DOI: 10.1515/tmmp-2015-0046
Tatra Mt. Math. Publ. 64 (2015), 127-131

ON ONE TYPE OF COMPACTIFICATION OF POSITIVE INTEGERS

Milan Paštéka

Abstract

The object of observation is a compact metric ring containing positive integers as dense subset. It is proved that this ring is isomorphic with a ring of reminder classes of polyadic integers.

Let \mathbb{N} be the set of positive integers. A mapping $\|\cdot\|: \mathbb{N} \rightarrow<0, \infty)$ will be called norm if and only if the following conditions are satisfied for $a, b \in \mathbb{N}$

$$
\|a\|=0 \Leftrightarrow a=0, \quad\|a+b\| \leq\|a\|+\|b\|, \quad\|a b\| \leq\|b\| .
$$

There are various examples of norms on \mathbb{N}. One of these is polyadic norm defined in $[\mathrm{N}]$, [N1]. We start by a generalization of polyadic norm. Denote by $a+(m)$ the arithmetic progression with difference m which contains a. Instead of $0+(m)$ we write only (m).

A subset $A \subset \mathbb{N}$ we call closed to divisibility or shortly CD-set if and only if

$$
1 \in A, \quad m \in A, d \mid m \Rightarrow d \in A, \quad m_{1}, m_{2} \in A \Rightarrow\left[m_{1}, m_{2}\right] \in A
$$

for $d, m, m_{1}, m_{2} \in \mathbb{N}$.
Suppose that A is infinite CD-set and $\left\{B_{n}\right\}$ is such sequence elements of A that for every $d \in A$ there exists n_{0} that $d \mid B_{n}$ for $n>n_{0}$. It is easy to see that the mapping

$$
\|a\|_{A}=\sum_{n=1}^{\infty} \frac{h_{n}(a)}{2^{n}}
$$

for $a \in \mathbb{N}$, where $h_{n}(a)=1-\mathcal{X}_{\left(B_{n}\right)}$, is a norm. This norm will be called generalized polyadic norm and the completion with respect the metric given by this norm will be called the ring of generalized polyadic integers.

[^0]
MILAN PAŠTÉKA

If $A=\mathbb{N}$ and $B_{n}=n$!, we get polyadic norm and the completion will be the ring of polyadic integers. In the case $A=\left\{p^{n} ; n=0, ., 2, ..\right\}$ and $B_{n}=p^{n}$ for a given prime p we a obtain p-adic norm and the completion will be the ring of p-adic integers.

In the following text we shall assume that there is given a compact metric space (Ω, ρ) containing \mathbb{N} as a dense subset. We suppose that the operations addition and multiplication on \mathbb{N} are continuous and are extended to whole Ω to continuous operations. Thus $(\Omega,+, \cdot)$ is a topological commutative semiring.

Since Ω is compact, we can suppose that there exists an increasing sequence of positive integers $\left\{x_{n}\right\}$ convergent to an element of Ω. Put

$$
a_{n}=x_{2 n}-x_{n}, \quad n=1,2, \ldots
$$

Then

$$
\begin{equation*}
a_{n} \geq n \quad \text { and } \quad a_{n} \rightarrow 0 \tag{1}
\end{equation*}
$$

in the topology of Ω.
For $\beta \in \Omega$ and $b_{n} \rightarrow \beta, b_{n} \in \mathbb{N}$ we can consider the sequence of positive integer $\left\{a_{k_{n}}-b_{n}\right\}$, for a suitable increasing sequence $\left\{k_{n}\right\}$, such that

$$
a_{k_{n}}-b_{n} \rightarrow \beta^{\prime}, \quad \text { where } \quad \beta+\beta^{\prime}=0
$$

We see that $(\Omega,+)$ is a compact group.
Clearly, for every $m \in \mathbb{N}$ there holds $c l(r+(m))=r+m \Omega$, where $m \Omega$ is the principal ideal in the ring $(\Omega,+, \cdot)$ generated by m. This yields

$$
\begin{equation*}
\Omega=m \Omega \cup(1+m \Omega) \cup \cdots \cup(m-1+m \Omega) . \tag{2}
\end{equation*}
$$

Since the divisibility by m in \mathbb{N} is not necessary equivalent with the divisibility by m in Ω, it is not assumed that the last decomposition is disjoint.

Lemma 1. Let $m \in \mathbb{N}$ be such positive integer that it is also the minimal generator of the ideal $m \Omega$. Then every positive integer is divisible by m in \mathbb{N} if and only if it is divisible by m in Ω.

Proof. One implication is trivial. Suppose now that some positive integer a is divisible by m in Ω. Thus $a \in m \Omega$. Put $d=(a, m)$-the greatest common divisor in \mathbb{N}. Then $d=a x+m y$ for certain integers x, y. This yields $d \in m \Omega$. We get $d \Omega=m \Omega$ and the minimality of m implies $m=d$.

For every $n \in \mathbb{N}$ we can define $g(n)$ as the minimal positive generator of $n \Omega$. Put $\mathcal{A}=\{g(n) ; n \in \mathbb{N}\}$.

The set $r+m \Omega$ is closed and so from (2) we see that also open, which we refer as clopen set.

It is easy to check that the set \mathcal{A} is a CD-set.

ON ONE TYPE OF COMPACTIFICATION OF POSITIVE INTEGERS

Let $\left\{a_{n}\right\}$ be the sequence of positive integers given in (1). Clearly,
this yields

$$
\bigcap_{n=1}^{\infty} a_{n} \Omega=\{0\}
$$

$$
\begin{equation*}
\bigcap_{m \in \mathcal{A}} m \Omega=\{0\} \tag{3}
\end{equation*}
$$

So we obtain that the set \mathcal{A} is infinite. Since $m \Omega$ is open for $m \in \mathcal{A}$, equality (3) implies that for each sequence $\left\{\alpha_{n}\right\}$ there holds

$$
\alpha_{n} \rightarrow 0 \Longleftrightarrow \forall m \in \mathcal{A} \exists n_{0} ; \quad n \geq n_{0} \Longrightarrow m \mid \alpha_{n}
$$

If we define the congruence by the natural manner: $\alpha \equiv \beta(\bmod \gamma)$ if and only if γ divides $\alpha-\beta$, for $\alpha, \beta, \gamma \in \Omega$, then there holds:

$$
\alpha_{n} \rightarrow \beta \Longleftrightarrow \forall m \in \mathcal{A} \exists n_{0} ; \quad n \geq n_{0} \Longrightarrow \alpha_{n} \equiv \beta \quad(\bmod m)
$$

Thus the convergence can be metrised by the generalized polyadic norm. Let

$$
\mathcal{A}=\left\{m_{n}, n=1,2, \ldots\right\} \quad \text { and } \quad M_{n}=\left[m_{1}, \ldots, m_{n}\right], \quad n=1,2, \ldots
$$

then

We get the following

$$
\|\alpha\|_{\mathcal{A}}=\sum_{n=1}^{\infty} \frac{1-\mathcal{X}_{M_{n} \Omega}(\alpha)}{2^{-n}}
$$

Theorem 1. The metric ρ is equivalent with the metric $\rho_{\mathcal{A}}$, where

$$
\rho_{\mathcal{A}}(\alpha, \beta)=\|\alpha-\beta\|_{\mathcal{A}} \quad \text { for } \alpha, \beta \in \Omega .
$$

So for every set $S \subset \Omega$ we have

$$
\begin{equation*}
c l(S)=\bigcap_{n=1}^{\infty}\left(S+M_{n} \Omega\right) \tag{4}
\end{equation*}
$$

Denote the Haar probability measure defined on $(\Omega,+)$ by P. For $m \in \mathcal{A}$ the decomposition (2) is disjoint and so $P(r+m \Omega)=\frac{1}{m}$. If we define the submeasure ν^{*} on the system of subsets of \mathbb{N} as $\nu^{*}(S)=P(c l(S))$, we get from (4) and upper semicontinuity of measure that for each S

$$
\nu^{*}(S)=\lim _{n \rightarrow \infty} \frac{R\left(S: M_{n}\right)}{M_{n}}
$$

where $R\left(S: M_{n}\right)$ the number of elements of S incongruent modulo M_{n}. Thus ν^{*} is the covering density defined in P .

Theorem 2. Let $\alpha, \beta \in \Omega$. There exist $\alpha_{1}, \beta_{1} \in \Omega$ such that the element $\delta=\alpha_{1} \alpha+\beta_{1} \beta$ divides α and β.

MILAN PAŠTÉKA

Proof. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be the sequences of positive integers that $a_{n} \rightarrow$ $\rightarrow \alpha, b_{n} \rightarrow \beta$. Let d_{n} the greatest common divisor of $a_{n}, b_{n}, n=1,2, \ldots$ Then $d_{n}=v_{n} a_{n}+u_{n} b_{n}$ for some u_{n}, v_{n}-integers. The compactness of Ω provides that $u_{k_{n}} \rightarrow \alpha_{1}$ and $v_{k_{n}} \rightarrow \beta_{1}$ for a suitable increasing sequence $\left\{k_{n}\right\}$. Put $\delta=\alpha_{1} \alpha+\beta_{1} \beta$. We see that $d_{k_{n}} \rightarrow \delta$. For $n=1,2, \ldots$ we have $a_{k_{n}}=c_{n} d_{k_{n}}$. Since $\left\{c_{n}\right\}$ contains a convergent subsequence, we get that δ divides α. Analogously, it can be derived that δ divides β.

The element δ from Theorem 2 will be called the greatest common divisor of α, β and we shall write $\delta \sim(\alpha, \beta)$.
Corollary 1. If $p \in \mathcal{A}$ is a prime then for every $\alpha \in \Omega$ there holds p divides α or $(\alpha, p) \sim 1$.

Proof. If p does not divide α then $\alpha \in \Omega \backslash p \Omega$. Consider a sequence of positive integers $\left\{a_{n}\right\}$ which converges to α. The set $\Omega \backslash p \Omega$ is open, thus we can suppose that $\left(a_{n}, p\right)=1$. This yields $\ell_{n} a_{n}+s_{n} p=1$ for suitable integers ℓ_{n}, s_{n}. Since Ω is a compact space there exists an increasing sequence $\left\{k_{n}\right\}$ that $\ell_{k_{n}} \rightarrow \lambda, s_{k_{n}} \rightarrow \sigma$. And so $\lambda \alpha+\sigma p=1$.

Corollary 2 can be proved analogously
Corollary 2. An element $\alpha \in \Omega$ is invertible if and only if $(\alpha, p) \sim 1$ for every prime $p \in \mathcal{A}$.

Lemma 2. Each closed ideal in Ω is principal ideal.
Proof. Let $I \subset \Omega$ be closed ideal. Let $\alpha \in I$. Denote by I_{α} the set of all divisors of α belonging to I. The compactness of Ω yields that I_{α} is a closed set. From Lemma 2 we get that for every $\alpha, \beta \in I$ there exists $\delta \in I$ so that $I_{\delta} \subset I_{\alpha} \cap I_{\beta}$. And so it can be proved by induction that $I_{\alpha}, \alpha \in I$ is a centered system of closed sets. Thus its intersection is non empty, and contains an element γ. Then $I=\gamma \Omega$.

In the sequel we denote Ω the ring of polyadic integers, thus completion of \mathbb{N} with respect to norm $\|\cdot\|_{\mathbb{N}}$ and we suppose that an infinite CD-set A is given. The completion of \mathbb{N} with respect to the norm $\|\cdot\|_{A}$ we denote as Ω_{A}.

Lemma 2 provides that $\cap_{a \in A} a \Omega=\alpha \Omega$ for suitable $\alpha \in \Omega$.
We will prove the folowing
Theorem 3. The ring Ω_{A} is isomorphic with the factor ring $\Omega / \alpha \Omega$.
Proof. If a sequence of positive integers is Cauchy's with respect to $\|\cdot\|_{\mathbb{N}}$, then it is Cauchy's with respect to $\|\cdot\|_{A}$ as well.

If $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are sequences of positive integer, then

$$
\left|\left\|a_{n}-b_{n}\right\|_{\mathbb{N}} \rightarrow 0 \Longrightarrow\right|\left\|a_{n}-b_{n} \mid\right\|_{A} \rightarrow 0
$$

ON ONE TYPE OF COMPACTIFICATION OF POSITIVE INTEGERS

Therefore we can define a mapping $F: \Omega \rightarrow \Omega_{A}$ in the following way. If $\beta \in \Omega, b_{n} \rightarrow \beta$ with respect to $\|\cdot\|_{\mathbb{N}}$, then $F(\beta)$ is the limit of $\left\{b_{n}\right\}$ with respect to $\|\cdot\|_{A}$. Clearly, F is a surjective morphism with kernel $\cap_{a \in A} a \Omega$ and the assertion follows.

Theorem 4. The ring Ω_{A} is an integrity domain if and only if $A=\left\{p^{n} ; n=\right.$ $0,1,2 \ldots\}$, where p is a prime number.

Proof. Suppose that $A=\left\{p^{n} ; n=0,1,2 \ldots\right\}$. It suffices to prove that $\cap_{a \in A} a \Omega$ is a prime ideal. Let α, β do not belong to $\cap_{a \in A} a \Omega$. Then $\alpha=p^{k} \alpha_{1}, \beta=p^{j} \beta_{1}$, where $\left(p, \alpha_{1}\right) \sim 1,\left(p, \beta_{1}\right) \sim 1, j, k<\infty$. Thus

$$
\alpha \beta=p^{k+j} \alpha_{1} \beta_{1} \notin \cap_{a \in A} a \Omega .
$$

Assume that A contains at least two different primes. The elements of the sequence $\left\{M_{k}\right\}$ can be decomposed into $M_{k}=d_{k} c_{k}$ such that

$$
\left(d_{k}, c_{k}\right)=1, \quad d_{k}>1, \quad c_{k}>1, \quad k=1,2, \ldots
$$

Let $\left\{k_{n}\right\}$ be a subsequence such that $d_{n_{k}} \rightarrow \delta, c_{n_{k}} \rightarrow \gamma$. Then $\gamma, \delta \notin \cap_{a \in A} a \Omega$ and $\gamma \delta \in \cap_{a \in A} a \Omega$, thus $\cap_{a \in A} a \Omega$ is not a prime ideal.

REFERENCES

[N] NOVOSELOV, E. V.: Topological theory of polyadic numbers, Trudy Tbilis. Mat. Inst. 27 (1960), 61-69. (In Russian)
[N1] NOVOSELOV, E. V.: New method in the probability number theory, Doklady Akademii Nauk. Ser. Mat. 28 (1964) no. 2, 307-364. (In Russian)
[P] PAŠTÉKA, M.: Covering densities, Math. Slovaca 42 (1992), 593-614.
[Po] POSTNIKOV, R.G.: Introduction to Analytic Number Theory. Moscov, Nauka, 1971. (In Russian); Amer. Math. Soc., Providence RI, 1981 (English translation).
[P-P] PAŠTÉKA, M.-PORUBSKÝ, Š.: On the distribution on the sequences of integers, Math. Slovaca 43 (1993), 521-639.

Received October 12, 2015
Department of Mathematics and
Computer Science
Faculty of Education
University of Trnava
Priemyselná 4
SK-918-43 Trnava
SLOVAKIA
E-mail: milan.pasteka@mat.savba.sk

[^0]: © 2015 Mathematical Institute, Slovak Academy of Sciences.
 2010 Mathematics Subject Classification: 11K06.
 Keywords: density, polyadic integers.
 Research was supported by grant VEGA 2/0146/14.

