > 0, then cα2

(xβ′) = 0 for all x < α2

β′ , which implies, using

β′ ≤ α2, that cα1
(x) = 0 for x ∈ (0, 1), and this is contrary to the assumption

α1 < 1.

Thus α2=0 and we have: If 0≤α1<1 and cα1
(x)∈G(Xn) then c0(x)∈G(Xn).

Now, applying [24, Th. 7.1] we have maxcα(x)∈G(Xn)

∫ 1

0
cα(x) dx = 1 − α ≥ 1

2 .
Then the assumption cα1

(x) ∈ G(Xn), 0 ≤ α1 < 1 is true, thus c0(x) ∈ G(Xn)
holds.

20 In this case we start with the sequence nk and we assume that cα2
(x)∈G(Xn),

0 < α2 ≤ 1, and

(ii) F (Xnk
, x) → cα2

(x) a.e. on [0, 1].
Then we choose arbitrary mk such that mk ≤ nk and

(iii) nk

mk
→ γ, 1 < γ < ∞.

From (mk, nk) we select a subsequence (m′
k, n

′
k) such that

(ii) F (Xm′
k
, x) → cα1

(x) a.e. on [0, 1],

(iv)
xm′

k

xn′
k

→ β for some β ∈ [0, 1].

a) If β > 0, then by (13) cα1
(x) = γcα2

(xβ) a.e. If α1 < 1, then γ > 1
implies cα1

(x) > 1 for some x ∈ (0, 1), a contradiction. Thus α1 = 1 (in this case
β ≤ α2).

b) Now, β = 0 implies (14) cα1
(x) ≤ γcα2

(xβ′) for every β′ > 0 and a.e.
on x ∈ [0, 1] and the assumption α2 > 0 implies cα2

(xβ′) = 0 for all x < α2

β′ ,

which gives α1 = 1. Summarizing, if G(Xn) contains two different d.f.s, then it
contains c0(x) and c1(x) simultaneously. �

4.6. Connectivity of G(Xn)

As we have mentioned in the introduction, for a usual sequence yn the set
G(yn) of all d.f. of yn is nonempty, closed and connected in the weak topology,
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and consists either of one or infinitely many functions. The closedness of G(Xn)
is clear, but connectivity of G(Xn) is open. A general block sequence Yn with
non-connected G(Yn) can be found trivially. For our special Xn we have only
the following sufficient condition.

������� 14 ([24, Th. 5.1])� If

lim
n→∞

(
1

n(n+ 1)

n+1∑
i=1

n∑
j=1

∣∣∣∣ xi

xn+1
− xj

xn

∣∣∣∣
− 1

2(n+ 1)2

n+1∑
i,j=1

∣∣∣∣ xi

xn+1
− xj

xn+1

∣∣∣∣− 1

2n2

n∑
i,j=1

∣∣∣∣ xi

xn
− xj

xn

∣∣∣∣
)

= 0,

(17)

then G(Xn) is connected in the weak topology.

P r o o f. The connection follows from the limit

lim
n→∞

1∫
0

(F (Xn+1, x)− F (Xn, x))
2
dx = 0,

since by a theorem of H. G. B a r o n e [2] if tn is a sequence in a metric space
(X, ρ) satisfying

(i) any subsequence of tn contains a convergent subsequence and

(ii) limn→∞ ρ(tn, tn+1) = 0,

then the set of all limit points of tn is connected. Next we use the expression

1∫
0

(
g(x)− g̃(x)

)2
dx =

1∫
0

1∫
0

|x− y| dg(x) dg̃(y)

− 1

2

1∫
0

1∫
0

|x− y| dg(x) dg(y)− 1

2

1∫
0

1∫
0

|x− y| dg̃(x) dg̃(y).

Putting g(x) = F (Xn+1, x) and g̃(x) = F (Xn, x) we get the desired limit.3 �

As a consequence we have:

������� 15� If limn→∞ xn

xn+1
= 1, then G(Xn) is connected.

3ρ2(g, g̃) =
∫ 1
0

(
g(x)− g̃(x)

)2
dx.

In Example 4 is given Xn such that G(Xn) is connected but lim supn→∞ ρ(tn+1, tn) = 1.
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P r o o f. After some manipulation (17) it follows from

lim
n→∞

(
1

nxn

n∑
i=1

xi

)(
1− xn

xn+1

)
= 0.

�

Note that by [24, Th. 4.1] all d.f.’s in G(Xn) are continuous everywhere
on [0, 1] if they are continuous at 0 and 1.

In [24, Th. 3.2] is proved that if g(x) ∈ G(Xn), g(x) increases at β ∈ [0, 1),
g(β) > 0, then there exists α ∈ [1,∞) such that αg(xβ) ∈ G(Xn). Using this
fact, we can define on G(Xn) the relation g̃(x) ≺ g(x) if there exist α, β such
that g̃(x) = αg(xβ). For every element g(x) ∈ G(Xn) we define

[
g(x)

]
as the

set of all g̃(x) ∈ G(Xn) for which g̃(x) ≺ g(x). Assuming that all d.f.s in G(Xn)
are continuous and strictly increasing, then we have[

g(x)
]
=
{
g(xβ)/g(β); β ∈ (0, 1]

}
.

Denote as G
(
g(x)

)
the set of all possible limits limk→∞ g(xβk)/g(βk), where

βk → 0 and put [
g(x)

]∗
=
[
g(x)

] ∪G
(
g(x)

)
.

������� 16� Assume that all d.f.s in G(Xn) are continuous and strictly in-

creasing. If G(Xn) = ∪k
i=1

[
gi(x)

]∗
, then G(Xn) is connected if and only if gi(x),

i = 1, 2, . . . , k can be reordered into gin(x), n = 1, 2, . . . , k such that

(i)
[
gin(x)

]∗ ∩ [gin+1
(x)

]∗ �= ∅, n = 1, 2, . . . , k − 1.

P r o o f. 10 Firstly we prove that
[
g(x)

]∗
is nonempty, closed and connected,

for every g(x)∈G(Xn). Note that, in the following we say that we can go connect-
ively g1(x) → g2(x) through the set H if for every ε > 0 there exists
a chain gin(x) ∈ H, n = 1, 2, . . . ,m such that ρ(g1, gi1) < ε, ρ(gi2 , gi3) < ε, . . .
. . . , ρ(gim , g2) < ε.

Connectivity: If g1(x) = g(xβ1)/g(β1) and g2(x) = g(xβ2)/g(β2) then we can go
connectively g1(x) → g2(x) through g(xβ)/g(β), where β is between β1 and β2,
since

g(xβ)

g(β)
− g(xβ′)

g(β′)
=

(
g(xβ)− g(xβ′)

g(β)
+ g(xβ′)

g(β′)− g(β)

g(β)g(β′)

)
→ 0

as (β′ − β) → 0, where β, β′ ≥ ε > 0.

If g1(x) = limk→∞ g(xβk)/g(βk) and g2(x) = limk→∞ g(xβ′
k)/g(β

′
k), then

we can go connectively

g1(x) → g(xβk)/g(βk) → g(xβ′
k)/g(β

′
k) → g2(x)

through
[
g(x)

]
. Similarly for the rest

g1(x) = g(xβ1)/g(β1) and g2(x) = lim
k→∞

g(xβk)/g(βk).
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Closedness: If limk→∞ g(xβk)/g(βk) = g1(x), we can select βk such that βk → β.
If β > 0, then from continuity g(x) we have g1(x) = g(xβ)/g(β). The closedness
of G

(
g(x)

)
follows from definition of G

(
g(x)

)
.

20. Assume that (i) holds and select g∗n(x) ∈
[
gin(x)

]∗ ∩ [gin+1
(x)

]∗
, i = 1, 2, . . .

. . . , k − 1. Let g1(x) ∈
[
gi1(x)

]∗
and g2(x) ∈

[
gi3(x)

]∗
. Then we can go connec-

tively

g1(x) → gi1(xβ1)

gi1(β1)
→ g∗1(x) →

gi2(xβ2)

gi2(β2)
→ g∗2(x) →

gi3(xβ3)

gi3(β3)
→ g2(x),

similarly in a general case.

30. Assume that (i) does not hold. Then
[
gi(x)

]∗
, i = 1, 2, . . . , k, can be divided

into two parts such that(
∪i∈A

[
gi(x)

]∗) ∩
(
∪i∈B

[
gi(x)

]∗)
= ∅,

where A∪B = {1, 2, . . . , k}. From closedness of such sets follows ρ(g, g̃)≥ δ > 0

for some δ and every g(x) ∈ ∪i∈A

[
gi(x)

]∗
and g̃(x) ∈ ∪i∈B

[
gi(x)

]∗
, which con-

tradicts the connectivity of G(Xn). �

4.7. Boundaries of g(x) ∈ G(Xn)

������� 17 ([3, Th. 5])� For every increasing sequence of positive integers xn,
n = 1, 2, . . . , there exists g(x) ∈ G(Xn) such that g(x) ≥ x for all x ∈ [0, 1].

P r o o f. If d>0, select nk so that nk

xnk
→d>0, and F (Xnk

, x) → g(x). For such

g(x), (5) implies
g(x)

x
d ≥ d .

Now, let d = 0. Select nk such that

nk

xnk

= min
i≤nk

i

xi
,

and F (Xnk
, x) → g(x). Then for every x ∈ (0, 1],

A(xxnk
)

xxnk

≥ nk − 1

xnk

.

Applying (2) yields
F (Xnk

, x)

x

nk

xnk

≥ nk − 1

xnk

,

and taking the limit, as k → ∞, we obtain g(x) ≥ x for all x ∈ [0, 1].4 �

4L. Mǐśık.
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������� 18 ([3, Th. 6])� Let x1 < x2 < . . . be a sequence of positive inte-
gers with positive lower asymptotic density d > 0, and upper asymptotic den-
sity d. Then all d.f.s g(x) ∈ G(Xn) are continuous, non-singular, and bounded
by h1(x) ≤ g(x) ≤ h2(x), where

h1(x) =

⎧⎨
⎩x d

d
, if x ∈

[
0, 1−d

1−d

]
;

d
1
x−(1−d)

, otherwise,
(18)

h2(x) = min

(
x
d

d
, 1

)
. (19)

Moreover, h1(x) and h2(x) are the best possible in the following sense: for given

0 < d ≤ d, there exists x1 < x2 < · · · with lower and upper asymptotic densities

d, d, such that g(x) = h1(x) for x ∈ [
1−d
1−d , 1

]
; also, there exists x1 < x2 < · · ·

with given 0 < d ≤ d such that g(x) = h2(x) ∈ G(Xn).

P r o o f. For g(x) ∈ G(Xn), let nk, k = 1, 2, . . . , be an increasing sequence
of indices such that F (Xnk

, x) → g(x). From nk we can select a subsequence
(for simplicity written as the original nk)

5 such that
nk

xnk

→ dg > 0. (20)

Then, by (5), we have

g(x) = x
dg(x)

dg
, where

A(xxnk
)

xxnk

→ dg(x) (21)

for arbitrary x ∈ (0, 1].

We will continue in six steps 10–60.

10. We prove the continuity of g(x) at x = 1 (improving (iv) in [24, Th. 6.2])
for each g(x) ∈ G(Xn).

In view of the definition of the counting function A(t)

0 ≤ A(xnk
)−A(xxnk

) ≤ xnk
− xxnk

;

thus,

0 ≤ A(xnk
)

xnk

− A(xxnk
)

xnk

=
nk − 1

xnk

− A(xxnk
)

xxnk

x ≤ 1− x,

and, as k → ∞, we have 0 ≤ dg − dg(x)x ≤ 1− x, which implies

0 ≤ dg − dg(x) + dg(x)(1− x) ≤ 1− x.

Consequently, limx→1 dg(x) = dg, and so limx→1 g(x) = limx→1 x
dg(x)
dg

= 1.

Since g(x) ∈ G(Xn) is arbitrary, [24, Th. 4.1, Th. 6.2] gives continuity of g(x)
in the whole unit interval [0, 1].

5We call dg a local asymptotic density related to g(x).
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20. We prove that g(x) has a bounded right derivative for every x ∈ (0, 1), and
for each g(x) ∈ G(Xn).

For 0 < x < y < 1 again

0 ≤A(yxnk
)−A(xxnk

) ≤ (y − x)xnk
,

which implies

0 ≤ A(yxnk
)

yxnk

y − A(xxnk
)

xxnk

x ≤ y − x.

Letting k → ∞, we get

0 ≤ dg(y)y − dg(x)x ≤ y − x,

hence

0 ≤ g(y)− g(x) =
dg(y)y − dg(x)x

dg
≤ y − x

dg
.

Consequently,

0 ≤ g(y)− g(x)

y − x
≤ 1

dg
(22)

for all x, y ∈ (0, 1), x < y, which gives the upper bound of the right derivatives
of g(x) for every x ∈ (0, 1). Note that a singular d.f. (continuous, strictly in-
creasing, having zero derivative a.e.) has infinite right Dini derivatives in a dense
subset of (0, 1).

30. We prove a local form of Theorem 17.

As d ≤ dg ≤ d, (21) implies

x
d

dg
≤ g(x) ≤ x

d

dg
(23)

for every x ∈ [0, 1]. It follows from (22), that there exists an extreme point

Ag=(xg, yg) on the line y=x d
dg

such that g(x) has no common point with this

line for x > xg. This point Ag is the intersection of the lines

y = x
d

dg
and, y = x

1

dg
+ 1− 1

dg
(24)

therefore,

Ag = (xg, yg) =

(
1− dg
1− d

,
d

dg

1− dg
1− d

)
. (25)

It means that for a given g(x) ∈ G(Xn), h1,g(x) ≤ g(x) ≤ h2,g(x), where

h1,g(x) =

{
x d

dg
, if x < y0 =

1−dg

1−d ;

x 1
dg

+ 1− 1
dg
, if y0 ≤ x ≤ 1,

(26)

h2,g(x) = min

(
x

d

dg
, 1

)
. (27)
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40. Now we find h1(x), and h2(x) such that

h1(x) ≤ h1,g(x) ≤ h2,g(x) ≤ h2(x)

for every g ∈ G(Xn).

In the parametric expression (25) of Ag, the local asymptotic density dg de-

fined by (20) belongs to the interval [d, d]. The well-known Darboux property
of the asymptotic density implies that for an arbitrary d ∈ [d, d] there exists
an increasing nk, k = 1, 2, . . . , such that nk

xnk
→ d6, and then the Helly selection

principle implies the existence of a subsequence of nk such that F (Xnk
, x) → g(x)

for some g(x) ∈ G(Xn). Thus, if g(x) runs over G(Xn), then dg runs over the en-

tire interval [d, d]. Substituting dg = 1− xg(1− d) in Ag = (xg, yg) we get

yg = yg(xg) =
d

1
xg

− (1− d)
,

where xg =
1−dg

1−d runs through the interval I =
[
1−d
1−d , 1

]
for dg ∈ [d, d]. By putting

xg = x, and yg = h1 we find a part of h1(x) for x ∈ I in (18). The remaining
part of h1(x), and also the whole h2(x), follow from the basic inequality (23),
see [3, Fig. 1.]. The optimality of h1(x) and h2(x) are proved in 50 and 60 pages
518–522 of [3]. 7 �

Figure: Boundaries of g(x) ∈ G(Xn)

6A simple proof follows from the fact that for every d ∈ (d, d) there exist infinitely many n ∈ N

such that A(n)/n ≤ d ≤ A(n+ 1)/(n+ 1). These n we denote as nk.
7L. Mǐśık for the idea of (22).
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Application

An application of d.f.s in Theorem 18 to elementary number theory:

������� 19 ([3, Th. 7])� For every increasing sequence x1 < x2 < · · · of po-
sitive integers with lower and upper asymptotic densities 0 < d ≤ d we have

1

2

d

d
≤ lim inf

n→∞
1

n

n∑
i=1

xi

xn
, (28)

lim sup
n→∞

1

n

n∑
i=1

xi

xn
≤ 1

2
+

1

2

(
1−min(

√
d, d)

1− d

)(
1− d

min(
√
d, d)

)
. (29)

Here the equations in (28) and (29) can be attained.

P r o o f. By Helly theorem, if F (Xnk
, x) → g(x), then

1∫
0

xdF (Xnk
, x) =

1

nk

nk∑
i=1

xi

xnk

→
1∫

0

x dg(x) = 1−
1∫

0

g(x) dx.

If d > 0, then h1(x) ≤ g(x) ≤ h2(x) which implies

1−
1∫

0

h2(x) dx ≤ 1−
1∫

0

g(x ) dx ≤ 1−
1∫

0

h1(x) dx. (30)

For x1 < x2 < · · · for which h2(x) ∈ G(Xn) in the left of (30) we have equation,
but in every case h1(x) /∈ G(Xn) for 0 < d < d, which implies strong inequality
in the right, i.e.,

lim sup
n→∞

1

n

n∑
i=1

xi

xn
< 1− 1

2

d

d

(
1− d

1− d

)2
− d

(1− d)2

(
log

d

d
− (d− d)

)
. (31)

Since for every g(x) ∈ G(Xn) in 30 we have h1,g(x) ≤ g(x) ≤ h2,g(x), then

lim sup
n→∞

1

n

n∑
i=1

xi

xn
≤ max

g(x)∈G(Xn)

⎛
⎝1−

1∫
0

h1,g(x) dx

⎞
⎠. (32)

If the maximum in (32) is attained in g0(x) ∈ G(Xn) and h1,g0(x) ∈ G(Xn),
then g0(x) = h1,g0(x) and we have

lim sup
n→∞

1

n

n∑
i=1

xi

xn
= 1−

1∫
0

h1,g0(x) dx. (33)
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Using (26) we find

1∫
0

h1,g(x) dx =
1

2

(
1 +

1− dg
1− d

(
d

dg
− 1

))

for dg ∈ [d, d] with derivative
(∫ 1

0
h1,g(x) dx

)′
= 1

2(1−d)

(
1 − d

(dg)2

)
and which

gives that min
∫ 1

0
h1,g(x)dx is attained in dg0 = min(

√
d, d).

Now, to prove (33) we can construct integer x1 < x2 < · · · with 0 < d ≤ d
such that h1,g0(x) ∈ G(Xn).

We starting with the sequence of indices nk, and then by (26) we must find
indices m′

k< mk < nk and integers xm′
k
< xmk

< xnk
such that

(i) nk

xnk
→ dg0 ,

(ii) mk

nk
→ d

dg0

1−dg0

1−d ,

(iii)
xmk

xnk
→ 1−dg0

1−d ,

(iv)
xm′

k

xnk
→ 0,

(v)
m′

k

n′
k
→ 0,

(vi)
m′

k

xm′
k

→ d.

Then from (i), (ii) and (iii) follows mk

xmk
→ d. Furthermore we must again as-

sumed

(v) xmk
− xm′

k
≥ mk −m′

k,

(vi) xnk
− xmk

≥ nk −mk,

(vii) xm′
k+1

− xnk
≥ m′

k+1 − nk,

(viii) nk < m′
k+1,

(ix) m′
1 ≤ xm′

1
.

It can be solved naturally and complement values xn are defined linearly. �

Algorithm [4, p. 5]

Let 1 ≤ x1 < x2 < · · · be an increasing sequence of positive integers. Put x0 = 0
and

tn = xn − xn−1, n = 1, 2, . . .

For every n = 1, 2, . . . we compute the finite integer sequence

t
(n)
1 , t

(n)
2 , . . . , t(n)n

from t1, t2, . . . by the following procedure:
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10. For n = 1, t
(1)
1 = t1 = x1;

20. For n = 2, t
(2)
1 = t1 + t2 − 1 = x2 − 1 and t

(2)
2 = 1;

30. Assume that for n−1≥2 we have t
(n−1)
i , i=1, 2, . . . , n−1. For n we first define

the initial auxiliary sequence t′1, t
′
2, . . . , t

′
n such that t′i = t

(n−1)
i , i = 1, 2, . . . , n−1,

and t′n = tn. Then we repeatedly modify this sequence using following steps (a)
and (b).

(a) If there exists k, 1 < k < n, such that t′1 = t′2 = · · · = t′k−1 > t′k and
t′n > 1, then we put t′k := t′k+1, t′n := t′n−1 and t′i := t′i in all other cases.

(b) If such k does not exist and t′n > 1, then we put t′1 := t′1 + 1, t′n := t′n − 1
and t′i := t′i in all other cases.

Repeated application of (a) and (b) shows that the step 30 terminates if t′n = 1

and outputs the sequence t
(n)
1 := t′1, . . . , t

(n)
n := t′n.

40. Put n− 1 := n and use the output t
(n)
1 , . . . , t

(n)
n as the new input in 30.

Thus the final output of Algorithm is the infinite sequence of finite integers

block t
(n)
1 , t

(n)
2 , . . . , t

(n)
n for n = 1, 2, . . .

����	 1 ([4, Lemma 1])� Assuming that tn �= 1 for infinitely many n, then

the output t
(n)
1 , t

(n)
2 , . . . , t

(n)
n of the Algorithm can be of the following two possible

forms:

(A) t
(n)
1 = · · · = t(n)

m = Dn > t
(n)
m+1 ≥ t

(n)
m+2 = t

(n)
m+3 = . . . t(n)

n = 1,

(B) t
(n)
1 = · · · = t(n)

m = Dn > t
(n)
m+1 = · · · = t

(n)
m+s = Dn − 1 ≥ t

(n)
m+s+1 = · · · = t(n)

n = 1,

for some m = m(n), s = s(n) and for Dn := t
(n)
1 .

����	 2 ([4, Lemma 2])� For Dn defined in Lemma 1 there are two possibilities:

(I) Dn is bounded;

(II) Dn → ∞.

In the case (I) we have only the form (A) and Dn = const. = c ≥ 2 for all suf-
ficiently large n.

In the case (II) both cases (A) and (B) are possible.

Construction [4, p. 8]

Assume that, for every n = 1, 2, . . . , we have given n-terms sequence

t
(n)
1 , t

(n)
2 , . . . , t(n)n

such that for every n = 1, 2, . . .

t
(n)
1 ≤ t

(n+1)
1 , t

(n)
2 ≤ t

(n+1)
2 , . . . , t(n)n ≤ t(n+1)

n . (34)

157



OTO STRAUCH

Then, we define xn, x
(n)
j and X

(n)
n as

xn =

n∑
i=1

t
(n)
i , n = 1, 2, . . . ; (35)

x
(n)
j =

j∑
i=1

t
(n)
i , j = 1, 2, . . . , n; (36)

X(n)
n =

(
x
(n)
1

x
(n)
n

,
x
(n)
2

x
(n)
n

, . . . ,
x
(n)
n

x
(n)
n

)
, n = 1, 2, . . . (37)

Clearly x
(n)
n = xn and using (34) we see that

xj =

j∑
i=1

t
(j)
i ≤

j∑
i=1

t
(n)
i = x

(n)
j , j = 1, 2, . . . , n

which implies

F (X(n)
n , x) ≤ F (Xn, x) for all x ∈ [0, 1], n = 1, 2, . . . (38)

Selecting a sequence of indices nk, k = 1, 2, . . . , such that F (Xnk
, x) → g(x) and

F (X
(nk)
nk , x) → g̃(x) for all x ∈ [0, 1], we have

g̃(x) ≤ g(x) for all x ∈ [0, 1]. (39)

The case d = 0 [4, p. 12]

In the case d = 0 the Algorithm implies limn→∞ Dn = ∞ since if Dn =

const. = c, then t
(n)
1 , t

(n)
2 , . . . , t

(n)
n satisfy (A) and dg = 1

α(c−1)+1 ≥ 1
c > 0. Note

that, in the opposite direction, limn→∞ Dn = ∞ need not imply d = 0, see
the Construction.

The following theorem we shall formulate for the case (B), since the case (A)
gives the same result, putting γ = 0 and sk = 0.

������� 20 ([4, Th. 3])� Let xn, n=1, 2, . . . , be an increasing sequence of pos-

itive integers such that d = 0 and let t
(n)
1 , t

(n)
2 , . . . , t

(n)
n be a sequence produced

by Algorithm. For a selected sequence of indices nk, k = 1, 2, . . . , assume that

(i) F (Xnk
, x) → g(x) and F (X

(nk)
nk , x) → g̃(x) for all x ∈ [0, 1];

(ii) t
(nk)
1 = · · · = t

(nk)
mk = Dnk

> t
(nk)
mk+1 = · · · = t

(nk)
mk+sk

= Dnk
− 1

≥ t
(nk)
mk+sk+1 = · · · = t

(nk)
nk = 1;

(iii) mk

nk
→ α;

(iv) sk
nk

→ γ.

Then we have g̃(x) ≤ g(x) for all x ∈ [0, 1], where
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(a) If α+ γ > 0 then dg = 0 and g̃(x) = x(α+ γ) for all x ∈ [0, 1].

(b) If α + γ = 0 and mk+sk
nk

Dnk
→ ∞ then dg = 0 and g̃(x) = 0 for all

x ∈ (0, 1).

(c) If α+ γ = 0 and mk+sk
nk

Dnk
→ δ, 0 < δ < ∞, then dg = 1

δ+1 and

g̃(x) =

{
0 if x < y2 = δ

δ+1 ,

x(δ + 1)− δ if y2 ≤ x ≤ 1.

(d) If α+ γ = 0 and mk+sk
nk

Dnk
→ δ = 0, then dg = 1 and g̃(x) = x.

4.8. Lower and upper d.f.s

In Theorem 17 we gave the result [3, Th. 6] that for every integer sequence
1 ≤ x1 < x2 < · · · with d > 0 and every d.f. g(x) ∈ G(Xn) we have h1(x) ≤
g(x) ≤ h2(x), where h1(x) and h2(x) are defined in (18) and (19), respectively.
Furthermore, by [3, Th. 6, 60 of Proof], there exists an integer sequence 1 ≤
x1 < x2 < · · · with d > 0 such that h2(x) ∈ G(Xn). In this case h2(x) = g(x)
and G(Xn) has the following additional properties.

������� 21 ([4, Th. 5])� Let 1 ≤ x1 < x2 < · · · be an integer sequence with
d>0 such that h2(x) ∈ G(Xn). Then the set G(Xn) contains uncountable many
different d.f.s gα(x), α ∈ [1,∞), of the form

gα(x) =

⎧⎪⎨
⎪⎩
x 1
αβ

d
d if x ∈ [0, d

d
β
]
,

1
α if x ∈ [d

d
β, β

]
,

nondecreasing if x ∈ [β, 1],
(40)

where for β=β(α) we have 1≤αβ≤ d
d . Furthermore, g(x)=x is also in G(Xn).

P r o o f. We use two steps.

10. Assume that F (Xnk
, x) → h2(x) as k → ∞ for x ∈ [0, 1]. For every

α ∈ [1,∞) we can choose n′
k > nk so that

(i)
n′
k

nk
→ α.

From the sequence (n′
k, nk), k = 1, 2, . . . , we can select a subsequence (with the

same notation) such that

(ii)
xnk

xn′
k

→ β,

where β = β(α) but it is not given uniquely. We have only 1
α

d

d
≤ β ≤ 1

α
d
d

because

n′
k

nk

xnk

xn′
k

=

n′
k

xn′
k

nk

xnk

→ αβ

and which gives α < ∞ ⇔ β > 0. Now, from (n′
k, nk) we again select a subse-

quence such that
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(iii) F (Xn′
k
, x) → g(x)

for all x ∈ [0, 1]. Applying the identity (1)

F (Xnk
, x) =

n′
k

nk
F

(
Xn′

k
, x

xnk

xn′
k

)
(41)

and assuming that d > 0, which implies everywhere continuity of g(x) (see
[24, Th. 6.2]) and g(x)>0 for 0<x≤1, then we can take limit in (41) to obtain

h2(x) = αgα(xβ) (42)

for x ∈ [0, 1]. Now, using h2(x) = 1 for x ∈ [d
d
, 1
]
, (42) implies gα(x) =

1
α for

x ∈ [d
d
β, β

]
and h′

2(x) =
d
d for x ∈ [

0, d
d

]
implies g′α(x) =

d
d

1
αβ for x ∈ [

0, d
d
β
]
.

Then we obtain (40) and since gα(x) ≤ h2(x), then 1 ≤ αβ.

20. Again, let F (Xnk
, x) → h2(x) for x ∈ [0, 1]. For every limit point8 β > 0

of xi

xnk
, i = 1, 2, . . . , nk, k = 1, 2, . . . , we can select mk < nk such that

(i)
xmk

xnk

→ β,

(ii) nk

mk
→ α

(iii) F (Xmk
, x) → g(x).

The identity (1) in the form F (Xmk
, x) = nk

mk
F
(
Xnk

, x
xmk

xnk

)
implies

g(x) = αh2(xβ) =
h2(xβ)

h2(β)
(43)

for x ∈ [0, 1]. From the form of h2(x) we have guaranteed that β ∈ [
0, d

d

]
is

a limit point of xi

xnk
and in this case (43) gives

g(x) =
xβ d

d

β d
d

= x.

For β > d

d
, if exists, we have g(x) = h2(xβ) for x ∈ [0, 1], i.e.,

g(x) =

{
xβ d

d if x ∈ [0, d
d
1
β

]
,

1 if x ∈ [d
d

1
β , 1

]
.

(44)

�

Finally, for h2(x) defined in (19) for which h2(x) = g(x) for special 1 ≤ x1 <
x2 < · · · , we see directly that

h2(xy) ≤ h2(x)h2(y) (45)

8In the following α and β have another meaning as in 10.
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for every x, y ∈ [0, 1]. Also for h1(x) defined in (18), in the case x ≥
√

1−d
1−d ,

for which there exists a special sequence xn (see [24, pp. 774–777, Ex. 11.2])

such that the lower d.f. g(x) = h1(x) we have9(
d

1
x − (1− d)

)(
d

1
y − (1− d)

)
≤ d

1
xy − (1− d)

(46)

for xy ≥
√

1−d
1−d . In the following theorem we extend (45) and (46) for arbitrary

lower g(x) and upper g(x) d.f.s.

������� 22 ( [4, Th. 6])� For every increasing sequence of positive integers
1 ≤ x1 < x2 < · · · , with d > 0, the lower d.f. g(x) and the upper d.f. g(x) satisfy

g(x).g(y) ≤ g(x.y) ≤ g(x.y) ≤ g(x).g(y) (47)

for every x, y ∈ (0, 1).

P r o o f. d > 0 implies that arbitrary g(x) ∈ G(Xn) is everywhere continuous
and g(x) > 0 for x > 0. Let y ∈ (0, 1).

10. Firstly we prove the left-hand side of (47).

a) If y is an increasing point10 of g(x), n = 1, 2, . . . then by (6) we have
g(xy)
g(y) ∈ G(Xn) and thus g(x) ≤ g(xy)

g(y) which implies

g(x)g(y) ≤ g(x)g(y) ≤ g(xy) (48)

for every x ∈ (0, 1).

b) Let g(x) does not increase at y. Since every g(x) ∈ G(Xn) is continuous

and d

d
x ≤ g(x) ≤ d

dx for x ∈ [0, 1], there exists the nearest neighboring point

y1 < y, y1 > 0 at which g(x) increases. Thus g(xy1)
g(y1)

∈ G(Xn) which implies

g(x) ≤ g(xy1)
g(y1)

. Because g(y1) = g(y), g(xy1) ≤ g(xy), then again

g(x)g(y) ≤ g(x)g(y) = g(x)g(y1) ≤ g(xy1) ≤ g(xy) (49)

for every x ∈ (0, 1).

Since g ∈G(Xn) is arbitrary, and for x, y ∈ (0, 1) by (47) and (48) we have
g(x)g(y) ≤ g(xy), then the definition of lower d.f. of G(Xn) as

g(xy) = inf
g∈G(Xn)

g(xy) implies g(x)g(y) ≤ g(xy).

20. Now, we prove the right-hand side of (47).

9This holds also for arbitrary x, y ∈ (0, 1), since it is equivalent to x(1− y) ≤ 1− y.
10Either g(y − ε) < g(y) or g(y) < g(y + ε), for arbitrary ε > 0.
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a) Again, if y is an increasing point of g(x), then g(xy)
g(y) ∈ G(Xn), thus

g(xy)
g(y) ≤ g(x) which implies

g(xy) ≤ g(y)g(x) ≤ g(y)g(x) (50)

for x ∈ (0, 1).

b) Let g(x) be non increasing at y and let y2 be the nearest point to the right

at which g(x) is increasing. Again, by d

d
x ≤ g(x) ≤ d

dx, this point exists and thus

for given g(x) ∈ G(Xn) we have g(xy2)
g(y2)

∈ G(Xn),
g(xy2)
g(y2)

≤ g(x) which implies

g(xy) ≤ g(xy2) ≤ g(y2)g(x) ≤ g(y)g(x) ≤ g(y)g(x) (51)

for x ∈ (0, 1). Then

g(xy) = sup
g∈G(Xn)

g(xy) implies g(x.y) ≤ g(x).g(y)

for x, y ∈ (0, 1). �

Note that by J. A c z é l [1, p. 144–145, Th. 4] every continuous d.f. g(xy) =
g(x)g(y) has the form g(x) = xc for a constant c and x ∈ [0, 1].

4.9. Construction H ⊂ G(Xn)

Basic open problem is that characterize a nonempty set H of d.f.s for which
there exists an increasing sequence of positive integers xn such that G(Xn) = H.
In [3] we found integer sequence 1 ≤ x1 < x2 < · · · such that the piecewise linear
function h2(x) defined in (19) belongs to G(Xn). In [4] is the following extension
of this construction:

������� 23� Let H be a nonempty set of d.f.s defined on [0, 1]. Then there
exists an integer sequence 1 ≤ x1 < x2 < · · · such that H ⊂ G(Xn).

P r o o f.

10. To the setH it can be constructed a sequence of continuous strictly increasing
piecewise linear functions hn(x), n = 1, 2, . . . , such that every f(x) ∈ H is a weak
limit hnk

(x) → f(x).

20. For every h(x) possessing at points β1 = 0 < β2 < · · · < βs−1 < βs = 1
the values α1 = 0 < α2 < · · · < αs−1 < αs = 1, respectively, and being linear

in each interval [βi, βi+1], we can define a sequence of integer intervals [m
(1)
k , nk],

k = 1, 2, . . . , and their divisions

m
(1)
k < m

(2)
k < · · · < m

(s−1)
k < m

(s)
k < nk

in which we can define integers

x
m

(1)
k

< x
m

(2)
k

< · · · < x
m

(s−1)
k

< x
m

(s)
k

< xnk

such that for i = 1, 2, . . . , s we have
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(i)
x
m

(i)
k

xnk
→ βi,

(ii)
m

(i)
k

nk
→ αi,

(iii) x
m

(i)
k

− x
m

(i−1)
k

≥ m
(i)
k −m

(i−1)
k ,

(iv) xnk
− x

m
(s)
k

≥ nk −m
(s)
k .

For other n ∈ [m(1)
k , nk

]
we define xn linearly, i.e., for n ∈ [m

(i−1)
k ,m

(i)
k ] we put

(v)

xn = x
m

(i−1)
k

+

[(
n−m

(i−1)
k

)xm
(i)
k

− x
m

(i−1)
k

m
(i)
k −m

(i−1)
k

]
.

Directly from (i), (ii) and (v) it follows that

#
{
n ∈ [m

(1)
k , nk];

xn

xnk
< x

}
nk

→ h(x) for x ∈ (0, 1) as k → ∞. (52)

See the following Fig. 1 and Fig. 2.
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(i+1)
k

nk

x
m

(i+1)
k

xnk

�

�

αi+1

βi+1

�

�

m
(i)
k

nk

x
m

(i)
k

xnk

�

�

αi

βi

�

�

Figure 1. A part of graph of h(x) and (i)–(ii) properties.
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Note that, in this step, the intervals [m
(1)
k , nk], k = 1, 2, . . . , can intersect.

For necessity of pairwise disjointness we use the next step.

m
(1)
k m

(2)
k

x
m

(1)
k

x
m

(2)
k

� �

�

�

m
(s)
k

nk

x
m

(s)
k

xnk

� �� �

�

�

Figure 2. (iii)–(iv) properties.

30. One solution [m
(1)
k , nk], k = 1, 2, . . . in 20 gives infinitely many solutions

by the following: Let Ak < Bk be two positive integer sequences. Replace

[m
(1)
k , nk] by [Akm

(1)
k , Aknk] with division

Akm
(1)
k < Akm

(2)
k < · · · < Akm

(s−1)
k < Akm

(s)
k < Aknk

and define the values of xn as

x
Akm

(i)
k

= Bkxm
(i)
k

,

i = 1, 2, . . . , s and xAknk
= Bkxnk

. Then the limits (i) and (ii) again hold

x
Akm

(i)
k

xAknk

=
Bkxm

(i)
k

Bkxnk

→ βi,
Akm

(i)
k

Aknk
→ αi.

Also (iii) and (iv) hold, since

x
Akm

(i)
k

− x
Akm

(i−1)
k

= Bkxm
(i)
k

−Bkxm
(i−1)
k

≥ Bk

(
m

(i)
k −m

(i−1)
k

)
≥ Akm

(i)
k −Akm

(i−1)
k .

40. Let hi(x), i = 1, 2, . . . be a dense set of d.f.s in H and for hi(x) = h(x)

rewrite the interval [m
(1)
k , nk] in 20 as [m

(1,i)
k , n

(i)
k ]. Order these intervals to infinite
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matrix A

[m
(1,1)
1 , n

(1)
1 ], [m

(1,1)
2 , n

(1)
2 ], . . . , [m

(1,1)
k , n

(1)
k ], . . .

[m
(1,2)
1 , n

(2)
1 ], [m

(1,2)
2 , n

(2)
2 ], . . . , [m

(1,2)
k , n

(2)
k ], . . .

. . .

[m
(1,i)
1 , n

(i)
1 ], [m

(1,i)
2 , n

(i)
2 ], . . . , [m

(1,i)
k , n

(i)
k ], . . .

. . .

and reorder it to a linear sequence by diagonals, i.e., to

[m
(1,1)
1 , n

(1)
1 ], [m

(1,2)
1 , n

(2)
1 ], [m

(1,1)
2 , n

(1)
2 ], . . .

and denote it as a new sequence [m
(1)
k , nk], k = 1, 2, . . . Since these intervals can

intersect we use in 30 suitable Ak < Bk, k = 1, 2, . . . such that the resulting
sequence is disjoint and

(vi) x
m

(1)
k+1

− xnk
≥ m

(1)
k+1 − nk,

(vii) x
m

(1)
1

≥ m
(1)
1 .

For n which are not in the intervals
[
m

(1)
k , nk

]
, k = 1, 2, . . . we can define xn

linearly. Now, if from nk, k = 1, 2, . . . we select n′
k corresponding to ith line

of A, then F (Xn′
k
, x) → hi(x) for x ∈ [0, 1].

50. Finally, we give a solution of (i)–(iv) in 20. We start with increasing sequence
of indices nk, k = 1, 2, . . . , and let λ > 1 and put (integer parts are omitted)

xnk
= λnk,

x
m

(i)
k

= βiλnk,

m
(i)
k = αink.

For (iv) we need

x
m

(i)
k

− x
m

(i−1)
k

= βiλnk − βi−1λnk = λ(βi − βi−1)nk

≥ m
(i)
k −m

(i−1)
k = (αi − αi−1)nk

which gives assumption λ > max αi−αi−1

βi−βi−1
. �

Note that by Theorem 23 there exists an integer sequence 1 ≤ x1 < x2 < · · ·
such that G(Xn) contains all d.f.s. Especially, for every sequence yn ∈ [0, 1),
n = 1, 2, . . . , there exists an Xn such that G(yn) ⊂ G(Xn).
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4.10. g(x) ∈ G(Xn) with constant intervals

������� 24 ([23])� Assume that d > 0. If there exists an interval (u, v) ⊂ [0, 1]
such that every g ∈ G(Xn) has a constant value on (u, v) (may be different), then
every g ∈ G(Xn) has infinitely many intervals with constant values such that g
increases at their endpoints.

P r o o f. Since

xi < xxm ⇐⇒ xi <

(
x
xm

xn

)
xn,

then we have (1)

F (Xm, x) =
n

m
F

(
Xn, x

xm

xn

)
,

for every m ≤ n and x ∈ [0, 1). Using the Helly selection principle, we can
select a subsequence (mk, nk) of the sequence (m,n) such that F (Xnk

) → g(x),
F (Xmk

) → g̃(x) as k → ∞; furthermore xmk
/xnk

→ β and nk/mk → α, but α
may be infinity. Assuming β > 0 and g(β − 0) > 0, we have α < ∞ and (3)

g̃(x) = αg(xβ) a.e. on [0, 1].

Thus, if g̃(x) has a constant value on (u, v), then g(x) must be constant on the
interval (uβ, vβ). Furthermore, if d > 0, then for every g ∈ G(Xn) we have (7)

(d/d)x ≤ g(x) ≤ (d/d)x

for every x ∈ [0, 1]. Thus, there exists a sequence βk ∈ (0, 1) such that βk ↘ 0
and g(x) increases in βk, g(βk) > 0, k = 1, 2, . . . For such βk, g(x), applying the
Helly principle, we can find sequences αk and g̃k(x) ∈ G(Xn) such that

g̃k(x) = αkg(xβk)

a.e. on [0, 1]. Every g̃k(x) has a constant value on the interval (u, v), hence, g(x)
must be constant on the intervals (uβk, vβk) for k = 1, 2, . . . �

4.11. Transformation of Xn by 1/x mod 1

The mapping 1/x mod 1 transforms the block Xn to the block

Zn =

(
xn

x1
,
xn

x2
, . . . ,

xn

xn

)
mod 1.

For example, the block sequence Xn =
(
1
n ,

2
n , . . . ,

n
n

)
, n = 1, 2, . . . which is u.d.

is transformed to the block sequence

Zn =
(n
1
,
n

2
, . . . ,

n

n

)
mod 1, n = 1, 2, . . .
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which has a.d.f.

g(x) =

1∫
0

1− tx

1− t
dt =

∞∑
n=1

x

n(n+ x)
= γ0 +

Γ′(1 + x)

Γ(1 + x)
,

where γ0 is Euler’s constant. This was proved by G. P ó l y a, (see I. J. S c h o e n -
b e r g [17]). The following theorem, which generalizes [12, p. 56, Th. 7.6] de-
scribes a relation between G(Xn) and G(Zn).

������� 25 ([9, Th. 7])� If every g(x) ∈ G(Xn) is continuous on [0, 1], then

G(Zn) =

{
g̃(x) =

∞∑
n=1

g(1/n)− g
(
1/(n+ x)

)
; g(x) ∈ G(Xn)

}
.

P r o o f. For f(x) = 1/x mod 1 we have f−1([0, t)) = ∪∞
i=1

(
1/(t+ i), 1/i

]
. Thus

F (Zn, t) =
∑∞

i=1

(
F (Xn, 1/i)− F (Xn, 1/(t+ i))

)
.

10. Assume that F (Xnk
, x)→g(x), where g(x) is everywhere continuous on [0, 1].

Thus
K∑
i=1

(
F (Xnk

, 1/i)− F
(
Xnk

, 1/(t+ i)
))→

K∑
i=1

(
g(1/i)− g

(
1/(t+ i)

))
,

∞∑
i=K+1

(
F (Xnk

, 1/i)− F
(
Xnk

, 1/(t+ i)
)) ≤ F

(
Xnk

, 1/(K + 1)
)

→ g
(
1/(K + 1)

)→ 0.

Thus F (Znk
, t) → g̃(t) =

∑∞
i=1

(
g(1/i)− g(1/(t+ i))

)
for t ∈ [0, 1].

20. Assume that F (Znk
, t) → g̃(t) weakly. From nk there can be selected n′

k

such that F (Xn′
k
, x) → g(x). Assuming continuity of g(x), we apply 10. �

5. Examples

Example 1 ([24]). Put xn = pn, the nth prime and denote

Xn =

(
2

pn
,
3

pn
, . . . ,

pn−1

pn
,
pn
pn

)
.

The sequence of blocks Xn is u.d. and therefore the ratio sequence pm/pn,
m=1, 2, . . . , n, n=1, 2, . . . is u.d. in [0, 1].This generalizes a result of A. S c h i n -
z e l (cf. W. S i e r p i ń s k i (1964, p. 155)). Note that from u.d. of Xn applying
for the L2 discrepancy of Xn we get the following interesting limit

lim
n→∞

1

n2pn

n∑
i,j=1

|pi − pj | = 1

3
.
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Example 2 ([24, Ex. 11.1]). Let γ, δ, and a be given real numbers satisfying
1 ≤ γ < δ ≤ a. Let xn be an increasing sequence of all integer points lying in the
intervals

(γ, δ), (γa, δa), . . . , (γak, δak), . . .

Then G(Xn) =
{
gt(x); t ∈ [0, 1]

}
, where gt(x) has constant values

gt(x) =
1

ai(1 + t(a− 1))
for x ∈ (δ, aγ)

ai+1(tδ + (1− t)γ)
, i = 0, 1, 2, . . .

and on the component intervals it has a constant derivative

g′t(x) =
tδ + (1− t)γ

(δ − γ)( 1
a−1 + t)

for x ∈ (γ, δ)

ai+1(tδ + (1− t)γ)
, i = 0, 1, 2, . . .

and x ∈
(

γ

tδ + (1− t)γ
, 1

)
,

where

F (Xnk
, x) → gt(x) for nk for which xnk

=
[
akγ + tak(δ − γ)

]
. (53)

Here we write (xz, yz) = (x, y)z and (x/z, y/z) = (x, y)/z. Then the set
G(Xn) has the following properties:

10. Every g ∈ G(Xn) is continuous.

20. Every g ∈ G(Xn) has infinitely many intervals with constant values, i.e.,
with g′(x) = 0, and in the infinitely many complement intervals it has
a constant derivative g′(x) = c, where 1

d
≤ c ≤ 1

d and for lower d and

upper d asymptotic density of xn we have

d =
(δ − γ)

γ(a− 1)
, d =

(δ − γ)a

δ(a− 1)
.

30. The graph of every g ∈ G(Xn) lies in the intervals[
1

a
, 1

]
×

[
1

a
, 1

]
∪
[
1

a2
,
1

a

]
×

[
1

a2
,
1

a

]
∪ . . .

Moreover, the graph g in
[

1
ak ,

1
ak−1

] × [
1
ak ,

1
ak−1

]
is similar to the graph

of g in
[

1
ak+1 ,

1
ak

] × [
1

ak+1 ,
1
ak

]
with coefficient 1

a . Using the parametric

expression, it can be written for all x ∈ (
1

ai+1 ,
1
ai

)
that gt(x) =

gt(a
ix)

ai ,
i = 0, 1, 2, . . .

40. G(Xn) is connected and the upper distribution function g(x) = g0(x) ∈
G(Xn) and the lower distribution function g(x) /∈ G(Xn). The graph

of g(x) on
[
1
a , 1

]× [
1
a , 1

]
coincides with the graph of

y(x) =

(
1 +

1

d

(
1

x
− 1

))−1
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on
[
γ
δ , 1

]
, further, on

[
1
a ,

γ
δ

]
we have g(x) = 1

a .

50. G(Xn) =
{

g0(xβ)
g0(β)

; β ∈ [ 1a , δ
aγ

]}
.

For the proofs of 10.− 50. we only note:

Assume that xn ∈ ak(γ, δ), i, i + 1, i + 2, · · · ∈ aj(γ, δ) for some j < k, and let
F (Xn, x) → g(x) for some sequence of n. Then g(x) has a constant derivative
in the intervals containing i

xn
, i+1

xn
, i+2

xn
, . . . , since

1
n

i+1
xn

− i
xn

=
xn

n
,

and thus xn

n must be convergent to g′(x), so 1
d
≤ g′(x) ≤ 1

d . For

xn =
[
takδ + (1− t)akγ

]
we can find

g′(x) = lim
n→∞

xn

n
= lim

k→∞
ak(tδ + (1− t)γ)∑k−1

j=0 a
j(δ − γ) + ak(tδ + (1− t)γ)− akγ

=
tδ + (1− t)γ

(δ − γ)
(

1
a−1 + t

) .
Using Theorem 18 and [3, Ex. 3] we shall add the following properties more-

over:

60. By definition (5) of the local asymptotic density dg and by (53) for g(x) =
gt(x) we have

dgt = lim
k→∞

nk

xnk

= lim
k→∞

∑k−1
i=0 ai(δ − γ) + tak(δ − γ)

akγ + tak(δ − γ)

=
(δ − γ)(1 + t(a− 1))

(a− 1)(γ + t(δ − γ))
(54)

and for t = 0 we have dg0 = d and for t = 1 we have dg1 = d and we see

g′t(x) =
1

dgt
(55)

for x with the constant derivative of gt(x).

70. For the function h1,g(x) defined in (26), putting g(x) = gt(x), we have:

d

dgt
=

γ + t(δ − γ)

γ(1 + t(a− 1))
,
1− dgt
1− d

=
γ

γ + t(δ − γ)
,

d

dgt

1− dgt
1− d

=
1

1 + t(a− 1)
.
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Then

h1,gt(x) =

{
x γ+t(δ−γ)
γ(1+t(a−1)) for x ∈ (0, γ

γ+t(δ−γ)

)
,

x 1
dgt

+ 1− 1
dgt

, for x ∈ ( γ
γ+t(δ−γ) , 1

)
,

(56)

see the following figure.
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( 1
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1
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Figure: gt(x) and h1,gt(x).

80. In the proof of the upper bound (29) we have proved that 1−∫ 1

0
h1,g(x) dx is

maximal for dg = min(
√
d, d). Let t0 ∈ [0, 1] be such that dgt0 = min(

√
d, d)

and t0 can be computed by inverse formula to (54)

t =
dgt(a− 1)γ − (δ − γ)

(δ − γ)(a− 1)(1− dgt)
. (57)

90. Let P (t) be the area in
[
1
a , 1

]×[ 1a , 1] bounded by the graph of gt(x). Then

1∫
0

gt(x) dx = P (t)
1

1 − 1
a2

+
1

a+ 1

=
1

2
+

1

2
.

1

(a+ 1)
.

(γa− δ)

(1 + t(a− 1))(γ + t(δ − γ))

+
1

2
.

t(δ − γa)

(1 + t(a− 1))(γ + t(δ − γ))
(58)

and since g0(x) = g(x) we have that the maxt∈[0,1]

∫ 1

0
gt(x) dx is attained

at t = 0. Using derivative of P (t) it can be see that the mint∈[0,1]

∫ 1

0
gt(x) dx
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is attained at t = 1. It also follows from the fact that for xn+1 = xn + 1
we have

1

n+ 1

n+1∑
i=1

xi

xn+1
− 1

n

n∑
i=1

xi

xn

=
1

n+ 1
−
(

1

xn + 1
+

1

n+ 1
.

1

1 + 1
xn

)(
1

n

n∑
i=1

xi

xn

)
> 0

because c1(x) /∈ G(Xn) and thus lim supn→∞
1
n

∑n
i=1

xi

xn
< 1. Now, denot-

ing the index nk for xnk
= [akδ], the lim sup of 1

n

∑n
i=1

xi

xn
is attained over

n = nk, k = 0, 1, 2, . . . and for such nk we have F (Xnk
, x) → g1(x) for

x ∈ [0, 1].

100. Thus we have

lim inf
n→∞

1

n

n∑
i=1

xi

xn
= 1−

1∫
0

g0(x) dx =
1

2
− 1

2
.

1

(a+ 1)

(
γa− δ

γ

)
, (59)

lim sup
n→∞

1

n

n∑
i=1

xi

xn
= 1−

1∫
0

g1(x) dx =
1

2
+

1

2
.

1

(a+ 1)

(
γa− δ

δ

)
. (60)

The upper bound (29) coincides with the maximal value of 1−∫ 1

0
h1,g(x) dx

attained for dg = min(
√
d, d). Since 1 − ∫ 1

0
g1(x) dx is maximal for all

1− ∫ 1

0
gt(x) dx, t ∈ [0, 1] and 1− ∫ 1

0
g1(x) dx ≤ 1− ∫ 1

0
h1,g1(x) dx then the

upper bound (60) satisfies (29).

110. Using explicit formulas

d =
(δ − γ)

γ(a− 1)
, d =

(δ − γ)a

δ(a− 1)
(61)

for asymptotic densities we see again that (59) and (60) satisfy (28) and
(29), respectively, in Theorem 19.

Example 3 ( [9, Ex. 2]). Let xn and yn, n = 1, 2, . . . , be two strictly in-
creasing sequences of positive integers such that for the related block sequences
Xn =

(
x1

xn
, . . . , xn

xn

)
and Yn =

(
y1

yn
, . . . , yn

yn

)
, we have singleton for both G(Xn) ={

g1(x)
}

and G(Yn) =
{
g2(x)

}
. Furthermore, let nk, k = 1, 2, . . . , be an in-

creasing sequence of positive integers such that Nk =
∑k

i=1 ni satisfies
nk

Nk
→ 1.

Denote by zn the following increasing sequence of positive integers composed
by blocks (here we use the notation a(b, c, d, . . . ) = (ab, ac, ad, . . . ))

(x1, . . . , xn1
), xn1

(y1, . . . , yn2
), xn1

yn2
(x1, . . . , xn3

), xn1
yn2

xn3
(y1, . . . , yn4

), . . .
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Then the sequence of blocks Zn =
(
z1
zn
, . . . , znzn

)
has the set of d.f.s

G(Zn) =
{
g1(x), g2(x), c0(x)

} ∪ {g1(xyn);n = 1, 2, . . .
}

∪ {g2(xxn);n = 1, 2, . . .
}

∪
{

1

1 + α
c0(x) +

α

1 + α
g1(x);α ∈ [0,∞)

}

∪
{

1

1 + α
c0(x) +

α

1 + α
g2(x);α ∈ [0,∞)

}
,

where g1(xyn) = 1 if xyn ≥ 1, similarly for g2(xxn).

P r o o f. For every n = 1, 2, . . . there exists an integer k such that

Nk−1 < n ≤ Nk

(here N0 = 0). Put n′ = n−Nk−1. For every n we have

zn =

{
xn1

yn2
. . . xnk−1

yn′ if k is even,

xn1
yn2

. . . ynk−1
xn′ if k is odd.

Firstly we assume that k is even. Then Zn has the form

Zn =(
. . . ,

xn1
yn2

. . . ynk−2
(x1, . . . , xnk−1

)

xn1
yn2

. . . xnk−1
yn′

,
xn1

yn2
. . . xnk−1

(y1, . . . , yn′)

xn1
yn2

. . . xnk−1
yn′

)
=

(
. . . ,

1

xnk−1
yn′

(
y1

ynk−2

, . . . ,
ynk−2

ynk−2

)
,
1

yn′

(
x1

xnk−1

, . . . ,
xnk−1

xnk−1

)
,

(
y1
yn′

, . . . ,
yn′

yn′

))

and thus for x > 1
xnk−1

we have

F (Zn, x) =
Nk−2 + nk−1F (Xnk−1

, xyn′) + n′F (Yn′ , x)

Nk−1 + n′

=
Nk−2

Nk−1 + n′ +
nk−1

Nk−1

1 + n′
Nk−1

F (Xnk−1
, xyn′) +

1

1 +
Nk−1

n′
F (Yn′ , x).

If n → ∞, then the first term tends to zero. If F (Zn, x) → g(x) for some sequence

of n, we can select a subsequence of n’s such that n′
Nk−1

→ α for some α ∈ [0,∞),

or n′
Nk−1

→ ∞. For such n′ we distinguish the following cases:
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(a) If n′ = constant, then

nk−1

Nk−1

1 + n′
Nk−1

F (Xnk−1
, xyn′) → g1(xyn′)( here g1(xyn′) = 1 for xyn′ > 1)

1

1 + Nk−1

n′
F (Yn′ , x) → 0

and thus F (Zn, x) → g1(xyn′).

(b) If n′ → ∞, then F (Xnk−1
, xyn′) → 1; precisely F (Xnk−1

, xyn′) → c0(x).

(b1) If n′
Nk−1

→ 0, then F (Zn, x) → c0(x).

(b2) If n′
Nk−1

→ α ∈ (0,∞), then F (Zn, x) → 1
1+αc0(x) +

α
1+αg2(x).

(b3) If n′
Nk−1

→ ∞, then F (Zn, x) → 0 + g2(x).

For k-odd we use a similar computation. �

Now, identify xn = yn and select xn such that g1(x) = x (e.g., xn = n or

xn = pn, the nth prime) and put nk = 2k
2

for k = 1, 2, . . . . Then the set of all
d.f.s

G(Zn) =
{
g1(x), c0(x)

} ∪ {g1(xxn);n = 1, 2, . . .
}

∪
{

1

1 + α
c0(x) +

α

1 + α
g1(x);α ∈ [0,∞)

}

is disconnected, as it can be seen in the figure on the page 174.

Example 4. Let xn, n = 1, 2, . . . , be an increasing sequence of positive integers
for which there exists a sequence nk, k = 1, 2, . . . , of positive integers such that
(as k → ∞)

(i) nk−1

nk
→ 0,

(ii) nk

xnk
→ 0,

(iii)
xnk−1

xnk
→ 0, and

(iv) xnk−i = xnk
− i for i = 0, 1, . . . , nk − nk−1 − 1.

Then the sequence of blocks

Xn =

(
x1

xn
,
x2

xn
, . . . ,

xn

xn

)

has
G(Xn) =

{
hα(x);α ∈ [0, 1]

}
.

173



OTO STRAUCH

P r o o f. For given θ ∈ [0, 1] and n = nk − [
θ(nk − nk−1)

]
and by (iv) we have

xn = xnk
− [

θ(nk − nk−1)
]
.

For i ≤ n we distinguish two cases: xi ∈ (xnk−1
, xn] and xi ≤ xnk−1

.

(I) For xi ∈ (xnk−1
, xn] we have

xi

xn
∈
[
xnk

− (nk − nk−1) + 1

xnk
− [θ(nk − nk−1)]

, 1

]
→ [1, 1]

as n → ∞ and for any θ ∈ [0, 1]. The number of such xi’s is

(nk − nk−1)−
[
θ(nk − nk−1)

]
= (1− θ)(nk − nk−1) +O(1).

(II) For xi ≤ xnk−1
we have

xi

xn
∈
[
0,

xnk−1

xnk
− [θ(nk − nk−1)]

]
→ [0, 0].

We thus get, for any x ∈ (0, 1) and any sufficiently large n,

F (Xn, x) =
nk−1

n
=

nk−1

nk−1 + (1− θ)(nk − nk−1) +O(1)
.

This gives:

(a) If θ ≤ ε0 < 1, for some fixed ε0, then

F (Xn, x) → c1(x).

(b) If θ = 1, then
F (Xn, x) → c0(x).

(c) For any α ∈ (0, 1) there exists a sequence θk → 1, as k → ∞, such that

nk−1

nk−1 + (1− θk)(nk − nk−1)
→ α,

and in this case

F (Xn, x) → hα(x).
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�

Note that the sequences nk = 2k
2

and xnk
= 2(k+1)2 satisfy the assumptions

(i), (ii), (iii) and (iv). We also see that G(Xn) is connected but

F (Xnk+1, x) → c0(x), and

F (Xnk
, x) → c1(x),

a.e. on [0, 1] and thus ρ(tnk+1, tnk
) → 1. Using the permutation π : N → N

1, 2, . . . , n1, n2, n2 − 1, n2 − 2, . . . , n1 + 1, n2 + 1, n2 + 2, . . . n3, n4, n4 − 1,

n4 − 2, . . . , n3 + 1, n4 + 1, n4 + 2, . . . , n5, n6, n6 − 1, n6 − 2, . . . , n5 + 1, . . .

we have ρ(tπ(n+1), tπ(n)) → 0 as n → ∞, because the “neighbouring” d.f. of tπ(n)
satisfies the scheme

c1(x), c1(x), . . . , c0(x), c0(x), . . . , c1(x), c1(x), . . . , c0(x), c0(x), . . . ,

c1(x), c1(x), . . . , c0(x), c0(x), . . .

Example 5. In [8] is proved that xn

xn+1
→ 1 does not imply that G(Xn) is

a singleton. This is a negative answer to the Problem 1.9.2 in [20].

Let ak, nk, k = 1, 2, . . . , and xn, n = 1, 2, . . . be three increasing integer
sequences and h1 < h2 be two positive integers. Assume that

(i) nk

nk+1
→ 0 for k → ∞;

(ii) ak

nk+1
→ 0 for k → ∞;

(iii) for odd k we have

ah2

k ≤ xnk
= (ak−1 + nk − nk−1)

h1 ≤ (ak + 1)h2 and

xi = (ak + i− nk)
h2 for nk < i ≤ nk+1;

(iv) for even k we have

ah1

k ≤ xnk
= (ak−1 + nk − nk−1)

h2 ≤ (ak + 1)h1 and

xi = (ak + i− nk)
h1 for nk < i ≤ nk+1.

Then xn

xn+1
→ 1 and the set G(Xn) of all distribution functions of the sequence

of blocks Xn is G(Xn) = G1 ∪G2 ∪G3 ∪G4, where

G1 =
{
x

1
h2 .t; t ∈ [0, 1]

}
,

G2 =
{
x

1
h2 (1− t) + t; t ∈ [0, 1]

}
,

G3 =
{
max(0, x

1
h1 − (1− x

1
h1 )u);u ∈ [0,∞)

}
and

G4 =
{
min(1, x

1
h1 .v); v ∈ [1,∞)

}
.

In [24, Th. 5.2, p. 762 ] = Theorem 15, it is proved that the condition xn

xn+1
→ 1

implies the connectivity of G(Xn)
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P r o o f. 1. Firstly we prove that for any h1 < h2 the sequences ak, nk, xn satis-
fying (i)–(iv) exist:

For i = 1, . . . , n1 we put xi = ih1 and then we find a1 such that ah2
1 ≤ xn1

≤
(a1 + 1)h2. If we have selected, for an odd step k, all ai, i = 1, 2, . . . , k − 1, xi,

i = 1, 2, . . . , nk, then we find ak such that ah2

k ≤ xnk
< (ak + 1)h2, and then

we put xi = (ak+ i−nk)
h2 for nk < i ≤ nk+1, where we choose nk+1 sufficiently

large to satisfy the limits (i) and (ii). For an even step k we proceed similarly
replacing h2 by h1.

2. In contrary to the independence of ak and nk+1 we have
ak

n
h1
h2

k

→ 1 for odd k → ∞,
ak

n
h2
h1

k

→ 1 for even k → ∞. (62)

This follows from (iii) and (iv), directly, e.g., from (iii) we have

ah2

k

nh1

k

<

(
ak−1

nk
+ 1− nk−1

nk

)h1

<
(ak + 1)h2

nh1

k

.

As an application of (62) we have
ak
nk

→ 0 for odd k → ∞,
ak
nk

→ ∞ for even k → ∞. (63)

3. Now we prove xi

xi+1
→ 1 as i → ∞. Let i ∈ (nk, nk+1) and let, e.g., k be

odd. Then by (iii)

xi

xi+1
=

(
1− 1

ak + i+ 1− nk

)h2

>

(
1− 1

ak

)h2

and for i = nk again

xnk

xnk+1
>

ah2

k

(ak + 1)h2
>

(
1− 1

ak

)h2

which implies the limit 1 as odd k → ∞. Similarly for even k.

4. Let N ∈ [nk, nk+1] be an integer sequence (we shall omit the index in Nk)
for k → ∞. For x ∈ (0, 1) we have

F (XN , x) =
#{1 ≤ i ≤ nk−1;

xi

xN
< x}

N

+
#{nk−1 < i ≤ nk;

xi

xN
< x}

N
+

#{nk < i ≤ N ; xi

xN
< x}

N

= o(1) +
A

N
+

B

N
. (64)

To compute A
N for odd k we use

xi

xN
=

(ak−1 + i− nk−1)
h1

(ak +N − nk)h2
< x ⇐⇒ i− nk−1 < x

1
h1 (ak +N − nk)

h2
h1 − ak−1
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and we have

A

N
=

min(nk − nk−1,max(0, [x
1
h1 (ak +N − nk)

h2
h1 − ak−1]))

N
. (65)

Similarly, for even k

A

N
=

min(nk − nk−1,max(0, [x
1
h2 (ak +N − nk)

h1
h2 − ak−1]))

N
. (66)

For B
N and odd k we use

xi

xN
=

(
ak + i− nk

ak +N − nk

)h2

< x ⇐⇒ i− nk < x
1
h2 (ak +N − nk)− ak

which gives

B

N
=

min(N − nk,max(0, [x
1
h2 (ak +N − nk)− ak]))

N
. (67)

Similarly, for even k we have

B

N
=

min(N − nk,max(0, [x
1
h1 (ak +N − nk)− ak]))

N
. (68)

In the following we will distinguish three cases

nk

N
→ t > 0,

nk

N
→ 0 and

N

nk+1
→ 0, and

N

nk+1
→ t > 0.

5. Now, let nk

N → t > 0 as k → ∞.

a) Assume that k is odd and compute the limit of A
N by (65). We have

nk−nk−1

N
→ t and if t < 1 we see

x
1
h1

(
ak

N
h1
h2

+
N

N
h1
h2

(
1− nk

N

))h2
h1

− ak−1

N
→ ∞

since N

N
h1
h2

for h1 < h2 is unbounded and by (62)

ak

N
h1
h2

=
ak

n
h1
h2

k

(nk

N

)h1
h2 → t

h1
h2

is bounded. Thus, for 0 < t < 1, we have

A

N
→ t for odd k → ∞. (69)

a1) Let for the moment t = 1. We have ak

n

h1
h2
k

→ 1 and
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x
1
h1

(
ak

N
h1
h2

+
N − nk

N
h1
h2

)h2
h1

− ak−1

N
→ x

1
h1 (1 + u)

h2
h1

assuming the limit N−nk

N
h1
h2

→u, where u∈ [0,∞) can be arbitrary. Put v=(1+u)
h2
h1.

Thus for t = 1 and corresponding v ∈ [1,∞) we have

A

N
→ min(1, x

1
h1 v) for odd k → ∞. (70)

If N−nk

N
h1
h2

→ ∞, then

A

N
→ 1 for odd k → ∞. (71)

b) Now, again 0 < t ≤ 1. For even k in (66) we have

x
1
h2

(
ak

N
h2
h1

+
N

N
h2
h1

(
1− nk

N

))h1
h2

− ak−1

N
→ x

1
h2 .t

since by (62)
ak

N
h2
h1

=
ak

n
h2
h1

k

(nk

N

)h2
h1 → t

h2
h1 .

Thus
A

N
→ x

1
h2 .t for even k → ∞. (72)

c) For the limit B
N as odd k → ∞ we compute (67) by using N−nk

N → 1 − t
and

x
1
h2

(ak
N

+ 1− nk

N

)
− ak

N
→ x

1
h2 (1− t)

since by (63) we have ak

N = ak

nk

nk

N → 0. Thus

B

N
→ x

1
h2 (1− t) for odd k → ∞. (73)

d) Again by (63), for even k we have ak

N = ak

nk

nk

N → ∞, then (assuming x < 1)

x
1
h1

(ak
N

+ 1− nk

N

)
− ak

N
→ −∞.

Thus
B

N
→ 0 for even k → ∞. (74)

e) Summing up (69), (72), (73) and (74) we find, for every x ∈ (0, 1),

F (XN , x) →
{
x

1
h2 (1− t) + t for odd k → ∞,

x
1
h2 .t for even k → ∞ (75)
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for nk

N → t, 0 < t < 1. For nk

N → t = 1, N−nk

N
h1
h2

→ u and v = (1 + u)
h2
h1 we have

applying (70)

F (XN , x) → min(1, x
1
h1 .v) for odd k → ∞, (76)

and for N−nk

N
h1
h2

→ ∞ we have

F (XN , x) → c0(x) for odd k → ∞, (77)

where c0(x) = 1 for x ∈ (0, 1).

6. In the case nk

N → 0 and N
nk+1

→ 0 we have A
N = o(1) and then it suffices

to compute the limit B
N by (67) or (68).

a) Assume that odd k → ∞. Since N−nk

N → 1 and by (63) we have ak

N =
ak

nk

nk

N → 0 and thus

x
1
h2

(ak
N

+ 1− nk

N

)
− ak

N
→ x

1
h2 . (78)

b) Assume that even k → ∞. In this case (by (62) and (ii)) we have

ak
N

=
ak

n
h2
h1

k

n
h2
h1

k

N
,

ak

n
h2
h1

k

→ 1,
ak

nk+1
→ 0, then

n
h2
h1

k

nk+1
→ 0.

Thus, for any u ∈ [0,∞) we can find a subsequence of N such that

n
h2
h1

k

N
→ u. (79)

Then

x
1
h1

(ak
N

+ 1− nk

N

)
− ak

N
→ x

1
h1 − (1− x

1
h1 )u. (80)

c) Summing up (78) and (80) we find for every x ∈ (0, 1)

F (XN , x) →
{
x

1
h2 for odd k → ∞,

max(0, x
1
h1 − (1− x

1
h1 )u) for even k → ∞ (81)

for nk

N → 0, N
nk+1

→ 0 and for u ∈ (0,∞) satisfying (79) if k is even. If
n

h2
h1
k

N → ∞
then

F (XN , x) → c1(x) for even k → ∞, (82)

where c1(x) = 0 for x ∈ (0, 1).
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7. Finally, let N
nk+1

→ t > 0. Then ak

N → 0, because (ii) ak

nk+1
→ 0. Computing

the limit B
N by (67) or (68) we find

F (NN , x) →
{
x

1
h2 for odd k → ∞,

x
1
h1 for even k → ∞.

(83)

8. Now, assume that F (XN , x) → g(x) for some sequence of N ∈ [nk, nk+1],
i.e., g(x) ∈ G(Xn). Then we can find subsequence of N (denoting again as N)

such that nk

N , N−nk

N
h1
h2

, N
nk+1

, and
n

h2
h1
k

N converge. Consequently g(x) is contained

in the collection of (75), (76), (77), (81), (82) and (83).

Thus the proof is finished. �

L. M i š ı́ k (2004, personal communication) found the following sequence xn

for which c1(x) ∈ G(Xn) and c0(x) /∈ G(Xn) and consequently the implication
Q.7 in [9] does not hold.

Example 6. Let xn, n = 1, 2, . . . , be an increasing sequence of positive integers
which satisfies the following conditions

(i) if nk = (k + 1)(k − 1)!2
k(k−1)

2 for k = 1, 2, . . . , then xnk
= (k + 1)nk,

(ii) if n′
k = k(k − 2)!2

k(k−1)
2 then xn′

k
= k2n′

k,

(iii) if n = 2ink−1 + j, 0 ≤ j < 2ink−1 and 0 ≤ i < k − 1 for k = 1, 2, . . . , then
xn = xnk−1

(i+ 1)2i + (i+ 3)kj (i.e., n ∈ [nk−1, n
′
k]),

(iv) if n ∈ [n′
k, nk] for k = 1, 2, . . . , then xn = xn′

k
+ n− n′

k.

Then for the sequence of blocks

Xn =

(
x1

xn
,
x2

xn
, . . . ,

xn

xn

)

we have c1(x) ∈ G(Xn) but c0(x) /∈ G(Xn) .
5

P r o o f. We start with the following figure:

Here for n running through [2ink−1, 2
i+1nk−1], the xn is equi-distributed

in [x2ink−1
, x2i+1nk−1

] with difference Δi, where i = 0, 1, . . . , k − 2.

5This and the Theorem 13 imply that G(Xn) �⊂ {cα(x);α ∈ [0, 1]}.
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10. Using the definition of xn we can see that
xn′

k

xnk
→ 1 and

n′
k

nk
→ 0 and thus

we have c1(x) ∈ G(Xn).

20. On the contrary, assume that there exists increasing sequence m′
l < ml,

l = 1, 2, . . . , such that m′
l ∈ [nk−1, nk], k = k(l), (i)

xm′
l

xml
→ 0 and (ii)

m′
l

ml
→ 1 as

l → ∞.

a) If [2jnk−1, 2
j+1nk−1] ⊂ [m′

l,ml] for some 0 ≤ j ≤ k − 2, then

m′
l

ml
≤ 2jnk−1

2j+1nk−1
=

1

2

which contradicts (ii).

b) If [m′
l,ml] ⊂ [2jnk−1, 2

j+2nk−1], then

xm′
l

xml

≥ x2jnk−1

x2j+2nk−1

=
(j + 1)2j

(j + 3)2j+2
=

(
1− 2

j + 3

)
1

4

which contradicts (i).

c) If [n′
k, nk] ⊂ [m′

l,ml], then

m′
l

ml
≤ n′

k

nk
→ 0

which contradicts (ii).

d) If m′
l ∈ [2k−2nk−1, n

′
k] and ml ∈ [n′

k, nk], i.e., ml = n′
k + i, then (because

n′
k = 2k−1mk−1 and xml

= xn′
k
+ i)

xm′
l

xml

≥ x2k−2nk−1

xml

=
x2k−2nk−1

x2k−1nk−1

· xn′
k

xml

=

(
k − 1

k

)
· 1
2
· 1

1 + i
xn′

k

,

m′
l

ml
≤ n′

k

ml
=

1

1 + i
n′
k

.

Furthermore, (i) implies i
n′
k
→ 0 and (ii) implies i

xn′
k

= i
k2n′

k
→ ∞ which is

impossible.

e) If [2nk, 2
2nk] ⊂ [m′

l,ml] then

m′
l

ml
≤ 2nk

22nk
=

1

2

which contradicts (ii).

f) Finally, assume that m′
l ∈ [n′

k, nk] and ml ∈ [nk, 2nk]. Since x2nk
= 4xnk

,
we have

xm′
l

xml

≥ xn′
k

x2nk

=
xn′

k

4xnk

→ 1

4

which contradicts (i). �
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6. Historical remarks [21, 1.8.23]

For every n = 1, 2, . . . , let

Xn = (xn,1, . . . , xn,Nn
)

be a finite sequence in [0, 1]. The infinite sequence

ω = (x1,1, . . . , x1,N1
, x2,1, . . . , x2,N2

. . . ),

abbreviated as ω = (Xn)
∞
n=1, will be called a block sequence associated with the

sequence of single blocks Xn, n = 1, 2, . . . We will distinguish between block se-
quences and sequences of individual blocks. For the block sequence ω = (yn)

∞
n=1

we can use the step d.f. FN (x) defined as

FN (x) =
#{n ≤ N ; yn < x}

N

for x ∈ [0, 1), and FN (1) = 1. For individual blocks Xn, we define

F (Xn, x) =
#{i ≤ Nn;xn,i < x}

Nn

for x ∈ [0, 1) and F (Xn, 1) = 1.

A d.f. g is a d.f. of the sequence yn if there exists an increasing sequence
of positive integers N1, N2, . . . such that

lim
k→∞

FNk
(x) = g(x)

a.e. on [0, 1].

A d.f. g is a d.f. of the sequence of single blocksXn, if there exists an increasing
sequence of positive integers n1, n2, . . . such that

lim
k→∞

F (Xnk
, x) = g(x)

a.e. on [0, 1].

Denote by G(yn) the set of all d.f. of the sequence yn and denote by G(Xn)
the set of all d.f. of the sequence of single blocks Xn.

In the literature various types of blocks were published:

I. J. S c h o e n b e r g [17] introduced and studied the asymptotic distribution
function (abbreviating a.d.f.) ofXn with Nn=n. For the definition see Section 2.
He gave some criteria and mentioned a result of G. P ó l y a that

Xn =
(n
1
,
n

2
, . . . ,

n

n

)
mod 1

has a.d.f. g(x) =
∫ 1

0
1−tx

1−t dt. E. H l a w k a in the monograph [10, p. 57–60], called
sequences of single blocks Xn, for Nn = n, double sequences and, for general Nn,
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Nn-double sequences. As examples he included a proof of uniform distribution
(abbreviating u.d.) for

Xn =

(
1

n
,
2

n
, . . . ,

n

n

)
, and Xn =

(
1

n
,
a2
n
, . . . ,

aφ(n)

n

)
,

where a1 = 1 < a2 < · · · < aφ(n), g.c.d. (ai, n) = 1 and φ(n) denotes Eu-
ler’s function. U.d. for related block sequences ω = (Xn)

∞
n=1 is given in the

monograph of L. K u i p e r s and H. N i e d e r r e i t e r [12, Lemma 4.1, Ex-
ample 4.1, p. 136]. G. M y e r s o n [13, p. 172] called a sequence of blocks Xn

(without any ordering in Xn) a sequence of sets. The same terminology is used
by H. N i e d e r r e i t e r in his book [14]. Myerson called the associated block
sequence ω (Xn with some order) an underlying sequence and established crite-
ria for u.d. of Xn. The sequence of single blocks Xn with Nn = n is also called
a triangular array. R. F. T i c h y [25] gave some examples of u.d. of such Xn.

Let xn be an increasing sequence of positive integers. Extending a result
of S. K n a p o w s k i [11], Š. P o r u b s k y, T. Š a l á t and O. S t r a u c h [15]
have investigated a sequence of blocks Xn of the type

Xn =

(
1

xn
,
2

xn
, . . . ,

xn

xn

)
.

They obtained a complete theory for the uniform distribution of the related
block sequence ω = (Xn)

∞
n=1.

As we see in this paper we have concentrated only on the sequence of blocks
Xn, n = 1, 2, . . . , with blocks

Xn =

(
x1

xn
,
x2

xn
, . . . ,

xn

xn

)
.

Finally, denote by N the set of all positive integers and if a subset A ⊂ N

is given, define the ratio set R(A) as R(A) = {a/b; a, b ∈ A} . Main result [22]:
For every A ⊂ N, if the lower asymptotic density d(A) ≥ 1/2 then the ratio set
R(A) is everywhere dense in [0,∞). Conversely, if 0 ≤ γ < 1/2 then there exists
an A ⊂ N such that d(A) = γ and R(A) is not everywhere dense in [0,∞).
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[22] STRAUCH, O.—TÓTH, J. T.: Asymptotic density of A ⊂ N and density of the ratio
set R(A), Acta Arith. LXXXVII (1998), 67–78.
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