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ANOTHER TWIST

IN THE DINING CRYPTOGRAPHERS’ PROTOCOL

Mihály Bárász — Péter Ligeti — Krisztina Lója –
– László Mérai — Dániel A. Nagy

ABSTRACT. In this paper, we explore the Dining Cryptographers’ protocol
over a cyclic group with a one-way homomorphic image, using a boardroom vot-
ing protocol as an illustration of its desirable security properties. In particular,
we address the problem of anonymous disruption, which is one of the main dis-
advantages of DC over more usual groups like binary vectors.

1. Introduction

Anonymous broadcast is an immensely useful primitive for a variety of securi-
ty-sensitive applications such as voting or auctions. For groups of limited size,
D. C h a um proposed the so-called Dining Cryptographers’ Protocol [3] (de-
noted, henceforth, by DC) which allows one participant to broadcast a message
anonymously. In this protocol, every participant broadcasts (non-anonymously)
a message; the anonymous broadcast is calculated as a sum of all them. A nat-
ural extension of this protocol is letting participants allocate random, unique
and secret slots in a sequence of messages and have each broadcast a message
anonymously in their own slot.

Because of the strong anonymity properties of DC, one of the most problem-
atic attacks against it is anonymous jamming, which lets attackers prevent others
from receiving the broadcasts, while still receiving them themselves. While legit-
imate broadcasters can detect that their message has been jammed, employing
reactive security measures is difficult, because proving it would typically involve
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revealing sensitive information, undermining the anonymity of the broadcaster.

Another issue of DC is the unfair advantage that later broadcasters enjoy
by knowing the information from previous broadcasts and making their broad-
cast dependent on them. This can be addressed by requiring that every partici-
pant broadcast their message for all slots in one turn. This, however, still leaves
an unfair advantage with the last participant that learns all other broadcasts
before deciding on his own.

The proposed scheme employs reactive defensive measures against both kinds
of attack, by making it possible to catch cheaters without forcing honest partic-
ipants to reveal sensitive information.

The main idea is doing three rounds of DC (over three different algebraic
structures): a slot reservation round, a commitment round and an actual broad-
cast round. During reservation, participants agree on unique slots, learning only
the position of their own slot. During commitment, each participant commits to
the message, they are going to broadcast in the last round, without revealing
the message itself. Any protocol violation in these two rounds can be investi-
gated by having honest participants reveal the necessary information to prove
their honesty; learning the intended broadcast message would be still computa-
tionally infeasible. Thus, protocol violators (those that cannot prove that they
adhered to the protocol) can be punished. If we allow for colluding violators,
at least one of them can be identified and punished. Also, these two rounds
can be repeated, if unsuccessful.

By the third and final broadcast round, all participants have already com-
mitted to what they are going to broadcast in such a way that it is guaranteed
that if they do so, the protocol will be successfully executed, without jamming
any participant’s broadcast. Also, at the time of commitment, none of the par-
ticipants knows the actual message of other participants and thus cannot make
their message dependent on those. Hence, no unfair advantage.

In the third round, each message can be immediately verified by any partici-
pant and/or a third party whether or not it conforms to the commitment. If it
does not, the cheating participant is immediately identified.

This way, we constructed a cryptographic primitive that is most similar to col-
lecting sealed notes in a ballot box.

1.1. Related work

In the original paper [3] C h a um describes in detail a protocol for anony-
mously broadcasting a single bit and generalizes it to sequences of bits. The basic
protocol is described as follows in the introduction section of [3]: “Each partic-
ipant has a secret key bit in common with, say, every other participant. Each
participant outputs the sum, modulo two, of all the key bits he shares, and if he
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wishes to transmit, he inverts his output. If no participant transmits, the modulo
two sum of the outputs must be zero, since every key bit enters exactly twice;
if one participant transmits, the sum must be one.”

One of the biggest deficiencies of the original DC protocol originates exactly
from its perfect anonymity. Namely, it can be disrupted by a malicious partici-
pant in a way that he learns the message(s) but no other participant does. And
he can do this remaining perfectly anonymous. More precisely, it is very hard if
at all possible, to determine the identity of the disruptive party while preserving
the anonymity of the honest parties.

In his original paper [3], C h a um recognizes the problem and discusses it
in detail in Section 2.5. He suggests using “traps” combined with slot reservation
techniques to avoid this weakness at the cost of multiple broadcast rounds.
W a i d n e r and P f i t z m a n n [11] point out some weaknesses of these ideas
and develop improved protocols.

A different approach to the problem is the use of zero-knowledge proofs in-
stead of traps. V o n A h n et al. [1] construct a protocol with constant broadcast
rounds by dividing the participants into groups and use secret sharing. The main
drawback of this method is the high communicational and computational cost,
especially in the presence of malicious participants.

G o l l e and J u e l s [7] propose two improved DC-variants with only two
broadcast rounds. These protocols use bilinear maps and proofs of correctness
as well.

2. The proposed protocol

Originally, C h a um proposed his DC protocol with bit strings and XOR ope-
ration, that is in our notion in group G=Z

K
2 . While he mentions that it could also

be used in other communicative groups, he did not see any advantage in doing so.

Our idea, is to ameliorate exactly this deficiency. As it turns out, using other
groups can help. In detail, by performing the DC protocol first in a one-way ho-
momorphic image we can make every participant commit to some non-disruptive
message (and deal with disruptions without loosing anonymity). After that,
if an attacker still chooses to perform this attack with the plain messages, he is
instantly identified.

The actual protocol begins with a slot reservation round, which is repeated un-
til it is successful. Slot reservation is a standard Chaumian DC over binary vec-
tors of appropriately chosen length K, where the message of each participant
consists ofK−1 zeroes and one set bit. The reservation round is successful, if and
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only if the number of ones in the summary vector equals the number of partici-
pants and all participants recognize their own one in the vector. The (zero-based)
index of the reserved slot is the number of ones to the left of that of the partic-
ipant in question.

Next comes the commitment round; DC performed in a cyclic group where
the index (a.k.a. discrete log) problem is difficult. The actual message to which
participants commit is the index, but it is unfeasible to calculate from the com-
mitment messages (which are their homomorphic images). In this round, any
participant can protest the result if his slot appears to be jammed and ask
all participants to reveal all the keys (in the homomorphic image space and,
if needed, from the successful slot reservation round). In case of actual proto-
col violation, at least one violator will get caught, while if there is no protocol
violation, the one who raised the false alarm can be punished.

If the commitment round goes without irregularities, another round of DC is
performed, in this case in the index space of the aforementioned cyclic group.
Every message, as well as their sums, must be the indices of the corresponding
values from the previous round. The summary message after this round will
have the contribution of exactly one participant in each slot, which, in turn,
are assigned in random order, analogously to the opening of a physical ballot box.

3. An application: a boardroom voting protocol
based on DC-net

Here we present a voting system as one possible application of the above
protocol and suggest an implementation.

Electronic voting systems which are designed for a limited number of partic-
ipants are usually called boardroom voting systems in the literature.

The complexity of such systems could be measured by the number of re-
quired modular multiplications and exponentiations a participant must per-
form. The first published boardroom voting system considered by us is due
to K i a y i a s and Y u n g [10], which uses O(n2) modular exponentiations, when
n is the number of participants. Later D am g å r d and J u r i k [5] proposed a bit
similar scheme based on the Decisional Composite Residuosity assumption using
quadratic number of exponentiations as well.

The protocol of G r o t h [9] requires a slightly smaller number of steps, the
protocol uses O(n) modular exponentiations in the registration phase and also
in the verification of the ballots. Similarly to the protocol of K i a y i a s and
Y u n g [10], the security of the system is based on the Decisional Diffie-Hellman
assumption.

88



ANOTHER TWIST IN THE DINING CRYPTOGRAPHERS’ PROTOCOL

As the above-mentioned boardroom voting systems, our scheme also works in
the random oracle model and assume an authenticated broadcast channel. In ad-
dition, the security of our protocol based on the Computational Diffie-Hellman
assumption. The protocol uses a linear number of exponentiations only even
in the presence of malicious participants.

3.1. Protocols used

Dining Cryptographers’ protocol

For a given abelian group G and private data ti ∈ G belonging to the ith
participant, the sum of these t1+ · · ·+ tn can be computed by using the protocol
without revealing any additional information about the individual data.

Let the ith participant’s secret key be ai and the public key be gai

(i = 1, . . . , n), f : {0, 1}∗ → G be a collision free one-way function and �
a counter which increases in each round.

1. The participants compute their pairwise shared secret keys with the Diffie-
-Helmann protocol. The common secret key of pair (i, j) is gaiaj.

2. One of the participants broadcast the value of the counter �.

3. By using the shared keys the participants compute the common round keys
ri,j∈F wherewith they encrypt their secret. The ith participant’s keys are

ri,j = sgn(i− j)f(gaiaj‖�), i �= j.

4. Every participant i computes the encryption of ti

Si =
∑

j: i �=j

ri,j + ti .

5. Every participant publishes Si. Since the sum of the round keys is zero,
the sum of the secrets ti is the sum of the published values

n∑
i=1

Si =

n∑
i=1

⎛
⎝∑

i �=j

ri,j + ti

⎞
⎠=

n∑
i=1

ti .

Next, we will denote this protocol by DC[t1 + · · ·+ tn].

Chaum-Pedersen protocol

By using this generalized proof of knowledge protocol it is possible to provide
proof of knowledge of x for given g, h and u, v such that the following equations
hold:

gx = u, hx = v

without revealing any additional information about x.
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It can be proven in the following way:

1. The prover chooses a random value w and computes s = gw and t = hw.

2. The prover computes the following commitment c = H(g‖h‖u‖v‖s‖t)
where H is a collision free hash function, and the value r = w + cx.

3. The certification is the (s, t, r, c) 4-tuple.

4. The certification is right if the following equations hold

gr = suc, hr = tvc.

This protocol will be denoted by CP [x : gx = u; hx = v].

3.2. Security definitions

The security requirements we want the voting scheme to satisfy arise mostly
from the boardroom voting literature (see [9], [10]), our system fulfill however
some requirements of large-scale elections as well (for further voting system
requirements see G e r c k [8]). The desired requirements are the following:

1. Perfect ballot secrecy: this requirement ensures that any nontrivial
knowledge about the partial tally of the ballots of any set of voters is
only computable by the coalition of all the remaining voters.

2. Self-tallying: all participants and third parties are able to compute the
result after the voting procedure.

3. Universal verifiability: every voter and outsider can be convinced that
all votes have been counted properly in the final tally.

4. Fairness: nobody can modify the final tally even with some knowledge
about a partial tally. (Note that this is a slight relaxation of the ordinary
Fairness requirement claiming that nobody has knowledge about a partial
tally before the end of the voting.)

5. Every voter can vote exactly once: undervotes are forbidden as well as
overvotes. Because of the short period of time between registration and the
voting round, we can assume that if a participant takes part in the first,
s/he intends to take part in the second. It is, however, possible to allow for
null-votes for those, who do register but do not intend to submit a vote.

6. Opportunity to keep the transcript: this is optional. Recording all the
communication results in a transcript that would convince a third party
that the voting was regular.

7. Technology independent: participants only need to trust the protocol
itself and its implementation in their own device.

8. Open source, open code: the security of the system must not rely on the
secrecy of the algorithm or the source code of the used programs. Only
designated secrets (keys) and, of course, the votes must be kept secret.
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3.3. The Voting protocol

The proposed protocol consists of four stages. The first one is Registration,
when participants agree on shared secrets. The next one is Slot reservation, when
the participant reserves his own slot using for broadcast communications during
the next stages. The third is Voting, when participants broadcast their ballots
in two steps, first, they broadcast a homomorphic function thereof to prevent
cheating, then they broadcast the ballot itself. The last is Investigation, which
is applied only in case of irregularities, when cheaters can be detected and dis-
qualified by the honest voters.

Henceforth, we use the following notation: let n denote the number of par-
ticipants, let p be a large enough prime and q a prime such that q|p − 1 holds.
Let

Zq
∼= G ≤ Z

∗
p

such that the Computational Diffie-Hellman assumption holds in G and g be
a generator of G. Let us mention that in our case G need not satisfy all the
usual conditions of Schnorr-groups. Note that q and p could be much smaller
than usual (q about 80 bits and p about 600–800 bits, as we do not need long
time secrecy, see Section 4).

Let Di(x) denote the digital signature of the ith participant over message x.
Let

f : {0, 1}∗ → Z
n
q

be an arbitrary one-way function and H be an arbitrary hash-function which is
used for digital signatures.

Registration:

1. Every participant chooses a secret key and a corresponding public key
(the ith participant’s keys are ai, g

ai resp.).

2. The participants compute their pairwise shared keys: let i, j pair’s common
key be gaiaj.

Slot reservation:

1. Every participant chooses a binary vector which has only one non-zero
coordinate, the ith participant’s vector is ei ∈ {0, 1}K, where K is about
n2/2, see Remark 1.

2. The participants broadcast the vectors: DC[e1 + e2 + · · · + en].
(So we perform the DC protocol in Z

K
2 here.)

3. There are three cases:
– If the number of 1’s in vector e1 + e2 + · · · + en is less than n, then
there were collisions (some of the participants choose the same vector).
In this case, the participants return to the step 1.
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– If the number of 1’s in vector e1 + e2 + · · · + en is n and every par-
ticipant can find “his own 1” in the result, then the Slot reservation
was successful. Suppose that the dith 1 derive from the ith participant.
Then let the ith participant’s slot be the dith.

– If the number of 1’s in vector e1 + e2 + · · · + en is more than n or any
of the participants could not find a 1 in his position, then someone has
violated the protocol. In this case we can apply the Investigation stage.

Remark 1� It is practical, to choose K, such that it minimizes the expected
value of communicated bits. The optimal K is about n2/2. Furthermore, if every
participant chooses a random slot, then the expected number of broadcast rounds
needed for a collision-free slot reservation is 3. For more details, see Appendix.

Voting:

1. Suppose the ith participant’s vote is ki ∈ {0, 1}k (here we assume that
votes are encoded in k bits). His/her message is mi such that

mi = ki‖ri,
where ri is a random string with fix length such that mi is less than q.

2. The participants compute round keys. One of the participants broadcasts
the value of the counter �. The ith participant’s keys are

si,j = sgn(i− j)f(gaiaj‖�) ∈ Z
n
q , i �= j (1)

represented by the following n-tuple

si,j =
(
si,j(1), si,j(2), . . . , si,j(n)

)

(here si,j(l) ∈ Zq).

3. The participants compute commitments. The ith participant’s commit-
ment is

Fi =
(
Fi(1), Fi(2), . . . , Fi(n)

)
,

here

Fi(di) = g
∑

i�=j si,j(di)+mi (2)

and

Fi(t) = g
∑

i�=j si,j(t) if t �= di. (3)

4. The participants publish commitments and check them. The ith partici-
pant checks whether the commitments satisfy the following equation:

n∏
j=1

Fj(di) = gmi .
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If one of the equation does not hold, then someone has violated the pro-
tocol. In this case we perform the Investigation stage.
Note, this step corresponds to a DC protocol in the Gn group.
In the case when a transcript is required, the participants sign the com-
mitments. The ith part of transcript is

Di

(H(F1‖F2‖ . . . ‖Fn)
)
.

5. When every participant accepted the commitments, they publish the ex-
ponents. The exponent vector Ei of the ith participant consists of n parts:

Ei(di) =
∑
i �=j

si,j(di) +mi (4)

and

Ei(t) =
∑
i �=j

si,j(t) if t �= di. (5)

Note, this step corresponds to a DC protocol in the Z
n
q group.

6. The participants verify the exponent. The ith participant is honest if the
following equations hold:

gEi(t) = Fi(t), t = 1, 2, . . . , n.

The sum of vectors Ei is the ballot of participants.

3.4. Investigation

In this section, we show how attackers can be identified.

Slot reservation: Someone violated the protocol, i.e., the vector of the attacker
consists of more than one non-zero coordinates.

1. Every participant publishes all of the round keys of slot reservation (the
keys of the ith participant are ri,j , j �= i) and check them, i.e., they verify
whether the following equations hold:

ri,j = −rj,i, i, j = 1, 2, . . . , n.

There are two cases:
– the equations hold, then the vectors ei can be computed and the
cheater can be identified.

– there is a pair (i, j), where ri,j �= −rj,i, then either the ith or the jth
is adversary.

2. Now, the participants i, j can prove their honesty in the following way. Let
their shared round keys be ri, rj (ri �= −rj), the value of the shared key
gaiaj is ui, uj (as reported by i and j, respectively).
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They publish the value of the shared key and its verification:
– ith participant publishes

ui and CP
[
a′i : g

a′
i = gai(gaj )a

′
i = ui

]
;

– jth participant publishes

uj and CP
[
a′j : g

a′
j = gaj, (gai)a

′
j = uj

]
.

It can be verified that

ri = f(ui‖�) or rj = f(uj‖�).
The equation of the cheater does not hold.

Voting: Suppose that the ith participant does not accept the commitment in the
step 4, see Subsection 3.3, i.e.,

n∏
j=1

Fj(di) �= gmi .

In this case, the participants publish their shared round keys (the keys of
the jth participant are sj,l). If there is a pair of keys (for example j, l) such
that sj,l �= −sl,j, then the cheater can be identified using the previous method.
If the keys are correct (i.e., sj,l = −sl,j j, l = 1, 2, . . . , n), then it can be
deduced who used the dith slot. If this slot is used by only the ith participant,
then he is cheater, else there is a set of participants which includes only one
honest participant. Then they publish the shared round keys of the Slot reser-
vation stage. Using these keys, it can be found out who reserved slot di.

3.5. Security analysis

In the following we prove that the proposed protocol is secure under the ran-
dom oracle assumption [2] and the Computational Diffie-Hellman assumption [6].

3.5.1. Perfect Ballot Secrecy

Let us first note that if Perfect Ballot Secrecy does not hold then there
exists a subset C of the participants, a partition B1 ∪ B2 = C̄ of the remaining
participants and a polynomial algorithm A such that coalition C can compute
the partial tally of B1 and B2 by using the algorithm A. Let us denote this
event by PBS(n), where n is the number of the participants. Hence it is enough
to prove the following

������� 1� Suppose that every secret key ai is chosen independently from
a uniform distribution and there exists some ε such that P

(
PBS(n)

)
> ε. Then

there exists a polynomial p such that the probability that there are a, b such that
one can compute gab knowing ga and gb is greater than ε/p(n).

94



ANOTHER TWIST IN THE DINING CRYPTOGRAPHERS’ PROTOCOL

P r o o f. Let the public keys of two participants (say A and B) be ga and gb and
let the private keys xi (i > 2) for every other participant be chosen randomly.
Finally, compute the corresponding public keys gxi.

Let c denote the probability of the event that A and B are in different Bis.
Note that c = 1/p(n) for a suitable polynomial p. Thus, we can assume that A
and B are in different Bis. The probability of this is greater than εc.

Now all the private keys (except the private keys of A and B) are given to A
as input. By definition, A can compute the partial tally of B1∑

i∈B1

mi .

Hence C can compute mA using A since the ballots of all further participants
are known. From the secret keys xi (i > 2) and the public key ga, C can compute
all round keys sA,j of participant A except sA,B from (1). Then with the help
of mA, EA(dA) and these round keys, coalition C can compute the round key
sA,B = f(gab‖�) from (4) (knowing public keys ga, gb and counter �). As f is
modeled as a random oracle, C can do it only in the case when it can compute
the value of gab with probability greater than εc. �

3.5.2. Every voter can vote exactly once

Since the number of the slots equals the number of participants, if an attacker
can vote more than once then he can only do it on behalf of someone else.
However, if somebody’s vote does not appear in the commitment stage, then
by using Investigation, only a honest participant can prove that he is entitled
to use that slot.

3.5.3. Fairness

As in Perfect Ballot Secrecy the hardness of the discrete logarithm problem
ensures that participants have no knowledge about the partial tally in the Com-
mitment stage. However, after this stage participants cannot modify their bal-
lots. If all participants publish their exponents, then the vote can be completed.
Otherwise, participants who do not publish their exponents can be considered
malicious.

3.6. Complexity

In the following we summarize the main computational and communicational
characteristics of the proposed boardroom voting protocol. In Table 1 we consider
two cases: when none of the participants violate the protocol (optimistic case)
and when malicious participants are present (pessimistic case). Let us recall
that n is the number of participants and p is a sufficiently large prime, i.e.,
log p ≈ 800.
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Table 1. The complexity of the voting protocol.

Optimistic Pessimistic

Nr. of exponentiations 2n O(n)

Nr. of one-way functions 4n− 2 O(n)

Nr. of communicated bits 2n log p+O(n2) O(n log p) +O(n2)

4. Conclusions

We have successfully addressed a major drawback of conventional DC pro-
tocols, where broadcast anonymity results in jammer anonymity and, hence,
jammer impunity.

The boardroom voting protocol in our example is quite comparable to other
proposed boardroom voting schemes (e.g., [9], [10]) in terms of security properties
(self-tallying, trust limited to own device, third-party verifiable, perfect ballot
secrecy, fairness, etc.) and the resources utilized to achieve them. In particular,
we do not require a trusted third party.

Although the large number of exponentiations used in this protocol might
seem as prohibitively expensive, it is important to emphasize that most of them
are employed to prevent attackers from learning actual message contents from
committments. The time available for such an attack is very limited due to the
rapid succession of the committment round and the actual broadcast round,
when all indices are revealed anyway. The lack of the long-time secrecy require-
ment allows for much smaller and hence cheaper groups for homomorphic trans-
formation than the ones typically used in asymmetric cryptography. In fact, the
proposed protocol can be implemented in low-end mobile phones if G2 is chosen
to be the subgroup generated by 2 of a multiplicative group of a Galois field
of the moduli of some Sophie Germain prime of a few hundred bits.

The proposed scheme can be utilized for purposes other than voting. We chose
voting as our example, because the desirable security properties of voting are
better understood and researched than other possible applications of fair anony-
mous broadcast with exactly one message per participant.

Thus, our proposed twist on DC results in a cryptographic primitive that is
functionally equivalent to a (small) ballot box. In addition to voting, it can also
be applied to sealed bid auctions and other similar problems.
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Appendix

In slot reservation, our goal is to minimize the expected amount of necessary
communication until each participant is satisfied that they have an exclusive,
randomly selected slot for their ballot broadcast.

Let us assume, that we have n participants and K slots. There exist Kn

possibilities of putting the messages into the network. From these in n!
(
K
n

)
cases

there is no collision. So, the probability of no collision is:

P (n,K) =
n! · (Kn

)
Kn

.

Now we can compute for every n the optimal K which minimizes K
P (n,K) .

Table 2. The optimal parameters for collision-free slot reservation.

n Kopt 
n2/2� P (n,Kopt) lopt =
Kopt

P (n,Kopt)

2 2 2 0.5 4

3 5 5 0.48 10.4

4 8 8 0.410 19.50

5 13 13 0.416 31.25

6 19 18 0.415 45.75

7 25 25 0.397 62.98

8 33 32 0.398 82.91

9 42 41 0.398 105.56

10 51 50 0.389 130.93

20 203 200 0.380 534.14

30 455 450 0.376 1209.18

40 806 800 0.374 2156.05

50 1258 1250 0.372 3374.74

100 5018 5000 0.370 13545.65

500 125083 125000 0.368 339558.25

In Table 2 We can see that the optimal K is very close to n2/2. If we use

n2/2� slots, then the expected number of bits communicated is just a bit more
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than with the optimal K, if the number of the participants is less than 500
(and with 500 participants this scheme is already impractical). With this choice
the probability that more that one round is necessary in the slot reservation
phase is about 40%, which means that most of the time no more than three
rounds will be needed.
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