
�

�
�����������	 
��	�����
��

DOI: 10.2478/tmmp-2014-0026
Tatra Mt. Math. Publ. 60 (2014), 85–100

PRESENTING RISKS INTRODUCED

BY ANDROID APPLICATION PERMISSIONS

IN A USER-FRIENDLY WAY

Juraj Varga — Peter Muska

ABSTRACT. The emergence of Android as a leading Operating System in terms
of market coverage induced the rapid emergence of many mobile applications.
A lot of these applications are prone to misuse because of their design. This
paper deals with a new method of informing user whether applications installed
on his device are potentially harmful or not. The introductory part provides
some insight into security mechanisms used in Android. The main part deals

with research we based our work on, proposal of our own methodology based
on permission model and its implementation in application for real-time offline
analysis of installed applications on device running Android. The last part of this
paper deals with the evaluation of achievements reached by our methodology
implemented in standalone application.

1. Introduction

Operating system Android is currently the most widespread operating system
(OS) for mobile phones, tablets and other devices [1]. Its development began
in 2003 in Android Inc. The first phone with Android was released by HTC
in 2008 in USA and reached central Europe in summer 2009. Android is oper-
ating system built on Linux architecture. Due to the fact that mobile devices
have limited hardware resources, this architecture had to be modified to fit this
situation. Securing an open platform requires robust security architecture and
precisely designed security system. Even though it is possible to provide secu-
rity at the application level (by means of cryptography or steganography [2], [3]),
this does not provide protection against the security leaks at the level of operat-
ing system modules. But multi-layer architecture of Android provides necessary
flexibility in development and also certain level of protection. Security measures

c© 2014 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60.
Keywords: Android, mobile devices, permissions, over-privilege.

This work was supported by grant VEGA 1/0173/13.

85



JURAJ VARGA — PETER MUSKA

were designed with regard to developer community—experts can easily work
with these mechanisms, beginners are protected by default settings. Despite
these measures, there are ways to circumvent them. One of them is misusing
over-privileged applications. In this paper we propose a new approach in detect-
ing these applications and presenting the results to the user.

The following part of this paper deals with the overview of the permission
model and its connection to Android security. The third part presents prior
research in this field, which we used as a reference starting point in our work.
Next two parts describe our method of detecting over-privileged applications
and tests conducted with proof-of-concept application, respectively. This paper
is concluded in the sixth part.

2. Permission model

From the beginning, OS Android is being developed as an open mobile plat-
form. It enables applications to use built-in hardware and software along with
both local and remote data to grant users desired comfort and functionality.
Along with all this the OS must provide means to secure user data, applications
and whole device.

On the OS level Android provides security of Linux kernel, along with secure
inter-process communication between applications running in different processes.
These security features on OS level make sure that even native applications are
subjected to application sandboxing. This way system prevents harmful appli-
cations from damaging other applications, device or OS itself [4].

Applications run in application sandbox and have access to limited system
resources. System manages application access to resources. These restrictions
are implemented by various means. Some possibilities are restricted by lack
of corresponding Application Programming Interfaces (APIs), others by, e.g.,
role separation. Sensitive APIs can only be used by trusted applications and are
protected by permission system. Permissions are divided into four groups based
on level of protection (for illustration see Figure 1):

• Normal: permissions on the application level, they do not pose a serious
risk when they are used by the application.

• Dangerous: permissions which can cause leaks and manipulation with sen-
sitive data or exploit potentially dangerous system resources. They need
to be explicitly confirmed by user during installation of application. Here
belong for example:

◦ Location data from GPS (ACCESS FINE LOCATION).
◦ Network/data connection (ACCESS NETWORK STATE).

86



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

◦ Telephony (CALL PHONE).
◦ SMS/MMS functions (WRITE SMS).
◦ Access to system configuration (CHANGE CONFIGURATION).

• Signature: permissions assignable only to applications signed with private
key corresponding with certificate of application calling it. They are used
by developers to share information among their applications.

• Signature-or-system: special type of permission assignable only to applica-
tions installed in system image which are signed with the same certificate
as system image [5] [6].

Figure 1. Android permission model.

Aside from the above mentioned division, permissions are also divided in a way
of accepting them:

• Time-of-use: user must confirm this permission when executing sensitive
operation (e.g., access to device location). It is the only way to prevent
applications to access device resources.

87



JURAJ VARGA — PETER MUSKA

• Install-time: accepted when installing application, user accepts them as
one; he cannot choose which permissions to accept and which to deny, see
Figure 2.

Figure 2. Example of application installation [7].

System resources marked as dangerous are accessible only from the OS. Ap-
plications must have these requirements specified by permissions in manifest.
During installation these permissions are displayed to user and he can accept
or reject them. After accepting these permissions the installation continues and
these permissions are accepted by the system. It is not possible to choose which
permissions to accept, they must be accepted as one and that can lead to secu-
rity incidents. Permissions are assigned to an application for the whole time it is
installed on the device and cannot be manipulated by anyone. They are removed
in the moment the application is deleted from the device. They can be revised
in application settings and can be restricted by shutting down global function-
ality, such as Wi-Fi or GPS. If the application is trying to access a feature that
is not allowed to, it invokes a security exception and error message in the ap-
plication. Security checks for protected API permissions are done on the lowest

88



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

possible level to prevent their circumventing. Some device capabilities are not ac-
cessible to third-party applications but can be used by pre-installed applications.
The complete list of permissions is available on website dedicated to Android
development [5] [6]. Other mobile platforms also use security mechanisms based
on permissions, e.g., iOS by Apple [8], but their usage is different.

3. Prior research

Since the introduction of the permission model as a part of Android security,
there has been an active research in various aspects of this model.

3.1. System of permissions

The basic research is focused on how this system works. This means dealing
with detection of over-privileged applications and applying restrictions on in-
stalled applications or during their installation.

3.1.1. Detecting over-privileged applications

This topic is closely tied with privilege escalation attacks and is considered
to be the first step in enhancing security in Android OS. There are systems
that can detect over-privilege in applications, e.g., Stowaway [13]. This type
of applications provides information whether the assigned permissions are used
to access system resources or not, and if this access is relevant to functions
required of the applications.

3.1.2. Applying restrictions

Important part of research on Android platform deals with restricting access
to system resources. As it was mentioned in Part 2, the user either allows appli-
cation access to all required resources and installs it, or does not install it at all.
Current research deals with two sub problems here: applying restrictions and
tracking the data flow and access to resources when they are allowed. The first
framework to implement restrictions in the permission model was APEX [15],
which allowed to revoke permissions and allow them when necessary. Unfortu-
nately, this project is no longer active, but its idea continued in various custom
ROMs like CyanogenMod or in frameworks like AppOps. Project Pyandrazzi [21]
also continues in this idea, but focuses more on the impact of these restrictions
on application functionality. Then there is Blue Seal [22], which tracks the data
flow and access to resources in monitored applications. Moreover, it provides
the details to the user and can rather successfully identify samples of mobile
malware.

89



JURAJ VARGA — PETER MUSKA

3.2. Privilege escalations

The most severe problem of the permission model is a fact that developers
assign more permissions to their applications than they need to work properly.
For example calculator application does not need access to the Internet to work,
but uses it to download commercial banners which are main sources of income
for developers. However, they can pose a security risk [12]. If the application
has been assigned more permissions than it actually uses, it can be misused
for privilege escalation attack [18]. Essentially, it means that an application with
more permissions than it needs can be used by some malware application to do
operations which this malware cannot do alone. These are the most common
types of attacks on Android platform, and they are often caused by the lack
of best practices for secure development among developers. B u g i e l et al. in [19]
presented a framework XManDroid capable of detecting and preventing these
attacks. This framework was later improved to cover more possible sub types
of this attack [20].

3.3. Methods of malware detection using permissions
Permission model can be also used as a mean of mobile malware detection.

However, in most cases they are only used as an additional factor in determina-
tion of application harmfulness.

3.3.1. ScanDroid

One of the first usable applications is ScanDroid by F u c h s et al. [11]. The au-
thors focus on statistical analysis of data stream going through various appli-
cations. In addition Scandroid analyses permissions for each application stored
in the manifest file. Based on these results and knowledge of permissions it can
determine if it handles the data correctly or not, and therefore determine whether
it is harmful or not. The application is then marked and presented to the user
as potential risk.

3.3.2. Kirin

Kirin was also one of the first detection methods [16]. This system uses certifi-
cation of applications during installation. It reads a list of required permissions
from the manifest file and evaluates this configuration according to the set of se-
curity rules. Currently, this system is ineffective against new threats, but there
are several new detection methods inspired by Kirin [20].

3.3.3. K-mean clustering

The latest method of malware detection based purely on permission model was
presented in [17]. The authors extract features from .apk files and containing

90



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

permission requests. On these features they apply Information instal feature se-
lection method and K-mean clustering algorithm supported by machine learning
and decision trees. This work reached promising results, but further improve-
ments are needed to determine whether this approach is successful or not.

3.4. User recognition and comprehension of permission model

The only research in this area so far was conducted by F e l t et al. in [7].
Results show, that complexity of permission model in regard to common user is
a significant problem. Survey conducted by the authors shows that:

• Only 42% of users is aware of which permissions application requires and
know what are they for.

• Almost 70% of users is influenced by reviews into installing some applica-
tion.

• On the average only 30% of users can correctly tell what operations can
application do with specific permissions.

Based on these results we can say, that society is still not educated enough in this
matter and therefore our research can provide some improvement in this regard.

The main issue with the majority of above mentioned solution is, that they
are not publicly available. It means that they are either in development process
or are used only for the academic purposes. Those publicly available—Kirin
and its modification called TaintDroid [27]—have too complicated installation
process, that even we had some problems with their installation. We believe that
standard users will not want to spend a lot of time installing applications, they
want this process to be quick. Moreover, they are somehow obsolete and do not
offer sufficient level of protection any more. Therefore, in the next chapters
we present our own solution, which is user friendly, quick to install and easy
to comprehend.

4. Design

4.1. State-of-the-art

On Google Play there are currently many applications dealing with permis-
sion management. However, the majority of these applications is of informative
character. For example applications like [23], [24] or [25] show the user which
permissions chosen application uses and provide general information about these
permissions. The more advanced ones like [23] and [25] can divide installed appli-
cations to lists depending on potential harm they can do, but these divisions are
based only on general recommendations of Android API documentation found
in [4]. Moreover, these applications do not quantify the risk presented by in-
stalled applications. Then there are applications capable of changing permissions,
like [26]. This application can remove permissions from application manifest file

91



JURAJ VARGA — PETER MUSKA

and thus removing the need for this permission. However, this approach does not
change the API calls in the application install file and when such method is used,
the application crashes. Also, many other studies linking permissions and mal-
ware were conducted over past years. The most significant ones were [9], [10], [14].
Apart from other research authors tried to find some connection between mal-
ware and permissions it requires. Authors in these papers conclude that mobile
malware is nowadays almost identical to benign applications regarding required
permissions. This is a direct result of overprivileging during the development
process. Current permission model does not offer sufficient granularity in di-
viding permissions into functional groups—Signature and Signature-or-system
cannot be accessed by potentially malicious application, Normal group is not
interesting, so we are left with only one group—Dangerous. Above mentioned
studies show, that this group of permissions is both used in benign and mali-
cious applications. Therefore it is important that this category is further divided
into smaller subgroups. In this work we propose division into four groups based
on severity of possible misuse of given permission in over-privileged application,
based on above mentioned research in this area:

• RED—high to critical risk—these permissions can only be used by a se-
lected group of applications with legitimate claim to use them.

• ORANGE—moderate risk—these permissions should be used only by spe-
cific application, which requires them to function correctly.

• YELLOW—slight risk—these could be assigned to the GREEN group, but
in some cases of application types could be misused.

• GREEN—little to no risk—typical, commonly required permissions which
are safe, if they are not in combination with some other permissions.

Since this research intends to raise awareness among common users, it is
vital that these groups immediately reflect potential threat to user. That is why
we decided to use color distinction—the final score of each application is shown
as a progress bar of some color depending on the potential threat level.

It may not be suitable to evaluate permissions based on some global view,
because there are permissions which are necessary for one type of application and
prone to misuse for other type. Fine example is SEND SMS, allowing sending
SMS messages—it is typical for messengers but very suspicious for games. That
is why we have decided to also divide applications into logical groups, e.g.:

• GAMES,

• SOCIAL MEDIA,

• MESSENGERS,

• FINANCIAL.

92



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

Each of these categories has a set of permissions which are (according to our
observations) necessary for them to be fully functional. On the other hand, there
is a set of permissions the application should not use at all. These lists were
created based on general expectations of what permissions the applications from
specific group should require. Furthermore, we included in these lists permissions
which are often misused my malicious applications as described in [9], [10], [14]
or we deem them suspicious. These permissions would be treated differently
in calculation of the final score - either their score will be lowered (if they are
required) or raised (if they are suspicious). We believe this addition would make
greater impact on the final score than the permissions alone and provide greater
precision in final results.

4.2. Analysis and evaluation

Proposed method consists of two parts. The first part calculates the risk based
on permissions the application requires. These permissions are distributed to the
coloured groups based on the overall risk they pose (Part 4, 4.1). The second
part consists of risk calculation based on the same permission list, only evaluated
according to the category which the tested application belongs to. For example,
INTERNET permission is required for some messenger or communication appli-
cation, but suspicious for some utility application (calculator).

The evaluation of application is based on calculation of negative score, the
higher the score, the higher the overall threat posed by the application. The eval-
uation model consists of two components. Each of these components uses eval-
uation function: general permission risk and category based permission risk.

The first component of evaluation R1 is based on incrementing risk score
according to the number of required permissions belonging to one of the four
coloured groups (1). In our simplified model used to demonstrate the overall
performance we use experimental values: green group increments score by 0.5,
yellow by 1, orange by 3 and red by 5 points. When this is done, we get a sum
of these values. Then we compute a ratio of achieved score with maximal possible
score for this application (as if all permissions were from the RED group). This
result is then multiplied by 100 to get a value in percentage. This calculation
can be represented as:

R1 =
g · kg + y · ky + o · ko + r · kr

(g + y + o+ r) · kr · 100, (1)

where g, y, o, r – total number of permissions from GREEN, YELLOW, OR-
ANGE and RED groups,
kg, ky, ko, kr – coefficients of risk for permissions from each group.

The second component begins its evaluation after the first phase of analysis
is done. Score is reset to zero. Required permissions are checked again, this time
using the list of permissions for chosen application type (2). For any suspicious

93



JURAJ VARGA — PETER MUSKA

permission found, the score is incremented by a predefined value set experimen-
tally according to the category. Then we calculate the ratio of the reached score
and the maximal possible score obtained for the given category (if all permissions
found would be in the list of suspicious permissions for given category). This ra-
tio is again multiplied by 100 to get a value in percentage. This calculation of risk
R2 can be represented by equation:

R2 =
ps · ks + pn · kn

p · ks · 100, (2)

where p – total number of permissions,
ps – number of suspicious permissions for current category,
ks – coefficient of risk for suspicious permissions from this category,
pn – number of non-suspicious permissions for current category,
kn – coefficient of risk for non-suspicious permissions from this category.

After both parts of our evaluation method are complete, the final score of anal-
ysed application based on the required permissions is calculated. The final score
is calculated as a sum of partial scores (3) divided by 2 to achieve a value from 0
to 100. This result represents potential risk R of misuse of selected application:

R =
R1 +R2

2
, (3)

where R – final score,
R1 – score from the first part,
R2 – score from the second part.

We remark that high score does not immediately mean a malicious appli-
cation. The score is just a security recommendation and a mean of prevention
against an over-privileged application (and only consequently a possible malware
threat).

4.3. Proof-of-concept application

We implemented proposed scoring method as a standard Android application
written in Java language. Application Suspicious Apps Checker is very simple
and consists of several connected screens—activities.

After the application starts, it shows the user a list of all user-installed appli-
cations on the current device. We filter system applications and those from the
device manufacturer, because they should not pose any threat. Each item from
this list contains application title and an icon for better orientation and user
experience. Each item is also linked with two buttons: one for launching and
one for further information. Clicking the second button launches the App Info
activity. Here the user can see all information regarding this application: current
version, package info, date of the last update and all required permissions. These
permissions can be clicked on and the user is shown the information about the
desired permission—Figure 3.

94



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

Figure 3. Clickable list showing information about required permissions.

Besides these information there is an Analysis button which calls the above
mentioned analysis and evaluation. It is necessary to choose the type of appli-
cation (examples mentioned in 4., 4.1), as it can significantly alter the results if
chosen inaccurately. If the user does not choose the category, the analysis will be
performed on default Games choice (as the least privileged category).

The result is shown on the next screen with the coloured progress bar and
the suspicious permissions are listed as click-able list (as in Figure 4), where the
user can see what possible damage the application with the given permissions
can do (see Figure 3).

5. Tests and results

Implemented application Suspicious Apps Checker is fully functional accord-
ing to the specifics in design. It does not require any permissions, therefore
we can consider it secure. Tests were conducted in two steps:

• Testing of applications based on categories.

• Testing of individual applications.

5.1. Testing of applications based on categories

For each category we tested 20 most downloaded free applications in Google
Play store (280 applications in total). In the Table 1 we can see the average
result in each category. It also contains average values in these aspects:

• Overall ratio of how much is a specific category over-privileged.

• Number of required permissions for each category.

• Number of permissions that should not be assigned for each category.

95



JURAJ VARGA — PETER MUSKA

Figure 4. Evaluation result.

Based on these results we can say that the applications from the Sports cat-
egory present the lowest potential risk with the score of 15,27%. On the other
hand, the highest risk of over-privilege is presented by applications from the Fi-
nances category with the score of 37,21%. The Communications category ranks
first as a category with the most required permissions with the score 23,43,
which is not very surprising due to their purpose. The last category in this view
is Themes with the average score of required permissions 4. The highest number
of suspicious permissions require applications from Shopping with the score 1,67,
which indicates possible case of over-privileged application. The lowest number
of suspicious permissions required applications from Travel group, only 0,14.

5.2. Testing of individual applications

In case of individual applications the best results obviously achieved applica-
tions that does not require any permissions, thus our application labelled them
secure with zero risk of misuse. However, the highest positions of potential risk
were achieved by anti virus applications. This happened due to the fact that

96



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

Table 1. Results from the first round of testing.

Category Avg. risk (%) Avg. # of perms Avg. # of susp. perms

Sports 15.27 6.86 0.29

Health 21.18 7.29 0.57

Games 22.14 6.72 0.72

Travel 23.05 6.00 0.14

Lifestyle 23.11 6.00 1.00

Multimedia 23.19 6.20 0.80

Entertainment 23.43 8.00 0.50

Social 25.96 16.25 0.50

Tools 26.47 16.00 1.40

Communication 26.85 23.43 0.86

Shopping 27.77 8.00 1.67

Productivity 30.01 8.40 1.40

Themes 32.33 4.00 1.00

Finance 37.21 8.17 0.83

these applications require significant amount of permissions to access various
system resources needed to perform security scans on the device. The second
highly risky group are financial applications. Since they need to work with ac-
count numbers, passwords and other sensitive data, they also require permissions
belonging to the most dangerous group—this is why our application evaluated
them as suspicious. There is a list of applications that reached the highest values
of potential misuse as over-privileged applications in Table 2. As we mentioned in
the previous section, the values used in evaluation equations were experimentally
set for demonstration purpose. In our proof-of-concept testing we did not test
our proposed method on actual malicious applications. According to previously
conducted research [9], [10], [14], we believe, that malicious applications hid-
ing behind legitimate functionality would obtain very similar results as benign
applications. We plan to conduct these tests as a part of our future research.

6. Conclusion

In comparison with existing solutions for detection of over-privileged appli-
cations based on permission model, our new method appears to be a better
solution. It combines suitable parts from the existing work and tries to expand
them and make them more precise. A standard approach only informs the user
about required permissions. Our approach adds a quantitative expression of the
potential risk. Moreover, the risk is based on intuitive division of permissions

97



JURAJ VARGA — PETER MUSKA

Table 2. Results from the second round of testing.

App Category Risk Perms Susp. perms

mBankSk Finance 59.75 8 1

Volley Hangout Games 51.15 18 4

Steves World Games 48.82 16 4

Swap The Box Games 48.82 16 0

Mobile Security Antivirus Tools 48.57 32 4

Heureka Shopping 46.67 6 2

Sleep as Android Lifestyle 46.52 22 6

Orange Go Productivity 45.56 9 2

Smart Banking Finance 45.29 12 2

TB VIAMO Finance 40.91 9 2

Telekom Productivity 38.75 6 2

Lokator Finance 35.71 7 0

Skype Communication 35.09 30 1

iTransit Travel 33.33 3 0

WhatsApp Communication 33.29 31 1

Snapchat Social 33.13 14 1

Sports Tracker Health 32.92 11 1

AVG Antivirus Tools 32.88 44 4

Go Weather Forecast Themes 32 4 1

CM Security Tools 31.54 19 3

according to the risk category (based on existing research) and application cat-
egory as well (proposed method). Unlike other solutions, our approach does not
need any permissions or root access to work properly.

The results we achieved in this work significantly depend on the created rules
in the proposed analysis methodology. This process was based on subjective view,
which is shown in the results. The achieved results can be different, if other pa-
rameters are used in the scoring methodology—including acceptance thresholds,
different compositions of the lists of permissions, different evaluation functions
etc. The existing parameters inform the user of potential over-privilege, and re-
quire his active participation in detecting potential malware. Further research
in this area is required to optimize the various parametric settings, before the
method is suitable for a more automated over-privilege, and potential malware,
detection.

The proof-of-concept application Suspicious Apps Checker is being further
developed and tested, therefore is not published for public use. However, re-
searchers keen on contributing to this project could receive installation file upon
request by mail.

Acknowledgement. The authors are grateful to anonymous reviewers for their
helpful comments and remarks that helped to improve the quality of this paper.

98



PRESENTING RISKS INTRODUCED BY ANDROID APPLICATION PERMISSIONS

REFERENCES

[1] Android and iOS continue to dominate the worldwide smartphone market with
Android shipments just shy of 800 million in 2013, According to IDC,
http://www.idc.com/getdoc.jsp?containerId=prUS24676414

[2] JOKAY, M.: The design of a steganographic system based on the internal MP4 file
structures, Internat. J. Comput. Commun. 5 (2012), 207–214.

[3] JÓKAY, M.—KOŠDY, M.: Steganographic file system based on JPEG files, Tatra Mt.
Math. Publ. 57 (2013), 65–83.

[4] Android security overview, http://source.android.com/tech/security/index.html

[5] SHABTAI, A.—FLEDEL, Y.—KANONOV, U.—ELOVICI, Y.—DOLEV, S.: Google
Android: A comprehensive security assessment, Security & Privacy, IEEE 8 (2010), 35–44.

[6] Android permissions overview,
http://developer.android.com/reference/android/Manifest.permission.html

[7] FELT, A. P.—HA, E.—EGELMAN, S.—HANEY, A.—CHIN, E.—WAGNER, D.:
Android permissions: user attention, comprehension, and behavior, in: Symposium

on Usable Privacy and Security—SOUPS ’12, ACM, New York, NY, USA, pp. 1–14.

[8] ANTAL, E.—BARANEC, F.: Techniques of obtaining sensitive data from Apple
iOS devices, in: 43. Konference EurOpen.CZ, Vranov, Czech Republik, 2013, Plzeň,
EurOpen.CZ, 2013, pp. 21–32. (In Slovak)

[9] ZHOU, Y.—JIANG, X.: Dissecting Android malware: characterization and evolution,

in: Proc. of the 33rd IEEE Symp. on Security and Privacy, San Francisco, CA, 2012,
IEEE Computer Society, Washington, DC, USA, 2012, pp. 95–109.

[10] ENCK, W.: Defending users against smartphone apps: techniques and future direc-
tions, in: Proc. of the 7th Internat. Conf. on Information Systems Security—ICISS ’11
(S. Jajodia, C. Mazumdar, eds.), Kolkata, India, 2011, Lecture Notes in Comput. Sci.,
Vol. 7093, Springer-Verlag, Berlin, pp. 49–70.

[11] FUCHS, A. P.—CHAUDHURI, A.—FOSTER, J. S.: SCanDroid: automated security
certification of Android applications, Technical Reports of the Computer Science
Department, 2009, 15 pp.

[12] GRACE, M. C.—ZHOU, W.—JIANG, X.—SADEGHI, A.-R.: Unsafe exposure analysis
of mobile in-app advertisements, in: Proc. of the 5th ACM Conf. on Security and Privacy

in Wireless and Mobile Networks—WISEC ’12, Tucson, AZ, USA, ACM, New York, NY,
USA, 2012, pp. 101–112.

[13] FELT, A. P.—SONG, D.—WAGNER, D.—HANNA, S.:Android permissions demystified,
in: Proc. of the 18th ACM Conf. on Comput. and Commun. Security—CCS ’11, Chicago,
IL, USA, 2011, ACM New York, NY, USA, pp. 627–638.

[14] FELT, A. P.—FINIFTER, M.—CHIN, E.—WAGNER, D.: A survey of mobile malware
in the wild, in: Proc. of the 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices—SPSM ’11, Chicago, IL, USA, ACM, New York, NY, USA, 2011,
pp. 3–14.

[15] NAUMAN, M.—KHAN, S.—ZHANG, X.: Apex: Extending Android permission model

and enforcement with user-defined runtime constraints, in: 5th ACM Symposium
on Information, Comput. and Commun. Security—ASIACCS ’10, Beijing, China,
2010, ACM, New York, NY, USA, 2010, pp. 328–332.

[16] ENCK, W.—ONGTANG, M.—MCDANIEL. P.: On lightweight mobile phone applica-
tion certification, in: Proc. of the 16th ACM Conf. on Comput. and Commun. Security–

–CCS ’09, Chicago, IL, USA, 2009, ACM, New York, NY, USA, 2009, pp. 235–245.

99

http://www.idc.com/getdoc.jsp?containerId=prUS24676414
http://source.android.com/tech/security/index.html
http://developer.android.com/reference/android/Manifest. permission.html


JURAJ VARGA — PETER MUSKA

[17] ZARNI, A.—WIN, Z.: Permission-based Android malware detection, Internat. J. of Sci.

and Technology Research (IJSTR) 2 (2013), 228–234.

[18] DAVI, L.—DIMITRENKO, A.—SADEGHI, A.-R.—WINANDY,M.: Privilege escalation
attacks on Android, in: Proc. of the 13th Internat. Conf. on Inform. Security—ISC ’10
(M. Burmester et al., eds.), Boca Raton, FL, USA, 2010 Lecture Notes in Comput. Sci.,
Vol. 6531, Springer-Verlag, Berlin, 2011, pp. 346–360.

[19] BUGIEL, S.—DAVI, L.—DMITRIENKO, A.—FISCHER, T.—SADEGHI, A.-R.:
XManDroid: A New Android Evolution to Mitigate Privilege Escalation Attacks,
Technical Report TR-2011-04, 2011, 18 pp.

[20] BUGIEL, S.—DAVI, L.—DMITRIENKO, A.—FISCHER, T.—SADEGHI, A.-R.–
–SHASTRY, B.: Towards taming privilege-escalation attacks on Android, in: Proc.

of the 19th Annual Network & Distributed System Security Symp.—NDSS ’12, San Diego,
California, 2012, pp. 1–18.

[21] KENNEDY, K.—GUSTAFSON, E.—CHEN, H.: Quantifying the effects of removing per-
missions from Android applications, in: IEEE Mobile Security Technologies—MoST ’13,
San Francisco, CA, 2013, pp. 11.

[22] HOLAVANALLI, S.—MANUEL, D.—NANJUNDASWAMY, V.—ROSENBERG, B.–
–SHEN, F.—KO, S.Y.—ZIAREK, L.: Flow Permissions for Android, in: IEEE/ACM 28th
Internat. Conf. on Automated Software Engineering—ASE ’13 (E.Denney et al., eds.),
Palo Alto, USA, 2013, IEEE, Piscataway, NJ, 2013, pp. 652–658.

[23] F-Secure App Permissions, https://play.google.com/store/apps/details?id=com.

fsecure.app.permissions.privacy

[24] S2 Permission Checker, https://play.google.com/store/apps/details?id=com.
byte256.permissionchecker

[25] Permission Friendly Apps, https://play.google.com/store/apps/details?id=org.
androidsoft.app.permission&hl=sk

[26] Adv Permission Manager, https://play.google.com/store/apps/details?id=com.
gmail.heagoo.pmaster.pro

[27] ENCK, W.—GILBERT, P.—CHUN, B.-G.—COX, L. P.—JUNG, J.—MC-DANIEL, P.–
–SHETH, A. N.: TaintDroid: An information-flow tracking system for realtime privacy
monitoring on smartphones, in: 9th USENIX Symposium on Operating Systems Design

and Implementation—OSDI ’10, Vancouver, BC, Canada, 2010, USENIX Association
Berkeley, CA, USA, pp. 393–409.

Received November 11, 2014 Institute of Computer Science and
Mathematics
Slovak University of Technology

in Bratislava
Ilkovičova 3
SK–812-19 Bratislava
SLOVAKIA

E-mail : juraj.varga@stuba.sk

peter.muska1@gmail.com

100

https://play.google.com/store/apps/details?id=com.
fsecure.app.permissions.privacy
https://play.google.com/store/apps/details?id=com.
byte256.permissionchecker
https://play.google.com/store/apps/details?id=org.
androidsoft.app.permission&hl=sk
https://play.google.com/store/apps/details?id=com.
gmail.heagoo.pmaster.pro

