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GAUSSIAN SAMPLING

IN LATTICE BASED CRYPTOGRAPHY

János Folláth

ABSTRACT. Modern lattice-based cryptosystems require sampling from dis-
crete Gaussian distributions. We review lattice based schemes and collect their
requirements for sampling from discrete Gaussians. Then we survey the algo-
rithms implementing such sampling and assess their practical performance. Fi-

nally we draw some conclusions regarding the best candidates for implementation
on different platforms in the typical parameter range.

1. Introduction

Lattice based cryptography began with the seminal work of A j t a i , who
built a one-way function based on the worst case hardness based on certain
lattice problems [1]. These lattice problems are believed to be hard even in
the presence of large quantum computers and such a promising post-quantum
replacement for standard cryptography. The most general public key primitives
like encryption schemes [28] and digital signatures [27] already have practical
lattice based instantiations.

Many recent lattice based schemes require sampling from discrete Gaussians
(for example, see [5], [12], [15], [25], [27], [30], [36], [38]). The parameters of dis-
crete Gaussians are governed by the security proofs of the particular schemes.
A finite machine cannot sample from a discrete Gaussian distribution, hence one
has to sample from a distribution close to it. It is a common practice to require
that the statistical distance of the sampled distribution from the desired discrete
Gaussian be less than 2100.
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Computing the probabilities requires floating point operations of at least 100
bit precision if one wants to achieve a statistical distance less than 2100. Whereas
any precomputation means storing a variable amount of values of the same pre-
cision. This can highly affect the sampling performance on personal computers
and even make the implementation completely impractical on constrained de-
vices. W e i d e n et al. [43] report that the Gaussian sampling takes up 50%
of the running time of L y u b a s h e v s k y’ s signature scheme [27]. Thus effi-
cient sampling from discrete Gaussians plays a crucial role in the performance
of these primitives.

As in [14] by a constrained device we will think of an embedded or portable de-
vice with a small amount of memory (measured in kilobytes instead of gigabytes)
and a modest processor that has to be economical with respect to power usage.
Also these kind of devices not necessarily come with floating point arithmetic
capability. Even if a platform provides floating point arithmetic, the required
precision is usually not supported natively. This means that software libraries
have to be used for this functionality, and these have significantly worse perfor-
mance and take up additional space in the already tight memory.

The particular discrete Gaussian samplers apply different techniques to in-
crease the performance and reduce or avoid the floating point operations, which
usually utilize precomputed tables (with the notable exception of Algorithm 6
(see also [21, Algorithm D]), requiring neither floating point arithmetic nor
precomputed tables). Many factors can affect the performance and memory
consumption (i.e., the size and number of the potential precomputed tables).
Such factors are the size of the Gaussian parameter, whether the center is zero
or not, and whether the parameters are fixed or changing (or more precisely,
the number of the needed parameter combinations). To evaluate the practicality
of the discrete Gaussian samplers in lattice based cryptography one needs to as-
sess the parameters of the distributions required by the different cryptographic
schemes.

The techniques utilized by different samplers require various amount of mem-
ory and floating point operations, which result in different overall performance
on the particular platforms. Thus for the evaluation of their practical perform-
ance one needs to collect the characteristics of the discrete Gaussian samplers
too.

In Section 2 we will give the basic definitions and main issues regarding dis-
crete Gaussians. Section 3 contains the overview of the lattice based crypto-
graphic schemes using discrete Gaussians at some point. Section 4 is about the
known methods for sampling from discrete Gaussians and in Section 5 there is
a brief summary of the information gathered and the resulting conclusions.
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2. Preliminaries

In this section we overview the basic definitions and fundamental problems
related to discrete Gaussian sampling.

2.1. Discrete Gaussian distribution

���������� 1 (discrete Gaussian distribution)� For any center c ∈ R, and
Gaussian parameter s ∈ R

+, define the discrete Gaussian distribution as

Ds,c(x) =
ρs,c(x)∑∞

y=−∞ ρs,c(y)
, (1)

∀x ∈ Z, where ρ denotes the Gaussian function ρs,c(x) = e−π|x−c|
2/s2.

It is worth to mention that sometimes in the literature this definition is for-
mulated with the parameter σ = s/

√
2π. For the sake of uniformity we will

use the Gaussian parameter s of Definition 1, to describe a discrete Gaussian
distribution throughout this paper.

2.2. Statistical distance

To keep the security proofs of the cryptographic schemes in Section 3 valid,
we need the actual sampled distribution to be statistically close to the theoretical
discrete Gaussian.

���������� 2 (statistical distance)� Let X and Y be two random variables cor-
responding to given distributions over the integers. Then the statistical distance
of their distribution is defined by

Δ(X, Y ) =
1

2

∞∑
x=−∞

|Pr[X = x]− Pr[Y = x]| .

Since the proofs assume a perfect discrete Gaussian distribution, they do
not give a well defined bound on the required statistical distance, thus we will
rely on the common practice to require it to be less than 2−λ with λ between
90 and 128.

Clearly no finite machine can sample exactly from the discrete Gaussian distri-
bution, algorithms usually just sample from a finite range large enough to comply
to the statistical distance requirement. To determine a safe tailcut one may use
the following lemma.

	�

� 1 ([15, Lemma 3.1])� For any ε > 0, any s ≥ ηε(Z) and any t > 0,
we have

Pr
x←Ds,c

[|x− c| ≥ t · s] ≤ 2e−πt
2 · 1 + ε

1− ε
.
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Here η denotes the smoothing parameter introduced in [31]. Applying [31,
Lemma 3.2] we get η 1

2
(Z) ≤ 1 and from Lemma 1 with simple computation we

conclude that if t > 4.72 and s > 1, then the probability of the tails of Ds,c is
less than 2−100.

2.3. Computing the discrete Gaussian distribution

If the sampler needs to compute the probabilities, then it has to do it at least
to precision λ to have an output distribution with statistical difference less than
2−λ. This means that floating point precision of around 100 is required, thus the
IEEE standard double-precision is not enough, consequently higher precision
arithmetic (simulated by software libraries) has to be used, which are typically
10− 20 times slower for quad precision and even more slower for arbitrary pre-
cision [11].

It is clear from Definition 1, that computing the probabilities correspond-
ing to Ds,c requires the computation of the exponential function ex. There are
multiple methods to perform this task, for a brief survey we refer to [14, Sub-
section 4.1.] and to [8], [32], [35], [42] for the particular methods. As it is sum-
marized in [14] all of these methods require either a large number of floating
point operations or large precomputed tables. This makes computing the ex-
ponential function relatively expensive operation on most platforms and even
completely impractical on devices with constrained memory and without high
precision floating point arithmetic capability.

To sufficiently approximate the denominator in (1) it is enough to compute

As,c =

ts∑
y=−ts

ρs,c(y). (2)

The sum is extremely close to s for large s, regardless of the value of c [14].
If c �= 0 then the sum has to be computed every time the parameters change.

Some of the samplers in Section 4 are using precomputed tables that depend
on the parameters of the distribution. Usually the size of these tables depends
on the Gaussian parameters and the tailcut. Also if the scheme requires to sample
from distributions with different center or Gaussian parameter, then a new table
is required.

3. Lattice based cryptography

As it is seen in Section 2, many factors affect the actual performance and
memory consumption of computing the probabilities and the size and number
of the potential precomputed tables. Such factors are the size of the Gauss-
ian parameter, whether the center is zero or not, and whether the parameters
are fixed or changing (or more precisely, the number of the needed parameter
combinations).
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In this section we review some lattice based cryptographic schemes with the
goal of assessing the requirements against the Gaussian samplers and the typical
parameters of the discrete Gaussian distribution to sample.

3.1. LWE based encryption

In [39] R e g e v described an average-case problem called Learning With
Errors (LWE) and reduced the worst-case lattice problems such as GapSVP
and SIVP to it. In his work he also constructed a public-key cryptosystem based
on the LWE problem. Regev’s reduction is almost entirely classical, but it uses
a quantum step too. In [37] P e i k e r t removed the quantum step, making
the reduction from GapSVP completely classical. Unfortunately the modulus
in the LWE problem has to be exponentially large for the classical reduction
to work and thus usually the results of the quantum reduction are considered
when determining the security parameters of an LWE based scheme.

Also a nice property of Regev’s cryptosystem was proven by A k a v i a,
G o l d w a s s e r, and V a i k u n t a n a t h a n [2], namely that it stays secure even
if almost the entire secret key is leaked.

A drawback of Regev’s encryption scheme is that the encrypted message
is an O(n log n) times longer than the plaintext. K a w a c h i, T a n a k a, and
X a g a w a [22] came up with a modified version of the scheme that has a reduced
penalty factor of O(n). P e i k e r t, V a i k u n t a n a t h a n, and W a t e r s [38]
made an even greater improvement by reducing the penalty factor to O(1).
In the following we will use this scheme to determine some concrete require-
ments against the Gaussian samplers used in the implementations.

With the parameters suggested by the authors the Gaussian sampler has
to produce an output distribution with 51336 ≤ s ≤ 102672. The center of the
distribution is a half-integer and the Gaussians are needed only from a single
distribution, thus the parameters are fixed.

The scheme needs discrete Gaussians only in the key generation phase.
In the case of constrained devices the key can be supplied with the device, and
even with on-board key generation implemented, the efficiency of the Gaussian
sampler has a limited impact on the overall performance.

L i n d n e r and P e i k e r t [25] also proposed an encryption scheme based
on the LWE problem with much better key sizes. In their variant discrete Gaus-
sians are required both at key generation and encryption and the Gaussian
parameters are ranging from 8.35 to 13.01 (see [25, Figure 4.] in the case of in-
stances with reasonable security. Also the Gaussian parameter is fixed and the
center is always zero.

3.2. GPV signatures

One of the early proposals for Lattice based signature was the GGH sche-
me [18] by G o l d r e i c h, G o l d w a s s e r, and H a l e v i . Although it was built
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on certain lattice problems directly, it lacked of a security proof and was later
broken by N g u y e n and R e g e v [33]. The scheme used a “good” basis of the
lattice (one with short Gram-Schmidt vectors) as a secret key and a “bad” one
(one in Hermite normal form) as a public key. The main problem was, that the
signatures leaked the geometry of the secret basis and it could be determined
by the attacker.

Later in [15] G e n t r y, P e i k e r t and V a i k u n t a n a t h a n showed a the-
oretically sound and secure way to use a short basis of a lattice as a trapdoor.
Their construction relies on their newly defined cryptographic primitive, the so
called one-way preimage samplable trapdoor function, which can be used in cer-
tain situations in the place of trapdoor permutations.

���������� 3 (one-way preimage samplabe trapdoor function)� A one-way
preimage samplable trapdoor function is a tuple of probabilistic polynomial time
algorithms (TrapGen, SampleDom, SamplePre) which satisfies the following:

1. Generating a function with trapdoor:
TrapGen(1n) outputs (a, t), where a is a description of an efficiently-
-computable function fa : Dn → Rn (for some efficiently-recognizable
domain Dn and range Rn depending on n), and t is some trapdoor
information for fa.

2. Domain sampling with uniform output:
SampleDom(1n) outputs x such that fa(x) is uniform over Rn.

3. Preimage sampling with trapdoor:
For every y ∈ Rn the distribution of SamplePre(t, y) output is the condi-
tional distribution x← SampleDom(1n), given fa(x) = y.

4. One-wayness:
for any probabilistic poly-time algorithm A, the probability that

A(1n, a, y) ∈ f−1a (y) ⊆ Dn

is negligible, where the probability is taken over the choice of a, the target
value y ← Rn chosen uniformly at random, and A’s random coins.

The classical hash-and-sign paradigm was suggested in [10]. Later it was for-
malized in [6], and also it was shown, that this scheme (called Full-Domain Hash)
is existentially unforgeable under chosen-message attacks when instantiated with
a trapdoor permutation and the hash function is modeled as a random oracle.

In [15] the authors gave a version of the Full-Domain Hash scheme using a one-
way preimage samplable trapdoor function instead of a trapdoor permutation.
The security of the scheme lies on the hardness of the SIS problem. In order for
the security reduction to work, the signer must give out at most one preimage
of a given point.
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The key element of both the preimage sampling and the trapdoor inversion
algorithm is a subroutine that samples from a discrete Gaussian distribution
over a lattice. The algorithm proposed in [15] was to use a randomized variant
of B a b a i’ s nearest plane algorithm [4], which is equivalent to the one pro-
posed by K l e i n [23] in another context. This algorithm chooses the next plane
according to a discrete Gaussian distribution instead of selecting the nearest
one. This is inherently sequential and it requires to sample from discrete Gauss-
ian distributions over the integers with varying center and Gaussian parameter.
P e i k e r t [36] proposed an improved method for sampling discrete Gaussians
over lattices that was not only highly parallelizeable but also required to sample
from discrete Gaussian distributions over the integers with the Gaussian param-
eter fixed (and only q different centers when sampling from q-ary lattices).

M i c c i a n c i o and P e i k e r t [30] introduced a special kind of trapdoor,
for which sampling discrete Gaussians over the lattice can be reduced to sample
from (possibly non-spherical) discrete Gaussians over Z

m and over so called
primitive lattices.

Sampling discrete Gaussians over Zm can be done by sampling a correspond-
ing continuous Gaussian and independently randomized rounding the coordi-
nates to nearby integers [36, Theorem 3.1] (rounding essentially means sampling
from discrete Gaussians with fixed Gaussian parameter). Since this part of the
scheme can be done offline, these values can be precomputed and stored on the
devices not capable of floating point arithmetic. This solution limits the number
of signatures the device can sign over its lifetime though.

In the case of the trapdoor generation and sampling of [30] it proposes n = 284
implying a Gaussian parameter of 17 (in [30, page 25] the authors mention
that s >

√
n typically holds). The trapdoor generation of [3] does not seem

to use discrete Gaussian distributions and according to [30, Figure 2] a security
parameter of reasonable security is n = 436. We will accept the argument of [14]
that the security parameters of [15] should be at least as big as of [3], and use
the aforementioned s >

√
n bound to estimate the Gaussian parameter required

by the original trapdoor in [15] to be around 21. Also it is worth mentioning that
in both cases these values were suggested assuming that the statistical error of
the randomized rounding (i.e. discrete Gaussian sampling over the integers) is
at most 2−90.

3.3. Lyubashevsky signatures

Early lattice based signature schemes [18]–[20], did not have security re-
ductions and leaked information about the secret key and thus were broken
[13], [16], [34]. The signatures overviewed in Subsection 3.2 built a theoreti-
cally sound trapdoor to avoid this weakness. The signature schemes proposed
by L y u b a s h e v s k y [12], [18], [26], [27] take a direct approach similar to the
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early schemes, but hide the geometry of the secret basis with rejection sampling.
These schemes are based on the Fiat-Shamir paradigm, namely the signature
serves as a proof of knowledge of the private key. He also provided variants
of this scheme and also gave security reductions of them to lattice problems
like LWE and SIS. Clearly the Gaussian sampling part has a fixed Gaussian
parameter and the center is always zero. The suggested Gaussian parameters
were ranging from 6 738 to 754 310 with corresponding signature sizes between
15 and 165 kilobits.

D u c a s, D u r m u s, L e p o i n t and L y u b a s h e v s k y [12] improved on this
scheme and gave a security reduction to non-standard (generalized) versions
of the usual lattice problems. They used an NTRU-like, ring based variant and
further implementation tricks and optimizations when instantiating the scheme
resulting in a signature algorithm called “BLISS” (Bimodal Lattice Signature
Scheme). BLISS still requires sampling from discrete Gaussians with the center
of zero and the suggested Gaussian parameters are ranging from 269 to 680 with
corresponding signature sizes between 5 and 6.5 kilobits.

B a i and G a l b r a i t h [5] gave a scheme with proof of security and with sig-
nature sizes between 9 and 15 kilobits. This scheme requires Gaussian sampling
only in the key generation phase (in the case of constrained devices this task
can be delegated to another device). The center is always zero, the Gaussian
parameter is fixed and ranges from 146 to 562.

3.4. Summary

As mentioned earlier, the size of the Gaussian parameter and the number
of parameter combinations can affect the performance of Gaussian samplers
heavily. In this section we overviewed the particular schemes and now we sum-
marize the collected information in Table 1.

Table 1. Characteristics of Gaussian sampling in particular schemes.

Scheme Source Gaussian parameter Center Usage

LWE - plain [38] 50,000-100,000 c+ i
2 key generation

LWE - dual [25] 8-13 0 encryption

GPV [15], [36] 21 c+ i
q signature

GPV+ [30] 17 c+ i
2 signature

Lyubashevsky [27] 7,000-700,000 0 signature

BLISS [12] 270-680 0 signature

Bai-Galbraith [5] 15-560 0 signature
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The only scheme that requires Gaussian sampling with variable Gaussian pa-
rameters is the original [15] GPV signature algorithm. In the table we considered
this algorithm with the application of P e i k e r t’ s [36] Gaussian sampling and
thus all the schemes in Table 1 are requiring Gaussian sampling from distribu-
tions with fixed Gaussian parameter.

In the case of the two older schemes huge Gaussian parameters are needed.
These huge parameters are not necessarily to be taken into consideration when
aiming for practical implementations though: the original LWE requires Gauss-
ian sampling only at the key generation phase and Lyubashevsky’s scheme has
highly unfavorable signature sizes compared to its successors.

In the center column there is the form of the center of the distributions pre-
scribed by the particular schemes. Most schemes only sample discrete Gaussians
with the center of zero, and in some cases both zero and one half (in the case
of GPV+ [30] primitive lattices with power of two modulus were assumed).
This means that in these cases only one or two distributions are to sample
and consequently only one or two tables are required (if the Gaussian sampler
uses any).

The value q is determined by the q-ary lattice used, and can be relatively large.
In this case sampling from distributions with q different centers is required, which
can mean a huge additional storage requirement if the Gaussian sampler uses
any tables.

4. Gaussian samplers

In the schemes discussed in Section 3 sampling from discrete Gaussians over
lattices plays a crucial role. These schemes are using algorithms for the task to
include sampling from discrete Gaussians over the integers as a subroutine. In
this section we survey the methods proposed for performing this task.

4.1. Rejection sampling

The most natural method to sample from discrete Gaussians is the rejection
sampling and also it was the first method proposed to apply in lattice based
cryptography [15].

In the pseudocode description of the algorithms we will use floating point
numbers with explicitly determined precision. To describe the floating point
numbers we will adopt the notation of [11].

���������� 4� Let FPm denote the floating point numbers with a mantissa
of m and precision ε = 2−m+1. A floating point number f ∈ FPm is a triplet
f = (s, e, v), where s ∈ {0, 1}, e ∈ Z and v ∈ N2m−1, which represents the real
number f = (−1)s · 2e−m · v ∈ R.
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Algorithm 1 Basic Rejection Sampling

procedure SampleZm(t ∈ FPm, s ∈ FPm, c ∈ FPm)
h← −π/s2 ∈ FPm

do
x← [c− ts, c+ ts] ∩ Z uniformly at random
r ← [0, 1) ⊂ FPm uniformly at random

p← eh·(x−c)
2 ∈ FPm

while r < p
return x

Algorithm 1 is the basic rejection sampling algorithm, formulated as in [11].

D u c a s and N g u y e n noticed [11] that in most cases the most significant
bits are enough to decide about the rejection and constructed a “lazy” variant
of the algorithm (see Algorithm 2). Their algorithm uses floating point num-
bers of two different precision. They report significant speedup with practical
parameters and using the IEEE standard double precision as the lower precision.

Algorithm 2 Lazy Rejection Sampling

procedure LazySampleZm,m′(s′, c′, t, δp ∈ FPm′ , c, s ∈ FPm)
h← −π/s2 ∈ FPm

h′ ← −π/s′2 ∈ FPm′

highprec ← false
do

x← [c′ − ts′, c′ + ts′] ∩ Z uniformly at random
r ← [0, 1) ⊂ FPm′ uniformly at random
if not highprec then

p′ ← eh
′·(x−c′)2 ∈ FPm′

if |r′ − p′| ≤ δp then
highprec ← true

else
if r′ < p′ then

return x
else

r ← an extension of r′ from FPm uniformly at random

p← eh·(x−c)
2 ∈ FPm

highprec ← false
if r < p then

return x
while true
return x
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This variant works the same way and uses low precision floating point arithmetic
(that is arithmetic in FPm′) until the difference is over certain threshold (the pa-
rameter δp), in which case it switches to higher precision until the decision.

The rejection sampling does not use precomputed tables and thus its memory
consumption is not effected by the number of the possible parameters. But this
comes at a price: it has to evaluate the Gaussian function every time it decides
about rejection and since rejected rounds do not produce output, the Gaussian
function potentially has to be evaluated multiple times before outputting a sam-
ple. The algorithm needs an average of poly(logn) trials until acceptance [36],
which makes the procedure even more expensive computationally.

4.2. Inversion method

In the inversion method, we generate a uniform random variate U in the in-
terval [0, 1] and determine the output according to the following inequality:

F (X − 1) =
∑
i<X

pi < U ≤
∑
i≤X

= F (X), (3)

where pi denotes Pr[X = i]. P e i k e r t [36] proposed to use this method to sam-
ple discrete Gaussians. His exact method was to precompute and store the val-
ues of F (X) in a table and solve the inequality (3) through performing a binary
search in the table.

This method is fast and does not require high precision floating point arith-
metic, but it also requires the presence of precomputed tables. These tables
can be relatively large, depending on the Gaussian parameter and the tailcut,
and we also need multiple instances of them: one for each different parameter
combination.

4.3. Discrete Ziggurat

B u c hm a n et al. [7] adapted the Ziggurat method (a method used for sam-
pling from continuous Gaussians [29]) to the discrete case. The Ziggurat method
uses the symmetry of the distribution and generates a sample from the positive
half and generates the sign separately. As a precomputation, the probability
density function (PDF) is encapsulated in multiple rectangles with the same
area. First the algorithm selects a rectangle uniformly at random, and then an x
coordinate inside the rectangle also uniformly at random. If the coordinate is
in the part of the rectangle completely within the area of the PDF (green area
on Figure 1), then it is accepted as a sample. Otherwise a y coordinate is gener-
ated uniformly at random and x is accepted as a sample only if (x, y) is in the
area of the PDF.

Let (xi, yi) be the lower right corner of each rectangle Ri, and let x̄ denote
the n bit fixed-point representation of x. The algorithm first selects an inte-
ger i and then an x integer coordinate inside Ri, both uniformly at random.
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Figure 1. A partition of Ziggurat [7, Figure 1].

Then it has to sample from ȳ ∈ [ȳi, ȳi−1] uniformly and accept if ȳ ≤ ρs(x).
To perform this task, the algorithm samples uniformly from ȳ ∈ [

0, 2ω(ȳi−1−ȳi)
]

and accepts if ȳ ≤ 2ω
(
ρs(x)− ȳi

)
.

The authors also performed a careful analysis of their algorithm and gave
an upper bound on the statistical distance of the output from the theoretical
discrete Gaussian.

�����
 1 (Statistical distance of Ziggurat [7])� The statistical distance of the
discrete Gaussian distribution Ds and the distribution D̄s output of Algorithm 3
is bounded by

Δ(Ds, D̄s) ≤ τe(1−τ
2)/2 +

|B+
0 |

ρs(B+) + 1
2

(2−ω+1 + 2−n),

where B+
0 denotes the support of D̄+

s (the non-negative half of the distribution),

B+ = B+
0 \ {0} and τ = t/

√
2π.

Using Theorem 1 one can derive a tailcut similar to the general case (see the
discussion after Lemma 1), and that if ω and n are roughly the same, then
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n ≥ λ + log2 st (notice that |B+
0 | = st/2�) is required to achieve statistical

distance less than 2−λ.
This method precomputes and stores the rectangles resulting from the parti-

tioning. The number of the partitions can be arbitrary and a finer partitioning
(more rectangles, larger memory requirement) can promise increase in perfor-
mance. On the other hand, it still uses a large number of high precision floating
point operations because of the rejection sampling performed in some regions.
Furthermore in its current form it can only sample from a discrete Gaussian
with a center of zero, but it seems to be extensible to the general case.

4.4. Knuth-Yao algorithm

The previous methods are based on the assumption that a perfect uniform
[0, 1] random variate generator is available. Another model was developed by
K n u t h and Y a o [24] which is based on the presence of a perfect random
bit generator and measures the cost of an algorithm in terms of the number
of bits required to generate a random variate (this is called random bit model).
Their method is capable to generate finite discrete distributions and the notion
of DDG-tree plays a central role in it.

Algorithm 3 Discrete Ziggurat algorithm [43]

procedure SampleDZ(m,σ,x1�, x2�, . . . , xm�, ȳ0, ȳ1, . . . , ȳm, ω)
while true do

i← {1, . . . ,m} uniformly at random
s← {−1, 1} uniformly at random
x← {0, . . . , xi�} uniformly at random
if 0 < x ≤ xi−1� then

return sx
else

if x = 0 then
b← {0, 1} uniformly at random
if b = 0 then

return sx
else

continue
else

y′ ← {0, . . . , 2ω − 1} uniformly at random
ȳ ← y′ · (ȳi−1 − ȳi)
if ȳ ≤ 2ω · (ρs(x)− ȳi) then

return sx
else

continue
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���������� 5 (DDG-tree [9])� Let X be a random variate to generate with
probability vector p1, p2, . . ., then the (potentially infinite) binary tree that con-
tains two types of nodes

1. Internal nodes, having two children and the left and right outgoing edges
labeled with 0 and 1 respectively,

2. Terminal nodes without children labeled with an integer,

is called DDG-tree (Discrete Distribution Generating tree) of X if

∑
k≥0

ti(k)

2k
= pi for all i, (4)

where ti(k) denotes the number of terminal nodes labeled with i on the kth level.

Figure 2. A Knuth-Yao DDG tree [14, Figure 2].

The algorithm traverses this tree randomly, starting at the root and choosing
an edge at each level uniformly at random, according to the random bit genera-
tor, until it hits a terminal node, in which case the algorithm outputs the label
of the node.

Another way to formulate (4) is, that there is a leaf labeled i on the level k
if and only if the kth binary digit of pi is one.

Although D e v r o y e [9] refers to this method as DDG-tree algorithm, we will
adapt to [14] and use the name Knuth-Yao algorithm.

The main advantage of this algorithm is, that it is almost perfect in an in-
formation theoretic sense: the expected number of the uniformly generated input
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Algorithm 4 Knuth-Yao algorithm [40]

procedure SampleKY(P ∈ Z
λ×2st
2 )

d← 0
Hit← 0
col← 0
while Hit = 0 do

r ← Z2 uniformly at random
d← 2d+ 1− r
for row ← st down to 0 do

d← d− P [row][col]
if d = −1 then

S ← row
Hit← 1
break

col← col + 1

return S

bits is at most two more than the entropy of the distribution (see [24, The-
orem 2.1 and Corollary to Theorem 3.1]), that is ≈ 2.72 + log2 s (where the
entropy is approximated by the entropy of the corresponding continuous Gauss-
ian). The expected number of the random bits used is the primary performance
characteristic of samplers analyzed in the random bit model. There are two ma-
jor drawbacks of this measurement though: firstly any comparison requires that
both samplers are analyzed in the random bit model and secondly its impact
on the practical performance is highly dependent on the source of randomness
used.

The binary expansions of the probabilities are potentially infinite, resulting
in an infinite DDG-tree. To make the method finite, one has to truncate the
binary expansions of the probabilities. Clearly at least λ bits of the binary ex-
pansions are needed in order to achieve a statistical distance less than 2−λ.

The tree can be represented as a table [14] and the columns of this table
can easily be constructed with the knowledge of the binary expansions of the
probabilities [40]. Algorithm 4 takes this latter approach and as such, it’s input
is a bitmatrix constructed from the binary expansions of the probabilities.

Clearly this method also requires a precomputed table, namely the binary
expansions of the probabilities up to at least λ bits. D w a r a k a n a t h and
G a l b r a i t h [14] suggest to perform the algorithm in multiple stages, divid-
ing the distribution into blocks of roughly the same probability, select a block
with the Knuth-Yao algorithm, and then perform another Knuth-Yao for the
distribution inside the block. They suggest to further improve the performance

15
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by storing only the probabilities corresponding to the middle of the distribution
and compute the tails on the fly. This can reduce the size of the table significantly
but requires a relatively large number of floating point operations.

In [40] the authors introduce multiple implementation tricks to improve on the
efficiency. They use the specific structure of the tree to optimize the performance
with the help of the relative distance of the internal nodes (see Algorithm 4).
The authors also noticed that in the binary representations there are many
leading zeroes and they reduce the size of the precomputed tables by omitting
the leading zeroes.

4.5. Binary method

D u c a s et al. [12] beyond their new signature scheme also proposed a new
method to sample from discrete Gaussians. The approach is a combination of the
inversion method and the rejection sampling. They introduced two major im-
provements to the original methods:

1. They use the combination of Bernoulli variables to avoid the computation
of transcendental functions during rejection sampling.

2. The inversion method is used in combination with rejection sampling
to sample from Ds2 (the so-called binary discrete Gaussian distribution).
This distribution has cumulative probabilities with a very special binary
representations so that they can computed on the fly (without evaluating
transcendental functions) and no precomputed table is needed.

To sample from Bexp(−x/f) (i.e., the Bernoulli distribution with bias e−x/f )
for arbitrary integer x and real f one only needs to combine variables with
distribution Bexp(2i/f) according to the binary representation of x. This fact is
utilized at the final rejection sampling stage in the algorithm (Algorithm 5) and
it means a table of log2(ts) values each of which is λ bit long.

The binary discrete Gaussian distribution is Ds2 with s2 =
√
π/ ln 2 and thus

with probabilities

ρs2 = e−πx
2/s22 = 2−x

2

for x ∈ Z.

Consequently the binary expansions of the scaled cumulative probabilities are
of the following form:

ρs2({0, . . . , j}) =
j∑

i=0

2−i
2

= 1.1001 0 . . .0︸ ︷︷ ︸
4

1 0 . . .0︸ ︷︷ ︸
6

1 . . . 0 . . .0︸ ︷︷ ︸
2(j−2)

1 0 . . .0︸ ︷︷ ︸
2(j−1)

1 .

Thus one can sample from Ds2 by generating a u ∈ [0, 2) bit by bit uniformly
at random, rejecting if it is above ρs2(Z

+) and outputting i if

ρs2({0, . . . , i− 1}) ≤ x < ρs2({0, . . . , i})
(see [12, Algorithm 10]).
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Algorithm 5 Binary Method [12, Algorithm 11]

procedure SampleBi(k ∈ Z
+)

do
x← Z

+ random according to D+
s2

y ← {0, . . . , k − 1} uniformly at random
z ← kx+ y
b← {0, 1} random according to Bexp(−πy(y+2kx)/(ks2)2)

while b = 0
return z

The binary method first generates a random variate already close to D+
ks2

for some k ∈ Z
+ and corrects it with rejection sampling. Algorithm 5 samples

only from the positive half of the distribution, to sample from the full one has
reject the zero values with a probability of 1/2 and sample a sign uniformly
(see [12, Algorithm 12]).

The algorithm was also analyzed in the random bit model: the expected num-
ber of random bits consumed is ≈ 1.35 + 2 log2 s ([12, Remark 6.7]). Although
that is about two times the cost of the Knuth-Yao algorithm, the impact of this
measure on the practical performance is not clear and varies depending on the
random source used.

The single disadvantage of the binary method is, that it can only sample from
a Ds with s being an integer multiple of s2.

4.6. D Algorithm

This Algorithm 6 is essentially a rejection scheme which uses von Neumann’s
algorithm to sample from the exponential distribution [21, N Algorithm]. It has
the remarkable property that it uses neither floating point arithmetic, nor pre-
computed tables.

The algorithm was also analyzed in the random bit model: the expected num-
ber of random bits consumed is ≈ −1.85 + 1.39 log2 s ([21]). Although that is
between the cost of the Knuth-Yao algorithm and the binary method, the impact
of this measure on the practical performance is not clear and varies depending
on the random source used.

4.7. Performance

B u c hm a n n et al. [7] also performed practical experiments regarding the
performance of the four basic Gaussian sampling algorithms for different choices
of the parameter s (see Figure 3). Their implementation uses S h o u p’ s NTL
library [41] with precision of 106 bit (the Ziggurat algorithm needs 106 bit preci-
sion to achieve statistical distance less than 2100, see [7, Section 3.2]). They used a
tailcut of t = 5 and parameters s ∈ {25, 80, 2506, 4 · 105}. The parameter s = 25
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Algorithm 6 Algorithm D [21]

1: procedure SampleD(μ, σ)
2: Select integer k ≥ 0 with probability exp (−1

2k)(1− 1/
√
e)

3: Accept k with probability exp (−1
2k)(k − 1); otherwise go to step 1

4: With equal probabilities set s← ±1.
5: Set i0 ← �σk + sμ�.
6: Select an integer j from [0, �σ�) uniformly.
7: Set x← ((i0 − (σk + sμ)) + j)/σ.
8: if x ≥ 1 then
9: go to step 1

10: if k = 0, x = 0 and s < 0 then
11: go to step 1

12: Accept x with probability exp (−1
2x(2k + x)); otherwise go to step 1

13: Set i← s(i0 + j).
14: return i

was based on the requirement of the worst-to-average-case reduction of [39],
the s = 4 · 105 was chosen according to [14] and the other two arbitrarily in be-
tween. Although these parameters do not match the ones summarized in Table 1
exactly, these tests still give valuable information about the performance of the
particular sampling methods.

As it is seen on the graphs, the rejection sampling algorithm was implemented
with precomputed tables. The Ziggurat algorithm’s observable drop in perfor-
mance for bigger table sizes is due to the fact that the table sizes in this cases
outgrow the processors fastest cache. Although the graph’s show that the Knuth-
-Yao method requires more memory than the inversion method, using the ta-
ble representation of [14] this can be reduced to match the inversion method’s
requirement.

The running time of algorithm D depends weakly on s on the parameter range
in question and requires between 0.4μs and 0.5μs to generate a sample (that is,
it generates 2 · 106 samples per second). Although it is slower than the other
methods, keep in mind that it requires neither floating point arithmetic, nor
precomputed tables.

5. Conclusion

The parameters of the distribution have a great impact on the performance
of discrete Gaussian samplers, that is why we reviewed the recent lattice based
schemes utilizing discrete Gaussian sampling, and assessed the parameters of the
distributions required. The conclusion is that the most recent and efficient sche-
mes are using Gaussian parameters approximately in the range of s ∈ [10, 700]
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Figure 3. Results for inverse CDF, rejection sampling, Knuth-Yao, and
discrete Ziggurat with and without optimization for parameters s =
25, 80, 2506, 4 · 105, respectively. [7, Figure 3].

and with the exception of the original GPV [15] scheme they only need sampling
with one or two different centers and all of them require distribution(s) with fixed
Gaussian parameter.

To evaluate their practical applicability, we surveyed the known discrete
Gaussian sampling algorithms. All of the methods in question have a fixed
memory requirement, except the discrete Ziggurat algorithm, which offers great
flexibility and a way to reduce the memory consumption at the expense of per-
formance.

Although the Knuth-Yao algorithm is the fastest, it also has the biggest mem-
ory consumption among the tested methods (see Figure 3). Still, on a general
platform a tree of one megabyte is affordable, and also this can be significantly
reduced with the table representation of [14].

In the case of small parameters and constrained devices with sufficient mem-
ory (an extra 1–2 kbyte), the Knuth-Yao algorithm is still a good choice. If the
Gaussian parameter is on the upper end of the interval and/or the memory
is extremely constrained, then the best option is the Ziggurat or algorithm D,
depending on the floating point capabilities of the device.
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[1] MIKLÓS, A.: Generating hard instances of lattice problems, Electronic Colloquium on
Computational Complexity (ECCC) 3 (1996), 29 p.

[2] AKAVIA, A.—GOLDWASSER, S.—VAIKUNTANATHAN, V: Simultaneous hardcore

bits and cryptography against memory attacks, in: Theory of Cryptography, 6th The-
ory of Cryptography Conf.—TCC ’09, San Francisco, CA, USA, 2009 (O. Reingold, ed.),
Lecture Notes in Comput. Sci., Vol. 5444, Springer, Berlin, 2009, pp. 474–495.

[3] ALWEN, J.—PEIKERT, CH.: Generating shorter bases for hard random lattices, in: 26th
Internat. Symp. on Theoretical Aspects of Comput. Sci.—STACS ’09, Freiburg, Germany,
2009 (S. Albers et al., eds.), Leibniz Internat. Proc. in Informatics (LIPICS), Vol. 3, Schloss
Dagstuhl – Leibniz Zentrum für Informatik, Wadern, 2009, pp. 75–86 (electronic only).

[4] BABAI, L.: On Lovász’ lattice reduction and the nearest lattice point problem, Combina-

torica 6 (1986), 1–13.

[5] BAI, SH.—GALBRAITH, S. D.: An improved compression technique for signatures based
on learning with errors, in: Topics in Cryptology—CT-RSA ’14, The Cryptographer’s
Track at the RSA Conf. 2014, San Francisco, CA, USA, 2014 (J. Benaloh, ed.), Lecture
Notes in Comput. Sci., Vol. 8366, Springer, Berlin, 2014, pp. 28–47.

[6] BELLARE, M.—ROGAWAY, P.: Random oracles are practical: A paradigm for designing
efficient protocols, in: Proc. of the 1st ACM Conf. on Computer and Communications

Security—CCS ’93, ACM, New York, NY, USA, 1993, pp. 62–73.

[7] BUCHMANN, J.—CABARCAS, D.—GÖPFERT, F.—HÜLSING, A.—WEIDEN, P.:
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