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UNSOLVED PROBLEMS

Oto Strauch

ABSTRACT. In this paper there are given problems from the Unsolved
Problems Section on the homepage of the journal Uniform Distribution Theory
http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf

It contains 38 items and 5 overviews collected by the author and by Editors
of UDT. They are focused at uniform distribution theory, more accurate, distri-
bution functions of sequences, logarithm of primes, Euler totient function, van

der Corput sequence, ratio sequences, set of integers of positive density, exponen-
tial sequences, moment problems, Benford’s law, Gauss-Kuzmin theorem, Duffin-

Schaeffer conjecture, extremes
∫ 1
0

∫ 1
0 F (x, y)dg(x, y) over copulas g(x, y), sum-

-of-digits sequence, etc. Some of them inspired new research activities. The aim
of this printed version is publicity.
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Introduction

Notations, definitions and basic properties should be consulted by the follow-
ing monographs:

Kuipers, L.—Niederreiter, H.: Uniform Distribution of Sequences pub-
lished by John Wiley in 1974 (reprint edition published by Dover Publications,
Inc. Mineola, New York in 2006) and hereafter referred to as [KN];

Rauzy, G.: Propriétés statistiques de suites arithmétiques published by Presses
Universitaires de France in 1976;

Hlawka, E.: Theorie der Gleichverteilung published in German by Bibliograph-
isches Institut in 1979 and English under the title The Theory of Uniform Dis-
tribution by A B Academic Publishers in 1984;

Niederreiter, H.:Random Number Generation and Quasi–Monte Carlo Meth-
ods published by SIAM in 1992 and referred to as [N];

Drmota, M.—Tichy, R. F.: Sequences, Discrepancies and Applications pub-
lished by Springer Verlag in 1997 and referred to as [DT];

Strauch, O.—Porubský, Š.: Distribution of Sequences: A Sampler, pub-
lished by Peter Lang in 2005 and referred to as [SP] (Elektronic revised version
published in http://www.boku.ac.at/MATH/udt/));

Tezuka, S.: Uniform Random Numbers. Theory and Practice, published by
Kluwer Academic Publishers in 1995;

Matoušek, J.: Geometric Discrepancy. An Illustrated Guide, Algorithms and
Combinatorics published by Springer-Verlag in 1999;

Niederreiter, H.: Quasi–Monte Carlo methods and pseudo–random numbers,
Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1040 MR 80d:65016;

Hlawka, E.: Statistik und Gleichverteilung (Statistics and uniform distribu-
tion) (German), Grazer Math. Ber. 335 (1998), ii+206 pp. MR 99g:11093;

Koksma, J. F.:Diophantische Approximationen (Diophantine Approximations)
(German), published by Springer-Verlag in 1936;

Dick, J.—Pillichshammer, F.: Digital Nets and Sequences (Discrepancy
Theory and Quasi-Monte Carlo Integration) published by Cambridge Univer-
sity Press in 2010.

Definitions and notations

• A function g : [0, 1] → [0, 1] will be called distribution function (abbreviated
as d.f.) if the following two conditions are satisfied:

(i) g(0) = 0, g(1) = 1,

(ii) g is non–decreasing.
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We shall identify any two distribution functions g, g̃ which coincide at common
continuity points, or equivalently, if g(x) = g̃(x) a.e.

• Given a sequence xn of real numbers, a positive integer N and a subset I
of the unit interval [0, 1), the counting function A(I;N ;xnmod1) is defined
as the number of terms of xn with 1 ≤ n ≤ N , and with xn taken modulo one,
belonging to I, i.e.,

A(I;N ;xnmod 1) = #
{
n ≤ N ; {xn} ∈ I

}
=

N∑
n=1

cI
({xn}),

where cI(t) is the characteristic function of I.

• For a sequence x1, . . . , xN mod 1 we define the step distribution function
FN (x) for x ∈ [0, 1) by

FN (x) =
A([0, x);N ;xnmod 1)

N
,

while FN (1) = 1.

• A d.f. g is called a distribution function of the sequence xnmod 1 if an in-
creasing sequence of positive integers N1, N2, . . . exists such that the equality

g(x) = lim
k→∞

A([0, x);Nk;xnmod 1)

Nk

(
= lim
k→∞

FNk
(x)
)

holds at every point x, 0 ≤ x ≤ 1, of the continuity of g(x) and thus a.e. on [0, 1].

• If there exists a limit limN→∞ FN (x) = g(x) a.e. on [0, 1], then g(x) is called
asymptotic distribution function (abbreviating a.d.f.) of xnmod1 and if
g(x) = x, then xnmod 1 is called uniformly distributed in [0, 1] (abbreviat-
ing u.d.).

• The set of all distribution functions of a sequence xnmod 1 will be denoted
by G(xnmod 1). We shall identify the notion of the distribution of a sequence
xnmod1 with the set G(xnmod 1), i.e., the distribution of xnmod 1 is known
if we know the set G(xnmod 1). The set G(xnmod 1) has the following funda-
mental properties for every sequence xnmod 1:

• G(xnmod 1) is non–empty, and it is either a singleton or has infinitely
many elements;

• G(xnmod 1) is closed and connected in the topology of the weak conver-
gence, and these properties are characteristic, i.e.,

• for given a non–empty set H of distribution functions, there exists a se-
quence xn in [0, 1) such that G(xn) = H if and only if H is closed and
connected.
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• Let x1, . . . , xN be a given sequence of real numbers from the unit interval [0, 1).
Then the number

DN = DN (x1, . . . , xN ) = sup
0≤α<β≤1

∣∣∣∣A([α, β);N ;xn)

N
− (β − α)

∣∣∣∣
is called the (extremal) discrepancy of this sequence. The number

D∗
N = sup

x∈[0,1]

∣∣∣∣A([0, x);N ;xn)

N
− x

∣∣∣∣
is called star discrepancy, and the number

D
(2)
N =

1∫
0

(
A([0, x);N ;xn)

N
− x

)2
dx

is called its L2 discrepancy.

• For multidimensional case see [2.2, p. 196].

• The Riemann-Stiltjes integral
∫ 1
0

∫ 1
0
f(x, y)dxdyg(x, y) is defined as the limit

m∑
k=1

n∑
l=1

f(αk, βl)
(
g(xk, yl) + g(xk+1, yl+1)− g(xk, yl+1)− g(xk+1, yl)

)
→

1∫
0

1∫
0

f(x, y)dxdyg(x, y)

if diameters of [xk, xk+1]× [yl, yl+1] tend to zero for partition 0 = x0 < x1 < · · ·
· · · < xm = 1 of x-axis, 0 = y0 < y1 < · · · < yn = 1 of y-axis and for (αk, βl) ∈
[xk, xk+1]× [yl, yl+1]. This integral exists for continuous f(x, y) and g(x, y) with
bounded variation. Let � denote the rectangle [xk, xk+1]× [yl, yl+1] and denote

�g(x, y) = g(xk, yl) + g(xk+1, yl+1)− g(xk, yl+1)− g(xk+1, yl).

If diameter � → 0, then we find the differential dxdyg(x, y) as

dxdyg(x, y) = g(x, y) + g(x+ dx, y + dy)− g(x, y + dy)− g(x+ dx, y).

In some cases we shorten dxdyg(x, y) = dg(x, y).

1. Problems

1.1. Extended van der Corput difference theorem

Prove or disprove: If the sequence

k(xn+h − xn)− h(xn+k − xn)mod1, n = 1, 2, . . . ,
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is u.d. for every k, h = 1, 2, . . . , k > h, then the original sequence

xnmod1, n = 1, 2, . . . ,

is also
u.d.

Notes. This problem was posed by M. H. H u x l e y at the Conference on An-
alytic and Elementary Number Theory, Vienna, July 18–20, 1996.

Submitted by O. Strauch.

1.2. Inverse modulo prime

Let p > 2 be a prime number. For an integer 0 < n < p, define n∗ by the
congruence nn∗ ≡ 1 (mod p), 0 < n∗ < p. Is it true that the sequence of blocks(

n∗

p
,
(n+ 1)∗

p

)
, n = 1, 2, . . . , p− 2,

is u.d. as p→ ∞?

Notes. T s z H o C h a n (2004) proved that

1

p

p−2∑
n=1

∣∣∣∣n∗p − (n+ 1)∗

p

∣∣∣∣ = 1

3
+O
(
(log p)3√

p

)
for every prime p > 2. Moreover, the sequence(

n

p
,
n∗

p

)
, n = 1, 2, . . . , p− 1,

is u.d. as p→ ∞,

see [SP, p. 3–25, 3.7.2].

Solution� The s-dimensional sequence(
n∗

p
,
(n+ 1)∗

p
, . . . ,

(n+ s− 1)∗

p

)
, n = 1, 2, . . . , p,

is u.d. as p→ ∞,

and the discrepancy bound is

D∗
p = O

(
(log p)s√

p

)
, (1)

for all s ≥ 2, and this estimate is essentially best possible up to the logarithmic
factor.
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Notes. A. W i n t e r h o f sent to us that (1) was proved by H. N i e d e r r e i t e r
(1994). A generalization is given in H. N i e d e r r e i t e r and A. W i n t e r h o f
(2000).

Proposed by O. Strauch.

REFERENCES

TSZ HO CHAN:Distribution of difference between inverses of consecutive integers mod-

ulo p, Integers 4 (2004), 11 pp.

NIEDERREITER, H.: Pseudorandom vector generation by the inverse method, ACM

Trans. Model. Comput. Simul. 4 (1994), 191–212.

NIEDERREITER, H.—WINTERHOF, A.: Incomplete exponential sums over finite

fields and their applications to new inverse pseudorandom number generators, Acta

Arith. XCIII (2000), 387–399.

1.3. Logarithm of primes

See [SP, p. 2–175, 2.19.8]. Let pn be the nth prime. Find the set of all distribution
functions G(xn) of the sequence

xn = log pnmod 1, n = 1, 2, . . .

Notes. (I) A. W i n t n e r (1935) has shown that log pnmod 1 is not u.d. A proof
can be found in D. P. P a r e n t [1984, pp. 282–283, Solut. 5.19].
(II) S. A k i y a m a (1996, 1998) proved: Let ci, i = 0, 1, 2, . . . , k − 1, be real

numbers with
∑k−1
i=0 ci 	= 0. Then the sequence xn =

∑k−1
i=0 ci log pn+imod 1,

n = 1, 2, . . . is not almost u.d., i.e., x /∈ G(xn).
(III) R. E. W h i t n e y (1972) proved that log pnmod 1 is u.d. with respect
to the logarithmic weighted means, i.e.,

lim
N→∞

(
N∑
n=1

1

n

)−1 N∑
n=1

c[0,x)({log pn})
n

= x

for all x ∈ [0, 1].
(IV) D. I. A. C o h e n and T.M. K a t z (1984) have shown the u.d. of
log pnmod 1 with respect to the zeta distribution, i.e.,

lim
α→1+

1

ζ(α)

∞∑
n=1

c[0,x)({log pn})
nα

= x

for all x ∈ [0, 1].

Solution� Y. O h k u b o (2011) proved the following results (i)–(ix):

(i) Two sequences log pnmod1 and log nmod1 have the same d.f.s, i.e.,

G(log pnmod1) = G(lognmod1).
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(ii) Every u.d. sequence xnmod 1 is statistically independent of log pnmod 1,
i.e., xnmod 1 and (xn + log pn)mod1 are u.d. simultaneously.

(iii) The result (ii) follows from that every u.d. sequence xnmod 1 is statistically
independent with log(n logn)mod1 and

lim
n→∞
(
log pn − log(n logn)

)
= 0.

(iv) The result (ii) implies that, for every irrational θ the sequence pnθ+log pn
is u.d. mod 1.

(v) Also, every u.d. sequence xnmod 1 is statistically independent
with pn

n mod1. It follows from the limit

lim
n→∞

(
pn
n

− log(n logn)

)
= −1.

(vi) The result (v) implies that pnθ +
pn
n is u.d. mod 1.

(vii) Theorem: Let the real-valued function f(x) be strictly increasing for x ≥ 1
and let f−1(x) be the inverse function of f(x). Suppose that

• limk→∞ f−1(k + 1)− f−1(k) = ∞,

• limk→∞
f−1(k+wk)
f−1(k) = ψ(u) for every sequence wk ∈ [0, 1] for which

limk→∞ wk = u, where this limit defines the function ψ(u) on [0, 1],

• ψ(1) > 1. Then

G(f(pn)mod1)

=

{
g̃u(x) =

min(ψ(x), ψ(u))− 1

ψ(u)
+

1

ψ(u)
· ψ(x)− 1

ψ(1)− 1
: u ∈ [0, 1]

}
.

(viii) The result (vii) implies that log pn and the sequences log(pn log
(i) pn),

i = 1, 2, . . . have the same distribution as the sequence logn.

(ix) S. A k i y a m a (1998) proved

lim
n→∞

(
�−1∑
i=0

ci log pn+i −
(
�−1∑
i=0

ci

)
log pn

)
= 0.

Then

G

(
�−1∑
i=0

ci log pn+imod 1

)
= G

((
�−1∑
i=0

ci

)
log pnmod 1

)
.
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and by (vii) we have

G (c log pnmod 1)

=

{
ex/c − 1

e1/c − 1
e−u/c + (emin(x/c,u/c) − 1)e−u/c : u ∈ [0, 1]

}
,

where c =
∑�−1
i=0 ci.

Submitted by O. Strauch.

REFERENCES

AKIYAMA, S.: A remark on almost uniform distribution modulo 1, RIMS Kŏkyŭroku
958 (1996), 49–55.

AKIYAMA, S.: Almost uniform distribution modulo 1 and the distribution of primes,
Acta Math. Hungar. 78 (1998), 39–44.

COHEN, D. I. A.—KATZ, T. M.: Prime numbers and the first digit phenomenon,
J. Number Theory 18 (1984), 261–268.

PARENT, D. P.: Exercises in Number Theory, in: Problem Books in Math., Springer-
-Verlag, New York, 1984; French original: Exercices de théorie des nombres, Gauthier-
-Villars, Paris, 1978.

OHKUBO, Y.: On sequences involving primes, Unif. Distrib. Theory 6 (2011), 221–238.

WHITNEY, R. E.: Initial digits for the sequence of primes, Amer. Math. Monthly 79
(1972), 150–152.

WINTNER, A.: On the cyclical distribution of the logarithms of the prime numbers,

Quart. J. Math. Oxford (1) 6 (1935), 65–68.

1.4. Fractional part of nα

See [SP, p. 2–86, 2.8.12]. Characterize the set G(xn) of all d.f.’s of the sequence

xn =

{
{nα}α if {nα} < 1− α,(
1− {nα})(1− α) if {nα} ≥ 1− α,

for 0 < α < 1.

Notes. A. F. T i m a n (1987) proved that the series
∑∞
n=1

xn

nr converges for
all α ∈ (0, 1) if and only if r > 1.

Solution� S. S t e i n e r b e r g e r: For irrational 0 < α < 1 we have xn =
f
({nα}), where

f(x) =

{
xα if x ∈ [0, 1− α],

(1− x)(1− α) if x ∈ [1− α, 1].
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Then a.d.f. g(x) of xn is

g(x) =
∣∣f−1
(
[0, x)
)∣∣ = {1 if x ∈ [α(1 − α), 1],

x
α(1−α) , others .

Proposed by O. Strauch.

REFERENCES

TIMAN, A. F.: Distribution of fractional parts and approximation of functions with

singularities by Bernstein polynomials, J. Approx. Theory 50 (1987), 167–174.

1.5. Strange recurring sequence

[SP, p. 2–243, 2.24.10]: Characterize the G(xn) of the so–called strange recurring
sequences of the form

(i) xn = xn−[xn−1] + xn−[xn−2],

(ii) xn = xn−[xn−1] + x[xn−1],

(iii) xn = x[xn−2] + xn−[xn−2]

with real initial values x1, x2.

Notes. If x1 = x2 = 1, the sequence (i) was defined by D. R. H o f s t a d t e r
(1979), (ii) was defined by J. H. C o n w a y (1988) during one of his lectures and
C. L. M a l l o w s (1991) established the regular structure of (ii) and introduced
the monotone sequence (iii).

Proposed by O. Strauch.

REFERENCES

HOFSTADTER, D. R.: Gödel, Escher, Bach: an External Golden Braid, in: Basic
Books, Inc., Publishers, New York, 1979.

MALLOWS, C. L.: Conway’s challenge sequence, Amer. Math. Monthly 98 (1991),

5–20.

1.6. Function π(n)

[SP, p. 2–193]: Riemann hypothesis implies that the sequence

n

π(n)
mod 1, n = 1, 2, . . . ,

is not u.d. Find all its d.f.’s.
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Notes. Under the Riemann hypothesis

π(x) = li(x) +O (√x log x)
which implies limn→∞

(
n/π(n)

)− (n/li(n)) = 0 the sequences

n/π(n) (mod 1) and n/li(n) (mod 1)

have the same d.f.s if we prove the continuity of all d.f.’s of n/li(n)mod1 at 0
and 1, cf. [SP, p. 2–24, 2.3.3]. Niederreiter’s theorem: If xn, n = 1, 2, . . . , is
a monotone sequence that is u.d.mod 1, then

lim
n→∞

|xn|
log n

= ∞.

implies that the sequence n/π(n)mod1 is not u.d. (probably without the Rie-
mann hypothesis).

Solution� F. L u c a: without the Riemann hypothesis sequences n/π(n) and
logn have the same d.f.’s mod1.

This follows from∣∣∣∣ n

π(n)
− n

li(n)

∣∣∣∣ = O
(
(logn)2 exp(−c

√
logn)
)
= o(1);∣∣∣∣ nli(n) − n

f(n)

∣∣∣∣ = O ((logn)−1
)
= o(1), where f(n) =

n

logn
+

n

(logn)2
;

n

f(n)
= log(n)− 1 + o(1);

immediately.

Proposed by O. Strauch.

REFERENCES

NIEDERREITER, H.: Distribution mod 1 of monotone sequences, Nederl. Akad. We-

tensch. Indag. Math. 46 (1984), 315–327.

1.7. Glasner sets

A strictly increasing sequence of positive integers kn, n = 1, 2, . . . is called a
Glasner set if for every infinite set A ⊂ [0, 1) and every ε > 0 there exists kn
such that the dilation knAmod1 = {knxmod1 : x ∈ A} is ε–dense in [0, 1],
i.e., knAmod1 intersects every subinterval of [0, 1] of the length ε. The following
sequences kn, n = 1, 2, . . . , are Glasner sets:

(i) kn = n,

(ii) kn = P (n), where P (x) is a non-constant polynomial with integer coeffi-
cients,
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(iii) kn = P (pn), where pn is the increasing sequence of all primes and polyno-
mial P (x) is as in (ii).

A strictly increasing sequence of positive integers kn, n = 1, 2, . . . , has quanti-
tative Glasner property if for every given ε > 0 there exists an integer s(ε)
such that for any finite set A ⊂ [0, 1) of cardinality at least s(ε) there exists kn
such that the dilation knAmod 1 is ε-dense in [0, 1). The following sequences kn,
n = 1, 2, . . . , have this property:

(iv) kn = n as in (i) with s(ε) = [ε−2−γ ], where γ > 0 is arbitrary and ε ≤ ε0(γ),

(v) kn = P (n), where P (x) is a non-constant polynomial with integer coeffi-
cients,

(vi) kn = P (pn) as in (iii) with s(ε) = [ε−2d−δ ], where d = degP (x), δ > 0
arbitrary and ε < ε0

(
P (x), δ

)
,

(vii) kn, n = 1, 2, . . . , is: (∗) uniformly distributed for each positive integer m
(i.e., for each i = 0, 1, . . . ,m− 1 the relative density of km ≡ i (mod m) is
1/m), and (∗∗) for each irrational α, the sequence knαmod 1 is uniformly

distributed in [0, 1]. Here s(ε) =
[
ε−2−3(log log(1/ε))−1]

+1, for every ε < ε0,
where ε0 depends on the sequence kn, n = 1, 2, . . .

(viii) kn =
[
f(n)
]
, where f(x) denotes a non-polynomial entire function that is

real on the real numbers and such that |f(z)| = O
(
e(log |z|)α) with α < 4/3

and s(ε) is as in (vii).

(ix) kn =
[
f(pn)
]
, where f is as in (viii) and s(ε) is as in (vii).

(x) kn = [nα] for any α ≥ 1 not an integer ≥ 2 and s(ε) is as in (vii).

Open problem: For x=(x1, . . . , xn) ∈ [0, 1]N and positive integers k1< k2< · · ·
· · ·< kK define the N -dimensional sequence k1x, k2x, . . . , kKx and let D

(2)
K (knx)

be its L2 discrepancy. Generalizing O. S t r a u c h (1989), H. A l b r e c h e r
(2002) (cf. [SP, pp. 3–14]) proved, for the mean value of the L2 discrepancy

D
(2)
N (knx), that ∫

[0,1]s

D
(2)
N (knx)dx =

K∑
m,n=1

(
1

3
+

1

12

(km, kn)
2

kmkn

)N

+

(
1

2N
−
(

5

12

)N)
− 1

3N
,

where (km, kn) is a g.c.d. of km and kn. Find some connection between Glasner
sets and mean values of such L2 discrepancy.

Proposed by O. Strauch.
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1.8. Digitally shifted Hammersley sequences

Let x = 0.x1x2 . . . xm and y = 0.y1y2 . . . ym be two real numbers written in
dyadic expansion. Define x⊕ y = z = 0.z1z2 . . . zm, where zi = xi + yi (mod 2),
i = 1, 2, . . . ,m. Let γ2(n) be the van der Corput radical inverse function defined
by γ2(n) = 0.a0a1 . . . am−1, where n = am−1am−2 . . . a0 is a positive integer

(again in dyadic expansion). Then for the L2 discrepancy D
(2)
N of the sequence( n

N
, γ2(n)⊕ x

)
, n = 0, 1, . . . , N − 1, with N = 2m

we have

m2

64
− 19m

192
− lm

16
+
l2

16
+

5

16
+

m

8.2m
− l

4.2m
+

5

16.2m
− 1

72.4m
≤ N2D

(2)
N ,

N2D
(2)
N ≤ m2

64
− 19m

192
− lm

16
+
l2

16
+
l

4
+

7

16
+

m

8.2m
− l

4.2m
+

3

16.2m
− 1

72.4m
,

where l denotes the number of zeros in the dyadic expansion of x. If m is even
and l = m/2, then

D
(2)
N = O

(
logN

N2

)
which is the best possible. A similar situation holds in the case of odd m and
l = (m− 1)/2.

Problem� Find an exact formula for N2D
(2)
N .
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Notes. (I) See P. K r i t z e r and F. P i l l i c h s h a mm e r [2005, Th. 2 and 3]
for L2 discrepancy bounds.
(II) For the L2 discrepancy of the 2-dimensional Hammersley sequence (also
called Roth sequence)( n

N
, γ2(n)

)
, n = 0, 1, . . . , N − 1, N = 2m

the following exact formula

N2D
(2)
N =

m2

64
+

29m

192
+

3

8
− m

16.2m
+

1

4.2m
− 1

72.22m
.

was proved by I. V. V i l e n k i n (1967) and independently by J. H. H a l t o n
and S. K. Z a r e m b a (1969).

Solution� According to P. K r i t z e r and F. P i l l i c h s h a mm e r (2006)

N2D
(2)
N =

m2

64
− 19m

192
− lm

16
+
l2

16
+
l

4
+

3

8
+

m

16.2m
− l

8.2m
+

1

4.2m
− 1

72.4m
.

Proposed by O. Strauch.
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1.9. Block sequence

Let xn, n = 1, 2, . . . be an increasing sequence of positive integers, d(xn) be

the lower asymptotic density, d(xn) be the upper asymptotic density of xn,
n = 1, 2, . . . , and Xn =

(
x1

xn
, x2

xn
, . . . , xn

xn

)
. Let G(Xn) be the set of all d.f.’s

of the block sequence Xn, n = 1, 2, . . . , i.e., the set of all possible weakly limits
F (Xnk

, x) → g(x) as k → ∞, where

F (Xnk
, x) =

#{i ≤ nk;xi/xnk
< x}

nk
.

G(Xn) has the following properties:

(i) If g(x) ∈ G(Xn) increases and is continuous at x = β and g(β) > 0, then
there exists 1 ≤ α <∞ such that αg(xβ) ∈ G(Xn). If every d.f. of G(Xn)
is continuous at 1, then α = 1/g(β).
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(ii) Assume that all d.f.’s in G(Xn) are continuous at 0 and c1(x) /∈ G(Xn).
Then for every g̃(x) ∈ G(Xn) and every 1 ≤ α < ∞ there exists g(x) ∈
G(Xn) and 0 < β ≤ 1 such that g̃(x) = αg(xβ) a.e.

(iii) Assume that all d.f.s in G(Xn) are continuous at 1. Then all d.f.’s in G(Xn)
are continuous on (0, 1], i.e., only possible discontinuity is in 0.

(iv) If d(xn) > 0, then for every g(x) ∈ G(Xn) we have
(
d(xn)/d(xn)

)
. x ≤

g(x) ≤ (d(xn)/d(xn)). x for every x ∈ [0, 1]. Thus d(xn) = d(xn) > 0
implies u.d. of the block sequence Xn, n = 1, 2, . . .

(v) If d(xn) > 0, then every g(x) ∈ G(Xn) is continuous on [0, 1].

(vi) If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≥ x for every
x ∈ [0, 1].

(vii) If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≤ x for every
x ∈ [0, 1].

(viii) Assume that G(Xn) is singleton, i.e., G(Xn) =
{
g(x)
}
. Then either g(x) =

c0(x) for x ∈ [0, 1]; or g(x) = xλ for some 0 < λ ≤ 1 and x ∈ [0, 1].
Moreover, if d(xn) > 0, then g(x) = x.

(ix) maxg∈G(Xn)

∫ 1
0
g(x) dx ≥ 1

2 .

(x) Assume that every d.f. g(x) ∈ G(Xn) has a constant value on the fixed in-
terval (u, v) ⊂ [0, 1] (maybe different). If d(xn) > 0, then all d.f.’s in G(Xn)
has infinitely many intervals with constant values.

(xi) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) =

{
hα(x);α ∈ [0, 1]

}
, where hα(x) = α, x ∈ (0, 1) is the

constant d.f.

(xii) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that

c1(x) ∈ G(Xn) but c0(x) /∈ G(Xn),

where c0(x) and c1(x) are one-jump d.f.’s with the jump of height 1 at
x = 0 and x = 1, respectively.

(xiii) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) is non-connected.

(xiv) G(Xn)={xλ} if and only if limn→∞(xk.n/xn)=k
1/λ for every k=1, 2, . . .

Here as in (viii) we have 0 < λ ≤ 1.

(xv) If d(xn) > 0, then all d.f.s g(x) ∈ G(Xn) are continuous, nonsingular and
bounded by h1(x) ≤ g(x) ≤ h2(x), where

h1(x) =

⎧⎨⎩x
d

d
if x ∈

[
0, 1−d1−d

]
,

d
1
x−(1−d) otherwise,

h2(x) = min

(
x
d

d
, 1

)
.
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Furthermore h1(x) and h2(x) are optimal and h1(x) 	∈ G(Xn).

Notes. The properties (i)–(x) can be found in O. S t r a u c h and J. T. T ó t h
(2001, 2002); (xi), (xiii) in G. G r e k o s and O. S t r a u c h (2007); (xii) was
found by L. M i š ı́ k (2004, personal communication); (xiv) is in F. F i l i p and
J. T. T ó t h (2006); (xv) is in V. B a l á ž , L. M i š ı́ k , J. T. T ó t h and
O. S t r a u c h (2009). For concrete examples, cf. [SP, p. 2–217, 2.22.6; p. 2–
219, 2.22.7; p. 2–222, 2.22.8; p. 2–225, 2.22.9, 2.22.10; p. 2–226, 2.22.11].

Methods:

Z-transform. For positive integers x0 < x1 < x2 < · · · we can assign the complex
function f(z) =

∑∞
n=0

xn

zn . The following holds:

(i) xn −→ f(z) =
∑∞
n=0

xn

zn ;

(ii) x0 + x1 + · · ·+ xn−1 −→ f(z)
z−1 ;

(iii) xn+1 − xn −→ (z − 1)f(z)− zx0;

(iv) xn

n −→ ∫∞
z

f(ξ)
ξ dξ;

(v) nxn −→ −z d
dzf(z);

(vi) (n− 1)xn−1 −→ − d
dzf(z);

(vii) If xn −→ f(z) and yn −→ g(z), then for convolution xn ∗ yn = zn,
where zn = x0yn + x1yn−1 + · · · + xny0 we have xn ∗ yn −→ f(z).g(z);
If f(z) is known, then there exists inverse transform

(viii) xn = 1
2πi

∮
C
f(z)zn−1 dz =

∑k
i=1 resz=zif(z)z

n−1;

(ix) x0+x1+···+xn−1

(n−1)xn−1
=

∑k
i=1 resz=zi

f(z)
z−1 z

n−1

∑k
i=1 resz=zi

(
− d

dz f(z)
)
zn−1

=
∫ 1
0
x dF (Xn, x).

Problem� Using Z-transform (vii) and (ix) for a study of G(Zn), where
zn = xn ∗ yn.
Algorithm [V. B a l á ž, L. M i š ı́ k, O. S t r a u c h and J. T. T ó t h (2008)]:
Let xn, n = 1, 2, . . . be an increasing sequence of positive integers. Put x0 = 0
and tn = xn − xn−1, n = 1, 2, . . . For every n = 1, 2, . . . , from tn we compute

the finite sequence t
(n)
1 , t

(n)
2 , . . . , t

(n)
n by the following procedure:

10. For n = 1, t
(1)
1 = t1 = x1;

20. For n = 2, t
(2)
1 = t1 + t2 − 1 = x2 − 1 and t

(2)
2 = 1;

30. Assume that for n − 1 we have t
(n−1)
i , i = 1, 2, . . . , n − 1, for n we put

t′i = t
(n−1)
i , i = 1, 2, . . . , n− 1, and t′n = tn.

The following steps (a) and (b) produce new t′1, . . . , t
′
n.
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(a) If there exists k, 1 ≤ k < n, such that t′1 = t′2 = · · · = t′k−1 > t′k and
t′n > 1, then we put t′k := t′k+1, t′n := t′n−1 and t′i := t′i in all other cases.

(b) If such k does not exist and t′n > 1, then we put t′1 := t′1 + 1, t′n := t′n − 1
and t′i := t′i in all other cases.

In the nth step we will repeat (a) and (b) and the algorithm ends, if t′n = 1 and

which gives the resulting t
(n)
1 := t′1, . . . , t

(n)
n := t′n.

Assuming that tn 	= 1 for infinitely many n, these t
(n)
i , i = 1, 2, . . . , n can have

two possible forms:

(A) t
(n)
1 = . . . = t(n)m = Dn > t

(n)
m+1 ≥ t

(n)
m+2 = t

(n)
m+3 = . . . t(n)n = 1,

(B) t
(n)
1 = . . . = t(n)m = Dn > t

(n)
m+1 = · · · = t

(n)
m+s = Dn − 1 ≥ t

(n)
m+s+1 = . . .

. . . = t(n)n = 1,

where m = m(n), s = s(n), D1 ≤ D2 ≤ · · · and Dn ≥ 2 starting from n with
tn > 1. Thus there are two possibilities:

(I) Dn is bounded;

(II) Dn → ∞.

In the case (I) we have only the form (A) and Dn = const. = c ≥ 2 for all
sufficiently large n.

In the case (II) both cases (A) and (B) are possible. Further properties:

• xn =
∑n
i=1 t

(n)
i for n = 1, 2, . . .

• Denoting x
(n)
j =
∑j
i=1 t

(n)
i , then we have xj ≤ x

(n)
j for j = 1, 2, . . . , n.

• Putting X
(n)
n =

(
x
(n)
1

x
(n)
n

,
x
(n)
2

x
(n)
n

, . . . ,
x(n)
n

x
(n)
n

)
then F (X

(n)
n , x) ≤ F (Xn, x) for all

x ∈ [0, 1] and n = 1, 2, . . .

• Selecting a sequence of indices nk such that

F (Xnk
, x) → g(x) and F (X(nk)

nk
, x) → g̃(x),

then we have g̃(x) ≤ g(x) for all x ∈ [0, 1].

Open problem is to execute Algorithm on a some number-theoretic sequence.

Examples� (I) O. S t r a u c h and J. T. T ó t h (2001): Put xn = pn, the nth
prime and denote

Xn =

(
2

pn
,
3

pn
, . . . ,

pn−1

pn
,
pn
pn

)
.

The sequence of blocks Xn is u.d. and therefore the ratio sequence pm/pn, m =
1, 2, . . . , n, n = 1, 2, . . . is u.d. in [0, 1]. This generalizes a result of A. S c h i n z e l

125



OTO STRAUCH

(cf. W. S i e r p i ń s k i [1964, p. 155]). Note that from u.d. of Xn applying the
L2 discrepancy of Xn we get the following interesting limit

lim
n→∞

1

n2pn

n∑
i,j=1

|pi − pj | = 1

3
.

(II) O. S t r a u c h and J. T. T ó t h (2001): Let γ, δ, and a be given real
numbers satisfying 1 ≤ γ < δ ≤ a. Let xn be an increasing sequence of all
integer points lying in the intervals

(γ, δ), (γa, δa), . . . ,
(
γak, δak

)
, . . .

Then G(Xn) =
{
gt(x); t ∈ [0, 1]

}
, where gt(x) has constant values

gt(x) =
1

ai(1 + t(a− 1))
for x ∈ (δ, aγ)

ai+1(tδ + (1− t)γ)
, i = 0, 1, 2, . . .

and on the component intervals it has a constant derivative

4ex g′t(x) =
tδ + (1− t)γ

(δ − γ)( 1
a−1 + t)

for x ∈ (γ, δ)

ai+1(tδ + (1− t)γ)
, i = 0, 1, 2, . . .

and x ∈
(

γ

tδ + (1− t)γ
, 1

)
.

Here we write (xz, yz) = (x, y)z and (x/z, y/z) = (x, y)/z. From it follows that
the set G(Xn) has the following properties:

(i) Every g ∈ G(Xn) is continuous.

(ii) Every g ∈ G(Xn) has infinitely many intervals with constant values, i.e.,
with g′(x) = 0, and in the infinitely many complement intervals it has
a constant derivative g′(x)=c, where 1

d
≤ c≤ 1

d
and for lower d and upper d

asymptotic density of xn we have d = (δ−γ)
γ(a−1) , d = (δ−γ)a

δ(a−1) .

(iii) The graph of every g ∈ G(Xn) lies in the intervals
[
1
a
, 1
]×[ 1

a
, 1
]∪[ 1

a2
, 1
a

]×[
1
a2 ,

1
a

] ∪ . . . Moreover, the graph g in
[

1
ak
, 1
ak−1

]× [ 1
ak
, 1
ak−1

]
is similar

to the graph of g in
[

1
ak+1 ,

1
ak

] × [ 1
ak+1 ,

1
ak

]
with coefficient 1

a . Using the

parametric expression, it can be written for all x ∈ ( 1
ai+1 ,

1
ai

)
that gt(x) =

gt(a
ix)

ai
, i = 0, 1, 2, . . .

(iv) G(Xn) is connected and the upper distribution function g(x) = g0(x) ∈
G(Xn) and the lower distribution function g(x) /∈ G(Xn). The graph

of g(x) on
[
1
a , 1
]×[ 1a , 1] coincides with the graph of y(x) =

(
1+ 1

d

(
1
x−1
))−1

on
[
γ
δ , 1
]
, further, on

[
1
a ,

γ
δ

]
we have g(x) = 1

a .

(v) G(Xn) =
{g0(xβ)
g0(β)

; β ∈ [ 1a , δaγ ]}.
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(III) O. S t r a u c h and G. G r e k o s (2007): Let xn and yn, n = 1, 2, . . . , be
two strictly increasing sequences of positive integers such that for the related
block sequences Xn =

(
x1

xn
, . . . , xn

xn

)
and Yn =

(
y1
yn
, . . . , ynyn

)
, we have singleton

G(Xn) = {g1(x)} and G(Yn) = {g2(x)}. Furthermore, let nk, k = 1, 2, . . . , be

an increasing sequence of positive integers such that Nk =
∑k
i=1 ni satisfies

nk

Nk
→ 1. Denote by zn the following increasing sequence of positive integers

composed by blocks (here we use the notation a(b, c, d, . . . ) = (ab, ac, ad, . . . ))

(x1, . . . , xn1
), xn1

(y1, . . . , yn2
), xn1

yn2
(x1, . . . , xn3

), xn1
yn2

xn3
(y1, . . . , yn4

), . . .

Then the sequence of blocks Zn =
(
z1
zn
, . . . , znzn

)
has the set of d.f.s

G(Zn) =
{
g1(x), g2(x), c0(x)

}
∪ {g1(xyn); n = 1, 2, . . .

}
∪ {g2(xxn); n = 1, 2, . . .

}
∪
{

1

1 + α
c0(x) +

α

1 + α
g1(x); α ∈ [0,∞)

}
∪
{

1

1 + α
c0(x) +

α

1 + α
g2(x); α ∈ [0,∞)

}
,

where g1(xyn) = 1 if xyn ≥ 1, similarly for g2(xxn).

Open problems:

1. Characterize a nonempty set H of d.f.s for which there exists an increasing
sequence of positive integers xn such that G(Xn) = H.

2. Probably xn

xn+1
→ 1 implies that G(Xn) is singleton.

Solution of 2. By F. F i l i p, L. M i š ı́ k and J. T. T ó t h (2007) the solution
is negative. They found counterexample:

Let ak, nk, k = 1, 2, . . . , and xn, n = 1, 2, . . . be three increasing integer
sequences and h1 < h2 be two positive integers. Assume that

(i) nk

nk+1
→ 0 for k → ∞;

(ii) ak
nk+1

→ 0 for k → ∞;

(iii) for odd k we have

ah2

k ≤ xnk
= (ak−1 + nk − nk−1)

h1 ≤ (ak + 1)h2

and
xi = (ak + i− nk)

h2 for nk < i ≤ nk+1;

(iv) for even k we have

ah1

k ≤ xnk
= (ak−1 + nk − nk−1)

h2 ≤ (ak + 1)h1

and
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xi = (ak + i− nk)
h1 for nk < i ≤ nk+1.

Then xn

xn+1
→ 1 and the set G(Xn) of all distribution functions of the sequence

of blocks Xn is G(Xn) = G1 ∪G2 ∪G3 ∪G4, where

G1 =
{
x

1
h2 .t; t ∈ [0, 1]

}
,

G2 =
{
x

1
h2 (1− t) + t; t ∈ [0, 1]

}
,

G3 =
{
max(0, x

1
h1 − (1− x

1
h1 )u);u ∈ [0,∞)

}
and

G4 =
{
min(1, x

1
h1 .v); v ∈ [1,∞)

}
.

F. F i l i p, L. M i š ı́ k and J. T. T ó t h (2007) also proved: If G(Xn) =
{
g(x)
}

such that g(x) < 1 for x ∈ [0, 1), then xn

xn+1
→ 1. This implies that for u.d.

sequence Xn we have xn

xn+1
→ 1.

3. Characterize increasing sequences xn, n = 1, 2, . . . , of positive integers for
which G(Xn) is connected.

Notes. Some criterion of connectivity of G(Xn) is given in G. G r e k o s and
O. S t r a u c h [2007, Th. 2] which is based on the relation g̃(x) ≺ g(x) defined
on G(Xn) if there exist α, β such that g̃(x) = αg(xβ).

4. Prove or disprove: G(Xn) ⊂ {cα(x);α ∈ [0, 1]
}
=⇒ G(Xn) =

{
c0(x)
}
, for

every increasing sequence xn, n = 1, 2, . . . of positive integers.

Notes. G. G r e k o s and O. S t r a u c h (2007) proved that if G(Xn) ⊂ {cα(x);
α ∈ [0, 1]}, then c0(x) ∈ G(Xn) and if G(Xn) contains two different d.f.s, then
also c1(x) ∈ G(Xn). Furthermore, d(xn) = 0 and d(xn) > 0 implies c1(x) ∈
G(Xn).

5. Prove or disprove: limn→∞ xn

x1+···+xn
= 0 ⇐⇒ c0(x) /∈ G(Xn). If it is true,

then c0(x) /∈ G(Xn) gives necessary and sufficient conditions that the sequence
Yn, n = 1, 2, . . . of blocks

Yn =

(
1

xn
,
2

xn
, . . . ,

xn
xn

)
is u.d. For a theory of blocks sequences Yn, see Š. P o r u b s k ý, T. Š a l á t and
O. S t r a u c h (1988).

6. There is open the theory of d.f. G(Xn, Yn) for two-dimensional blocks

(Xn, Yn) =

((
x1
xn
,
y1
yn

)
,

(
x2
xn
,
y2
yn

)
, . . . ,

(
xn
xn
,
yn
yn

))
,

where xn, n = 1, 2, . . . , and yn, n = 1, 2, . . . are increasing sequences of positive
integers. It can be proved that the sequence

(
pi
pn
, in
)
, i = 1, 2, . . . , n is not u.d.

in [0, 1]2. Here pn, n = 1, 2, . . . , is the increasing sequence of all primes.
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7. L. M i š ı́ k: For every increasing sequence xn, n = 1, 2, . . . , of positive integers
there exists g(x) ∈ G(Xn) such that g(x) ≥ x for all x ∈ [0, 1]. For d(xn) > 0 it
holds by (vi).

Solution of 7. V. B a l á ž, L. M i š ı́ k, J. T. T ó t h and O. S t r a u c h (2013):
If d(xn) = 0 and we select nk such that nk

xnk

= mini≤nk

i
xi

and that F (Xnk
, x)

→ g(x), then g(x) ≥ x for x ∈ [0, 1].

Proposed by O. Strauch.
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1.10. Logarithmic and trigonometric functions

[SP, p. 2–131 and 2–132]: Find the set G(xn) for the following sequences
xn, n = 1, 2, . . . :

(i) xn = (logn) cos(nα)mod1,

(ii) xn = (cosn)n,

(iii) xn = cos(n+ logn)mod1.

Notes. (I) D. B e r e n d, M. D. B o s h e r n i t z a n and G. K o l e s n i k (1995)
proved that (i) is everywhere dense in [0, 1]. They showed that there are uncount-
ably many α’s for which every of these sequences (i) is not u.d.

(II) The original problem of everywhere density in [−1, 1] of (ii) was posed by
M. B e n z e and F. P o p o v i c i (1996) and was solved by J. B u k o r (1997).
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This problem was also solved (in some generality) in F. L u c a (1999). S. H a r t -
m a n (1949) proved that if απ is irrational, then

lim inf
n→∞

(cosαn)n = lim inf
n→∞

(sinαn)n = −1.

(III) The sequence (iii) is not u.d., which was proved by L. K u i p e r s (1953).

Solution of (iii). S. S t e i n e r b e r g e r: The sequence xn= cos(n+logn)mod1
has the same a.d.f g(x) as the sequence cosnmod 1. It follows from that

(a) cos(n+ log n) = cos 2π
(
n
2π + 1

2π logn
)
= cos 2πzn, where

(b) zn = n
2π + 1

2π lognmod 1 is u.d. sequence since n
2π and n

2π + 1
2π logn are

u.d. simultaneously, see [SP, p. 2–27, 2.3.6.]

(c) Put f(x) = cos 2πxmod1 Then a.d.f. g(x) of xn is

g(x) =
∣∣f−1
(
[0, x)
)∣∣ = 1

2
− 1

π
arccosx+ 1− 1

π
arccos(x− 1).

(IV) D. B e r e n d and G. K o l e s n i k (2011): The sequence

P (n) cosnαmod 1, n = 1, 2, . . . ,

is completely u.d. for any non-constant polynomial P (x) and α with cosα tran-
scendental. If cosα is not transcendental D. B e r e n d and G. K o l e s n i k (2011)
also proved: Let α be such that eiα is an algebraic number of degree d which is
not a root of unity. Then the sequence

(1)
(
P (n) cosnα, P (n+ 1) cos(n+ 1)α, . . . , P (n+ d− 1) cos(n+ d− 1)α

)
mod 1,

n = 1, 2, . . . , is u.d. for any non-constant polynomial P (x).

Open problem. D. B e r e n d and G. K o l e s n i k (2011): Let P (x) = x,
α = arccos 3/5, i.e., eiα = (3 + 4i)/5 and denote

xn = P (n) cosnα = n
(3 + 4i)n − (3− 4i)n

2.5n
.

Then by (1) the sequence (xn, xn+1)mod1 is u.d., but

(xn, xn+1, xn+2, xn+3, xn+4)mod1

is not u.d. The authors ask whether the sequences (xn, xn+1, xn+2)mod1 and
(xn, xn+1, xn+2, xn+3)mod1) are u.d.

Solution of (ii). C h. A i s t l e i t n e r, M. H o f e r and M. M a d r i t s c h (2013):
Let xn = cos(αn)nmod 1, n = 1, 2, . . . . For α

2π /∈ Q we set a = 3/4, in the case
α
2π = p

q ∈ Q for p, q co-prime let

a =

{
q+1
2q

+ q−1
4q

if 4 | (q − 1),

q−1
2q

+ q+1
4q

if 4 � (q − 1)
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for q odd and let

a =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 + q−2

4q if 4 � q and 8 | (q − 2),

1
2 + q+2

4q if 4 � q and 8 � (q − 2),

q+2
2q + 1

4 if 4 | q and 8 � q,

q+2
2q + q−4

4q if 8 | q
for q even. Then a.d.f. of xn is given by

ga(x) =

⎧⎪⎨⎪⎩
0 if x = 0,

a if 0 < x < 1,

1 if x = 1.

Partial solution of (i). 10. C h. A i s t l e i t n e r, M. H o f e r and M. M a d -
r i t s c h (2013) proved: Let α be such that the discrepancy DN of the sequence

α

2π
nmod1, n = 1, 2, . . . , N

is of asymptotic order DN = o
(

1
logN

)
. Then the sequence (logn) cos(nα)mod 1

is u.d. in [0, 1].

20. Let xn = (logn) cos(nα)mod1, n = 1, 2, . . . , α
2π

= p
q
, where p, q are co-

prime and let N1 < N2 < · · · be fixed integer sequence such that

lim
k→∞
{
cos(αi) logNk

}
= βi for i = 1, . . . , q. (1)

Then there exists d.f.

g(x) = lim
k→∞

FNk
(x), FN (x) =

{n ≤ N ;xn ∈ [0, x)}
N

,

such that

g(x) =
1

q

q∑
i=1

hq,βi,ci(x), (2)

where

hq,βi,ci (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fβi,ci(x+ 1− νi)− fβi,ci(1− νi) if 0 ≤ x ≤ νi and ci > 0,

fβi,ci(x− νi) + 1− fβi,ci(1− νi) if νi ≤ x ≤ 1 and ci > 0,

fβi,ci(x+ νi)− fβi,ci(νi) if 0 ≤ x ≤ 1− νi and ci < 0,

fβi,ci(x− (1− νi)) + 1− fβi,ci(νi) if 1− νi ≤ x ≤ 1 and ci < 0,

1{(0,1]}(x) if ci = 0,

where νi =
{|ci| log(q)}, ci = cos(αi) and

fβ,c(x) =

⎧⎪⎨⎪⎩
gβ,c(x) if c > 0,

1− gβ|c|(1− x) if c < 0,

1{(0,1]}(x) if c = 0,
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and

gβ,c(x) =
e

min(x,β)
c − 1

e
β
c

+
1

e
β
c

e
x
c − 1

e
1
c − 1

.

Moreover, the set G(xn) is the set of all d.f. of the form (2) for those (β1, . . . , βq)
for which a subsequence (Nk)k≥1 satisfying (1) exists.

The authors note that for arbitrary q, it is a difficult problem to determine
all possible vectors (β1, . . . , βq) for which there exists N1 < N2 < · · · such that
(1) holds, referred to K. G r i s t m a i r (1997).

Proposed by O. Strauch.
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1.11. Euler totient function

(cf. [SP, p. 2–191, 2.20.11]). If ϕ is the Euler totient function, then the sequence

ϕ(n)

n
, n = 1, 2, 3, . . . ,

has in [0, 1] singular a.d.f.
g0(x).

Notes. (I) I. J. S c h o e n b e r g (1928, 1936) proved that this sequence has
continuous and strictly increasing a.d.f.

(II) P. E r d ő s (1939) showed that this a.d.f. is singular. Here a function is
singular, if it is continuous, strictly monotone and has vanishing derivative
almost everywhere on the interval of its definition.
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(III) H. D a v e n p o r t (1933) expressed

g0(x) =

∞∑
n=1

An(x),

where

An(x) =
1

an(x)
−
∑
i<n

1

[ai(x), an(x)]
+
∑
i<j<n

1

[ai(x), aj(x), an(x)]
− · · ·

and [a, b] is the least common multiple of a and b. Here a1(x) < a2(x) < · · ·
is the sequence of the all positive integers n for which ϕ(n)

n ≤ x and for every

divisor d|n, d 	= n we have ϕ(d)
d > x. These n are called x-numbers. Directly

from definition we have

(i) Every x-number is square-free.

(ii) Every square-free a is an x-number for some x.
Concretely, if a=p1p2 . . . pm, p1 < p2 < · · · < pm, pi are primes, then a is

x-number for every x ∈ [∏mi=1

(
1− 1

pi

)
,
∏m−1
i=1

(
1− 1

pi

))
(iii) For every i < j we have ai(x) � aj(x).

(iv) Let p1 < p2 < · · · be an increasing sequence of all primes and let
x ∈ [1 − 1

ps
, 1
)
. Then a1(x) = p1 = 2, a2(x) = p2 = 3,. . . ,as(x) = ps.

If furthermore x < 1 − 1
ps+1

, then for every j > s, the aj(x) cannot be

a prime and pi � aj(x), i = 1, 2, . . . , s.

(v) If x ∈ [∏si=1

(
1− 1

pi

)
,
∏s−1
i=1

(
1− 1

pi

))
, then a1(x) =

∏s
i=1 pi (pi as in (iv)).

(vi) For every n = 1, 2, . . . and every x ∈ (0, 1) we have

ϕ(n)

n
≤ x⇐⇒ ∃i=1,2,...ai(x)|n.

(vii) Assume that x < x′. Then for every x-number ai(x) there exists x
′-number

aj(x
′) such that aj(x

′)|ai(x).
(III’) Applying Davenport’s method B. A. V e n k o v (1949) proved that

(i)
(
1− g0(x)

)
log 1

1−x → e−c as x→ 1, where c is Euler’s constant.

(ii) x log log 1
g0(x)

→ e−c as x→ 0.

(iii) Let p be a prime. Then for every 1− 1
p ≤ x we have

1
p
= g0(x)− (p− 1)g0

(
x
(
1− 1

p

))
+ (p− 1)2g0

(
x
(
1− 1

p

)2)
− · · ·

(iv) The function g0(x) at every x = ϕ(n)
n , n = 1, 2, . . . , has infinite left deriv-

ative.

(v)
( ∫ 1

0
xsdg0(x)

)
log s→ e−c as s→ ∞ (s are positive integers).

133



OTO STRAUCH

(IV) A. S. F a ı̆ n l e ı̆ b (1967) proved that

A([0, x);N ;ϕ(n)/n)

N
= g0(x) +O

(
1

log logN

)
.

(V) W. S c h w a r z (1962) (c.f. A. G. P o s t n i k o v (1971, p. 267)) proved:
Let f(x) be a polynomial with integer coefficients having non-zero discriminant.
Assume that g.c.d of coefficients of f(x) is 1 and f(n) > 0 for n = 1, 2, . . .
Let L(d) denote the number of solutions f(n) ≡ 0 (mod d). Then

1

N

N∑
n=1

ϕ(f(n))

f(n)
=

∞∏
p=2

p−prime

(
1− L(p)

p2

)
+O(logcN),

where c > 0 is a constant. This leads to

Open problem 1: Find a.d.f (if exists) of the sequence

ϕ(f(n))

f(n)
, n = 1, 2, . . .

(VI) O. S t r a u c h (1996) proved that

1∫
0

g20(x) dx = 1− 6

π2
− 1

2
lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣ϕ(m)

m
− ϕ(n)

n

∣∣∣∣
and he gave an estimate

2

π4
≤ lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣ϕ(m)

m
− ϕ(n)

n

∣∣∣∣ ≤ 2
6

π2

(
1− 6

π2

)
. (1)

Open problem 2: Find an estimation of the limit

lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣ϕ(m)

m
− ϕ(n)

n

∣∣∣∣ = L

better as (1), where L ∈ [0.021, 0.392].

• J.- C h. S c h l a g e- P u c h t a (2009) send a method which gives
L ∈ [0.27425, 0.274465].

(VI’) The aim of this problem is to find
∫ 1
0
g20(x)dx. It is motivated by the paper

of O. S t r a u c h (1994) about three dimensional body Ω of points of the form⎛⎝ 1∫
0

g(x) dx,

1∫
0

xg(x) dx,

1∫
0

g2(x) dx

⎞⎠,
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where g(x) runs the set of all d.f.’s. The points achieved for singulars g(x) are
interior points of Ω. Using an expression of the boundary of Ω in Problem 1.23.2
we can find

0.250 <

1∫
0

g20(x) dx < 0.307.

(VII) F. L u c a ([a]2003) proved that, if Mn = 2n − 1 is the nth Mersenne
number then the subsequence ϕ(Mn)/Mn is dense in [0, 1] and has an a.d.f.
([b]2005).

(VII’) F. L u c a and I. E. S h p a r l i n s k i (2007) proved the existence of the
moment

1

N

N−1∑
n=0

(
ϕ(Fn)

Fn

)k
= Γk +Ok

(
(logN)k

N

)
for all k = 1, 2, . . . with some positive constant Γk. Thus the sequence

ϕ(Fn)

Fn
, n = 0, 1, 2, . . .

has an a.d.f. F. L u c a in ([a]2003) also proved that ϕ(Fn)/Fn is dense in [0, 1].

(VIII) (See [SP, p. 1–13]). I. J. S c h o e n b e r g (1959) introduced the follow-
ing summation method: the sequence xn is called ϕ-convergent to α if the
sequence yn = 1

n

∑
d|n ϕ(d)xd converges to α. Schoenberg’s Theorem 2 (1959)

shows that the ϕ-convergence of xn implies the classical convergence of xnk

(to the same limit) for every sequence nk for which lim infk→∞
ϕ(nk)
nk

> 0. Since
a 0–1 ϕ-convergent sequence has the ϕ-limit 0 or 1, no ϕ-u.d. sequence exists
(E. K o v á č (2005)).

Open problem 3: Find a sequence xn for which yn = 1
n

∑
d|n ϕ(d)xdmod 1 is

u.d. in [0, 1].

In connection of this we mentioned (cf. A. G. P o s t n i k o v [1971, p. 219,
Th. 6b], [SP, p. 2–189, 2.20.8]): Let f(n) be an arithmetical function which
satisfies

(i) f(n) =
∑
d|n Φ(d),

(ii)
∑∞
n=1

|Φ(d)|
d <∞

for some arithmetical function Φ. Then the sequence

f(n), n = 1, 2, . . . ,

has the a.d.f.

g(x)

defined on (−∞,∞).
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• For xn = ϕ(n)
n and an interval (k, k +N ] define the step d.f.

F(k,k+N ](x) =
#{n ∈ (k, k +N ];xn ∈ [0, x]}

N
.

Open problem 4: Find all possible limits of step d.f.s F(k,k+N ](x), for sequences
of intervals (k, k +N ].

(IX) P. E r d ő s (1946) proved:

(i) If log log log k
N → 0 as N → ∞, ten F(k,k+N ](x) → g0(x) for x ∈ [0, 1] and

by Chinese remainder theorem he found k and N such that log log log k
N

→ 1
2 and 1

N

∑
k<n≤k+N

ϕ(n)
n < 1

2 <
1
N

∑N
n=1

ϕ(n)
n = 6

π2 + O
(
logN
N

)
, thus

F(k,k+N ](x) 	→ g0(x).

(ii) For a proof of (i) he used⎛⎝ 1

N

∑
k<n≤k+N

(
ϕ(n(t))

n(t)

)s
− 1

N

N∑
n=1

(
ϕ(n)

n

)s⎞⎠→ 0,

where n(t) =
∏
p|n,p≤t p, p are primes and t = N .

(X) V. B a l á ž, P. L i a r d e t and O. S t r a u c h (2007) proved:

(i) Necessary and sufficient condition: For any two sequences N and k of pos-
itive sequences, N → ∞, we have F(k,k+N ](x) → g0(x), for every x ∈ [0, 1],

if and only if, for every s = 1, 2, . . . , 1
N

∑
k<n≤k+N

∑
N<d|n Φ(d) → 0,

were (cf. A. G. P o s t n i k o v (1971, p. 360)) Φ(d) =
∏
p|d
((
1− 1

p

)s − 1
)

for the squarefree d and Φ(d) = 0 in others, where p denotes a prime.
In quantitative form:

1

N

∑
k<n≤k+N

∑
N<d|n

Φ(d) =
1

N

∑
k<n≤k+N

(
ϕ(n)

n

)s
− 1

N

N∑
n=1

(
ϕ(n)

n

)s
+O

(
3s(1 + logN)s

N

)
.

Using this they found that for k =
∏
p≤eeeN p we have F(k,k+N ](x) → g0(x)

as N → ∞ and contrary to (IX)(i) we have log log log k
N → ∞.

(ii) A quantitative form of E r d ő s’ (IX)(ii): For every integer k,N and t = N
we have

1

N

∑
k<n≤k+N

(
ϕ(n(t))

n(t)

)s
=

1

N

N∑
n=1

(
ϕ(n)

n

)s
+ O

(
3s(1 + logN)s

N

)
for s = 1, 2, . . .
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(iii) This implies that every d.f. g(x), F(k,k+N ] → g(x) on (0, 1) must satisfies

1∫
0

xs dg(x) ≤
1∫

0

xs dg0(x),

for every s = 1, 2, . . .

(iv) By Chinese theorem it can be found a sequence of intervals (k, k+N ] such
that F(k,k+N ](x) → c0(x), where d.f. c0(x) has a step 1 in x = 0.

(v) Assume that F(k,k+N ](x) → g(x) for all x ∈ (0, 1). Then

g0(x) ≤ g(x) ≤ g0(x) +

s∏
i=1

(
1− 1

pi

)
(1)

for x ∈ (0, 1), where p1, p2, . . . is the increasing sequence of all primes and
1− 1

ps
≤ x. By an anonymous referee in all cases the right hand side of (1)

is ≥ 1.

(XI) A. S c h i n z e l and Y. W a n g (1958) proved that for any given (α1, α2, . . .
. . . , αN−1) ∈ [0,∞)N−1 we can select a sequence of k such that(

ϕ(k + 2)

ϕ(k + 1)
,
ϕ(k + 3)

ϕ(k + 2)
, . . . ,

ϕ(k +N)

ϕ(k +N − 1)

)
→ (α1, α2, . . . , αN−1).

Select a subsequence of k such that ϕ(k+1)
k+1 → α. Then(

ϕ(k + 1)

k + 1
,
ϕ(k + 2)

k + 2
, . . . ,

ϕ(k +N)

k +N

)
→ (α, αα1, αα1α2, . . . , αα1α2 . . . αN−1).

Now, for arbitrary d.f. g̃(x) there exists a sequence αn, n = 1, 2, . . . in (0,∞)
such that for every n = 1, 2, . . . we have α1α2 . . . αn ∈ (0, 1) and that the
sequence α1α2 . . . αn, n = 1, 2, . . . , has asymptotic d.f. g̃(x). Then there exists
α ∈ (0, 1] and a sequence of intervals (k, k +N ] such that F(k,k+N ] → g(x) and
for x ∈ (0, 1) we have

g(x) =

{
g̃
(
x
α

)
if x ∈ [0, α),

1 if x ∈ [α, 1].

Open problem 5: Find a distribution of the sequence(
ϕ(n)

n
,
ϕ(n+ 1)

n+ 1

)
, n = 1, 2, . . .

Problems 1–5 proposed by O. Strauch.

Open problem 6 proposed by F. Luca:

(i) Is the sequence of general term
(
ϕ(1)+ · · ·+ϕ(n))/n uniformly distributed

modulo 1?
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(ii) Is the sequence of general term
(
ϕ(1)ϕ(2) · · ·ϕ(n))1/n uniformly distribu-

ted modulo 1?

Regarding (i) above, R. B a l a s u b r a m a n i a n and F. L u c a (2007) have
shown that the set of n such that

(
ϕ(1) + · · · + ϕ(n)

)
/n is an integer is of as-

ymptotic density zero.

Solution of 6. J.- M. D e s h o u i l l e r s and H. H. I w a n i e c (2008) gave
positive answer to (i) and conditional positive answer to (ii), they proved:

(XII) Let ν(n) be an arithmetic function which is completely multiplicative and

satisfies the conditions

(i) |ν(p)| ≤ ν for some positive number ν and every prime p,

(ii)
∑
d≤x μ(d)ν(d) � x (log x)

−A
for every positive A,

where the implied constant depends only on ν and A. Define the arithmetic

function φ by φ(m) = m
∏
p|m
(
1− ν(p)

p

)
. Then, if the number α = 1

2

∏
p

(
1− ν(p)

p2

)
is irrational, the sequence 1

n

∑
m≤n φ(m), n = 1, 2, . . . , is u.d. modulo one.

Notes. For classical Euler ϕ(n) function corresponding α = 3
π2 .

(XIII) Let ν(n) be a completely multiplicative function such that

(i) −ν ≤ ν(p) < min{p, ν} for some positive ν and every prime p,

(ii) that there exist real numbers β and λ such that
∏
p≤n
(
1 − ν(p)

p

)
=

β(logn)−λ
(
1 +O
(

1
logn

))
, where the implied constant depends only on ν.

Again as in (I), we define the strongly multiplicative function φ by φ(m) =

m
∏
p|m
(
1 − ν(p)

p

)
, and we let α = 1

e

∏
p

(
1 − ν(p)

p

) 1
p. If α is irrational, then the

sequence
(∏

m≤n φ(m)
)1
n, n = 1, 2, . . . , is u.d. modulo one.

(XIV) Let the arithmetical function ν satisfy (i) and (ii) in (XIII). If α is ra-

tional and ν takes only algebraic values, then the sequence
(∏

m≤n φ(m)
) 1

n,
n = 1, 2, . . . , is not uniformly distributed modulo one. By the authors com-
ments, for the classical Euler ϕ(n) the arithmetic property of corresponding

α =
1

e

∏
p

(
1− 1

p

)1
p

is an open problem. This constant is very likely to be irrational: R. B um b y
showed that if α is rational, then its denominator has at least 20 decimal digits.
A special case of (XIV) shows that if the constant α is rational, then the sequence(∏

m≤n ϕ(m)
) 1

n, n = 1, 2, . . . , is not u.d. modulo 1.
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(XV) F. L u c a, V. J. M e j ı́ a H u g u e t and F. N i c o l a e (2009) show that(
ϕ(Fn+1)

ϕ(Fn)
,
ϕ(Fn+2)

ϕ(Fn)
, · · · ϕ(Fn+k)

ϕ(Fn)

)
, n = 1, 2, . . .

is dense in [0,∞)k, k = 1, 2, . . .. The authors have the following comments:

– for any positive integer k and every permutation (i1, . . . , ik) there exist in-
finitely many integers n such that ϕ(Fn+i1) < ϕ(Fn+i2) < · · · < ϕ(Fn+ik).

– P. E r d ő s, K. G y ő r y and Z. P a p p (1980) call two arithmetic func-
tions f(n) and g(n) independent if for every permutations (i1, . . . , ik) and
(j1, . . . , jk) of (1, . . . , k), there exist infinitely many integers n such that
both

f(n+ i1) < f(n+ i2) < · · · < f(n+ ik),

g(n+ j1) < g(n+ j2) < · · · < g(n+ jk).

– ϕ(n) and Carmichael λ(n) are independent (N. D o y o n and F. L u c a
(2006)).

– σ
(
ϕ(n)
)
and ϕ

(
σ(n)
)
are independent (M. O. H e r n am e and F. L u c a

(2009)).

Open problems in F. L u c a, V. J. M e j ı́ a H u g u e t and F. N i c o l a e
(2009):

– Are the functions ϕ(Fn) and Fϕ(n) independent?

– Are the functions ϕ(Fn) and ϕ(Mn) independent?

Submitted by O. Strauch.
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1.12. van der Corput sequence in the base q

[SP, p. 2–102, 2.11]. Let q ≥ 2 be an integer and

n = a0(n) + a1(n)q + · · ·+ ak(n)(n)q
k(n), aj(n) ∈ {0, 1, . . . , q − 1}, ak(n) > 0,

be the q-adic digit expansion of integer n in the base q. Then the van der Corput
sequence γq(n), n = 0, 1, 2, . . . , in the base q defined by

γq(n) =
a0(n)

q
+
a1(n)

q2
+ · · ·+ ak(n)(n)

qk(n)+1

is u.d.

Open problem: Find the distribution function of the sequence(
γq(n), . . . , γq(n+ s− 1)

)
, n = 0, 1, 2, . . . , in [0, 1]s.

Notes. (I) The γq(n) is called the radical inverse function of the natural
q-adic digit expansion of n.

(II) The Halton sequence in the bases q1, . . . , qs is defined by

xn =
(
γq1(n), . . . , γqs(n)

)
, n = 0, 1, 2, . . .

For the pairwise coprime bases q1, . . . , qs the Halton sequence is u.d., cf.
[SP, p. 3–72].

(i) The Halton sequence xn is u.d. in [0, 1)s if and only if the bases q1, . . . , qs
are coprime, see P. H e l l e k a l e k and H. N i e d e r r e i t e r (2011).

(III) Van der Corput sequence γq(n), n = 0, 1, . . . , N − 1 has discrepancy

D∗
N

(
γq(n)
)
<

1

N

(
q log(qN)

log q

)
,

i.e., it is low discrepancy sequence, but for s = 2 we have, see O. B l a ž e k o v á
(2007),

DN

(
γq(n), γq(n+ 1)

)
=

1

4
+O
(
DN

(
γq(n)
))
,

D∗
N

((
γq(n), γq(n+ 1)

))
= max

(
1

q

(
1− 1

q

)
,
1

4

(
1− 1

q

)2)
+ O
(
DN

(
γq(n)
))
.

Thus, van der Corput sequence is not pseudo-random.

(IV) Discrepancy bounds of the van der Corput and Halton sequences can be
found in the added bibliography.

(V) Solution for s = 2 is given in J. F i a l o v á and O. S t r a u c h (2010):

Every point
(
γq(n), γq(n+ 1)

)
, n = 0, 1, 2, . . . , lie on the line segment

Y = X − 1 +
1

qk
+

1

qk+1
, X ∈

[
1− 1

qk
, 1− 1

qk+1

]
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for k = 0, 1, . . . and let T be their union. Because γq(n) is u.d., then the sequence(
γq(n), γq(n+ 1)

)
has a.d.f. g(x, y) of the form

g(x, y) =
∣∣∣Projectx(([0, x)× [0, y)

) ∩ T)∣∣∣ ,
where Projectx is a projection of a two dimensional set to the x-axis. It is a copula
and g(x, y) can be computed explicitly as

g(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if (x, y) ∈ A,

1− (1− y)− (1− x) = x+ y − 1 if (x, y) ∈ B,

y − 1
qi if (x, y) ∈ Ci,

x− 1 + 1
qi−1 if (x, y) ∈ Di,

i = 1, 2, . . . , where

(VI) Formal solution. C h. A i s l e i t n e r and M. H o f e r (2013): Let T de-
note von Neuman-Kakutani transformation described in Fig. 1. Define an s-di-
mensional curve

{
γ(t); t ∈ [0, 1)

}
, where γ(t) =

(
t, T (t), T 2(t), . . . , T s−1t

)
. Then

the searched a.d.f. is

g(x1, x2, . . . , xs) =
∣∣{t ∈ [0, 1]; γ(t) ∈ [0, x1]× [0, x2]× · · · × [0, xs]

}∣∣ ,
where |X| is the Lebesgue measure of set X. An explicit formula of a such a.d.f.
for s = 4 is open.

(VI’) For an arbitrary continuous F (x1, x2, . . . , xs) we have∫
[0,1]s

F (x1, x2, . . . , xs) dg(x1, x2, . . . , xs) =

1∫
0

F
(
x, T (x), T 2(x), . . . , T s−1(x)

)
dx.

P r o o f . Put γ(n) = xn. Then(
γq(n), . . . , γq(n+ s− 1)

)
=
(
xn, T (xn), T

2(xn), . . . , T
s−1(xn)

)
and by Weyl’s limit relation

lim
N→∞

1

N

N∑
n=1

F
(
γq(n), . . . , γq(n+ s− 1)

)
=

∫
[0,1]s

F (x1, x2, . . . , xs) dg (x1, x2, . . . , xs)

and

= lim
N→∞

1

N

N∑
n=1

F
(
xn, T (xn), . . . , T

s−1(xn)
)
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Figure 1. Line segments containing
(
γq(n), γq(n + 1)

)
, n = 1, 2, . . .

The graph of von Neumann-Kakutani transformation.

=

1∫
0

F
(
x, T (x), . . . , T s−1(x)

)
dx.

(VII) A.d.f. of
(
γq(n), γq(n+ 2)

)
, n = 1, 2, . . . All terms of the sequence(

γq(n), γq(n+ 2)
)
, n = 1, 2, . . . ,

lie in the line segments

Y = X +
2

q
, X ∈

[
0, 1− 2

q

)
, or

Y = X +
1

q
+

1

qi+1
+

1

qi+2
− 1, X ∈

[
1− 1

q
− 1

qi+1
, 1− 1

q
− 1

qi+2

)
, or

Y = X +
1

q
+

1

qi+1
+

1

qi+2
− 1, X ∈

[
1− 1

qi+1
, 1− 1

qi+2

)
for i = 0, 1, . . . Divide [0, 1]2 by the Fig. 2 then we have the following explicit
form of a.d.f. g(x, y) of the sequence

(
γq(n), γq(n+ 2)

)
.
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g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if (x, y) ∈ D0,

y − 2
q if (x, y) ∈ C0,

0 if (x, y) ∈ A0,

y + x− 1 if (x, y) ∈ B0,

x− 1 + 2
q if (x, y) ∈ E0,

y if (x, y) ∈ F0,

0 if (x, y) ∈ A′,
x+ y − 1 + 1

q if (x, y) ∈ B′,
x− 1 + 1

q +
1
qi if (x, y) ∈ D′

i,

y − 1
qi+1 if (x, y) ∈ C′

i,
1
q if (x, y) ∈ A′′,
x+ y − 1 if (x, y) ∈ B′′,
x− 1 + 1

q +
1
qi if (x, y) ∈ D′′

i ,

y − 1
qi+1 if (x, y) ∈ C′′

i .

0 1
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(VIII) A.d.f. of
(
γq(n), γq(n + 1), γq(n + 2)

)
, n = 1, 2, . . . An explicit form

of g(x, y, z) is given in J. F i a l o v á, L. M i š ı́ k and O. S t r a u c h (2013) and
it have 27 possibilities. For example, if q ≥ 3, then

g(x, x, x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x ∈

[
0, 2q

]
,

x− 2
q if x ∈

[
2
q , 1− 1

q

]
,

3x− 2 if x ∈
[
1− 1

q , 1
]
.

(IX) As an applications, by the Weyl limit relation, we have

lim
N→∞

1

N

N−1∑
n=0

F
(
γq(n), γq(n+ 1), γq(n+ 2)

)
=

1∫
0

1∫
0

1∫
0

F (x, y, z) dx dy dx g(x, y, z),

where F (x, y, z) is an arbitrary continuous function in [0, 1]3.

(X) For the right-hand side of (IX) we can using

1∫
0

1∫
0

1∫
0

F (x, y, z) dx dy dz g(x, y, z) = F (1, 1, 1, )

−
1∫

0

g(1, 1, z) dz F (1, 1, z)−
1∫

0

g(1, y, 1) dy F (1, y, 1)−
1∫

0

g(x, 1, 1) dx F (x, 1, 1)

+

1∫
0

1∫
0

g(1, y, z) dy dz F (1, y, z) +

1∫
0

1∫
0

g(x, 1, z) dx dz F (x, 1, z)

+

1∫
0

1∫
0

g(x, y, 1) dx dy F (x, y, 1)

−
1∫

0

1∫
0

1∫
0

g(x, y, z) dx dy dz F (x, y, z).

(XI) Example. Put F (x, y, z) = max(x, y, z). Then by (X)

1∫
0

1∫
0

1∫
0

F (x, y, z) dx dy dz g(x, y, z)
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= 1−
1∫

0

1∫
0

1∫
0

g(x, y, z) dx dy dz F (x, y, z)

= 1−
1∫

0

g(x, x, x) dx

and for q ≥ 3 we have

lim
N→∞

1

N

N−1∑
n=0

max
(
γq(n), γq(n+ 1), γq(n+ 2)

)
=

1

2
+

2

q
− 3

q2
.

(XII) Example. Put F (x, y, z) = min(x, y, z). Then by (X) we have

=

1∫
0

1∫
0

1∫
0

F (x, y, z) dx dy dx g(x, y, z)

1− 3 · 1
2
+ 2 ·

1∫
0

g(x, x, 1) dx+

1∫
0

g(x, 1, x) dx−
1∫

0

g(x, x, x) dx

which implies

lim
N→∞

1

N

N−1∑
n=0

min
(
γ2(n), γ2(n+ 1), γ2(n+ 2)

)
=

⎧⎪⎨⎪⎩
1
2 − 2

q +
3
q2 if q ≥ 4,

1
6 if q = 3,
3
16 if q = 2.

(XIII) Example. Put F (x, y, z) = xyz. By (X) we have

1∫
0

1∫
0

1∫
0

F (x, y, z) dx dy dx g(x, y, z) = 1− 3 · 1
2
+ 2 ·

1∫
0

1∫
0

g(x, y, 1) dx dy

+

1∫
0

1∫
0

g(x, 1, z) dx dz −
1∫

0

1∫
0

1∫
0

g(x, y, z) dx dy dz

and we find

lim
N→∞

1

N

N−1∑
n=0

γq(n) · γq(n+ 1) · γq(n+ 2) =
q4 − 3q3 + 3q2 + 2q + 2

4q4 + 4q3 + 4q2

for q ≥ 3.

Submitted by O. Strauch.
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FIALOVÁ, J.—MIŠÍK, L.—STRAUCH, O.: An asymptotic distribution function of

three-dimensional shifted van der Corput sequence, pp. 27, Integers, 2013 (send).
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1.13. Sequences of differences

[SP, p. 2–7, 2.1.7]. The sequence

xn ∈ [0, 1), n = 1, 2, . . . ,

is u.d. if and only if the sequence

|xm − xn|, m, n = 1, 2, . . . ,

has the a.d.f.
g(x) = 2x− x2.

Here the double sequence |xm−xn|, form,n = 1, 2, . . . , is ordered to an ordinary
sequence yn in such a way that the first N2 terms of yn are |xm − xn| for
m,n = 1, 2, . . . , N .

Open problem: Assuming u.d. of xn, n = 1, 2, . . . find a.d.f of the sequences

• ||xm − xn| − |xk − xl||, m,n, k, l = 1, 2, . . . ,

• |||xm−xn|− |xk−xl||− ||xi−xj|− |xr−xs|||, m,n, k, l, i, j, r, s = 1, 2, . . . ,
etc.
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Notes. We can use the following method: Let us denote by gj(x) an asymptotic
distribution function of the sequence of jth differences (thus g1(x) = 2x − x2).
For kth moment we have

1∫
0

xkdgj+1(x) =

1∫
0

1∫
0

|x− y|kdgj(x) dgj(y).

For j = 1 we have

1∫
0

1∫
0

|x− y|kdg1(x) dg1(y) = 8

(k + 1)(k + 2)(k + 4)
.

which implies

g2(x) =
8

3
x− 2x2 +

1

3
x4.

Conjecture proposed by S. S t e i n e r b e r g e r (2010): The density function
dgj(x)
dx of the a.d.f. gj(x) of jth iterated differences is of the form

dgj(x)

dx
=

22
j+j−1

2j!
(x− 1)jp(x),

where p(x) is a polynomial with integer coefficients. What can be said about
p(x)?

For j = 3 he found

dg3(x)

dx
=

8

315
(x− 1)3(−132− 116x− 36x2 + 3x3 + x4).

Proposed by O. Strauch.
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1.14. Bernoulli numbers

Open problem: For Bernoulli numbers B2n find the distribution

B2nmod1 n = 1, 2, . . .

Notes. (I) By von Staudt-Clausen formula B2n = A2n −∑(p−1)|2n
1
p , where p

are primes and A2n are integers.

(II) F. Luca’s comment: This problem was studied by P. E r d ő s and
S. S. W a g s t a f f, J r. (1980). They proved that

∑
(p−1)|2n

1
p is everywhere

dense in [5/6,∞).

Submitted by O. Strauch.
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1.15. Ratio sequences

[SP, p. 2–215, 2.22.2]. For an increasing sequence of positive integers xn let
d(xn), and d(xn) denote the lower and upper asymptotic density of xn, resp.,

and d(xn)
(
= d(xn) = d(xn)

)
its asymptotic density if it exists. The double

sequence, called the ratio sequence of xn,

xm
xn

, m, n = 1, 2, . . . ,

is everywhere dense in [0,∞) assuming that one of the following conditions holds:

(i) d(xn) > 0,

(ii) d(xn) = 1,

(iii) d(xn) + d(xn) ≥ 1,

(iv) d(xn) ≥ 1/2,

(v) A
(
[0, x);xn

) ∼ cx
logα x , where c > 0, α > 0 are constant, A

(
[0, x);xn

)
=

#
{
n ∈ N ; xn ∈ [0, x)

}
, and ∼ denotes the asymptotically equivalence

(i.e., the ratio of the left and the right-hand side tends to 1 as x→ ∞).

Notes. (I) (i), (ii) and (v) were proved by T. Š a l á t (1969), for (iii) see
O. S t r a u c h and J. T. T ó t h (1998) and (iv) follows from (iii).

(II) O. S t r a u c h and J. T. T ó t h (1998, Th. 2) proved that if the interval
(α, β) ⊂ [0, 1] has an empty intersection with xm

xn
for m,n = 1, 2, . . . , then

d(xn) ≤ α

β
min
(
1− d(xn), d(xn)

)
, d(xn) ≤ 1− (β − α). (1)

(III) S. K o n y a g i n (1999, personal communication) improved the second in-
equality to

d(xn) ≤ 1− β

1− αβ
. (2)

Problem. Find a best possible estimation of d(xn).

Solution. G. G r e k o s (2006, personal communication) notes that in (2) the
equation is valid for the sequence xn, n = 1, 2, . . . defined in O. S t r a u c h and
J. T. T ó t h (1998, Ex. 1) such that xn is the sequence of all integer points
lying in the intervals

(γ, δ), (γa, δa), (γa2, δa2), . . . , (γan, δan), . . . ,

149



OTO STRAUCH

where γ, δ and a are positive real numbers satisfying γ < δ and a > 1. In this
case the lower d and upper d asymptotic density of xn can be given explicitly by

d(xn) =
(δ − γ)

γ(a− 1)
, d(xn) =

(δ − γ)a

δ(a− 1)
,

and an interval (α, β) which does not contain points xm

xn
, m,n = 1, 2, . . . is

(α, β) =

(
δ

γa
,
γ

δ

)
, (3)

assuming δ/γ <
√
a. All others subintervals of [0, 1] with empty intersection

have the form (α/ai, β/ai), i = 1, 2, . . . . For interval (3) we have d(xn) =
1−β
1−αβ

then (2) is the best possible.

(V) O. S t r a u c h and T ó t h (1998, Th. 6) also proved that (1) and (2)
are also valid for interval (α, β) containing no accumulation points of xm

xn
,

m,n = 1, 2, . . . . If X ⊂ [0, 1] is an union of such intervals, then

d(xn) ≤ 1− |X|,
where |X| denotes the Lebesgue measure of X. Its improvement is open.

Proposed by O. Strauch.
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1.16. Continued fractions

[SP, p. 2–264, 2.26.8]. Let θ = [0; a1, a2, . . . ] be an irrational number in [0, 1]
given by its continued fraction expansion and let pn(θ)/qn(θ), n = 0, 1, 2, . . . , be
the corresponding sequence of its convergents. An open problem is to find, for
the sequence

xn = qn(θ) (mod 2)

the frequency of each possible block (. . . , 0, . . . , 1, . . . , 0, . . . ) of length s which
occurs in xn as (xn+1, . . . , xn+s) for a special class of θ (e.g., with bounded ai).

Notes. R. M o e c k e l (1982) proved that, for almost all θ, the three possible
blocks (0, 1), (1, 0) and (1, 1) of length s = 2 occur in xn with equal frequencies.
The blocks of lengths s = 3 and s = 4 are investigated in V. N. N o l t e (1990).

Proposed by O. Strauch.
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1.17. Strong uniform distribution

Say a sequence of integers (an)
∞
n=1 is in A∗ for a class of measurable functions

A on [0, 1) if

lim
N→∞

1

N

N∑
n=1

f
({anx}) = 1∫

0

f(t) dt a.e.

Here of course, for a real number y we have used {y} to denote its fractional
part. In a paper solving a well known classical problem of A. K h i n c h i n’ s
[Kh], J. M. M a r s t r a n d [M] also showed that if q1, . . . , qk is a finite list
of coprime natural numbers all greater than one then the semigroup it generates,

m = (ml)
∞
l=1 =

{
qi11 · · · qikk : (i1, . . . , ik) ∈ (Z+

0 )
k}

when ordered by size is
in (L∞)∗. To do this he invoked D. Birkhoff’s pointwise ergodic theorem [W]
and the following lemma:

For strictly increasing sequences of natural numbers (an)
∞
n=1 and (bn)

∞
n=1 if

G(u) =
{
(r, s) : arbs ≤ u

}
, (u = 1, 2, . . . ) and f ∈ L∞ then

lim
u→∞

1

|G(u)|
∑

(r,s)∈G(u)

f
({arbsx}) = 1∫

0

f(t) dt a.e.

Here for a finite set A we have used |A| to denote its cardinality. R. C. B a -
k e r [B] asked if m is in (L1)∗. This was proved by the author [Na1] using
A. A. T em p e l m a n’ s generalization of Birkhoff’s pointwise ergodic theo-
rem [T]. With a view to applications to sequences other than m, it would be
interesting to know if an L1 version of Marstrand’s lemma is true. Some partial
results in this direction are known. In [Na2] we show that for strictly increasing
sequences of natural numbers a = (ar)

∞
r=1 and b = (bs)

∞
s=1, both of which are

(Lp)∗ sequences for all p > 1, if there exists C > 0 such that

|{r : ar ≤ u}||{s : bs ≤ u}| ≤ C
∣∣{(r, s) : arbs ≤ u

}∣∣, (1)

for (u = 1, 2, . . . ) then a ◦ b =
{
arbs : (r, s) ∈ N2

}
(the sequence of products

of pairs of elements in a and b) once ordered by size is also an (Lp)∗ sequence.
An open question is whether this result from [Na2] is true for p = 1. We have
the following partial result. Let

a1 = (a1,i)
∞
i=1, . . . , ak = (ak,i)

∞
i=1,
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denote finitely many (L1)∗ sequences, and for a sequence a, let

Ga(u) = |{i : ai ≤ u}|.
Also let a1 ◦ · · · ◦ ak denote the set

{b1 · · · bk : b1 ∈ a1, . . . , bk ∈ ak},
counted with multiplicity and ordered by absolute value. Suppose there exists
K > 0 such that for all u ≥ 1

|Ga1(u)| · · · |Gak(u)| ≤ K|Ga1◦···◦ak(u)|.
Then if log+ |x| = logmax(1, |x|) we show that a1 ◦ · · ·◦ak is an

(
L(log+ L)

k−1
)∗

sequence [Na3]. To be more specific, we ask if the space
(
L(log+ L)

k−1
)∗

can be

replaced by (L1)∗. A second open question is whether a condition like (1) nec-
essary for any of these results. As Marstrand observed the answer is no when
p = ∞. It might be the case that if for fixed p ∈ [1,∞] if all three sequences
a = (ar)

∞
r=1, b = (bs)

∞
=1 and a ◦ b are (Lp)∗ then (1) automatically holds. This

too is unknown.

Proposed by R. Nair.
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1.18. Algebraic dilatations

Let θ1, . . . , θk denote a finite set of real algebraic numbers all greater than 1 and
let (ml)

∞
l=1 denote the semigroup generated multiplicatively by these numbers

given an order consistent with the magnitude of the elements of this semigroup.

152



UNSOLVED PROBLEMS

Suppose f ∈ Lp
(
[0, 1)
)
for some p ∈ [1,∞). Under what conditions on p and the

sequence (ml)
∞
l=1 is it the case that

lim
L→∞

1

L

L∑
l=1

f
({mlx}

)
=

1∫
0

f(t)dt a.e.

This question is probably best understood by comparison with the cases where
the θ1, . . . , θk are coprime natural numbers, in which case the result is true
for p = 1 [Na1] and the case where k = 1 in which case the result is known
for p = 2 [Bo][vPS]. In unpublished work the author has also shown that the
result is true for p > 1 if only one of the set θ1, . . . , θk is not a rational integer.
It seems likely some other arithmetic condition on the θ1, . . . , θk is necessary.
For instance is the result true for instance when p > 1 assuming the natural
logarithms of the numbers θ1, . . . , θk are linearly independent over the rationals?
Are there circumstances where the assumption that k is finite can be dropped?
The answer is yes for θ1, θ2, . . . chosen to be some rapidly growing rational
primes as shown in [L].

Proposed by R. Nair.
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1.19. Subsequence ergodic theorems

Suppose (X, β, μ) is a measure space. Say T a map from X to itself is measurable
if T−1A := {x : Tx ∈ A} ∈ β for all A in the σ-algebra β. We say a measurable
map T from X to itself is measure preserving if μ(T−1A) = μ(A) for all A ∈ β.
Building on earlier work of J. B o u r g a i n [Bo1], [Bo2], [Bo3], the author showed
[Na4] [Na5] that if φ is a non-constant polynomial mapping the natural numbers
to themselves, (pn)

∞
n=1 is the sequence of rational primes and if for p > 1 we

have f ∈ Lp(X, β, μ) then limN→∞ 1
N

∑N
n=1 f
(
Tφ(pn)x

)
exists μ almost every-

where. See also [Wi]. Our first question is what happens when p = 1. The anal-
ogous question for the case where pn is the nth natural number is also open.
For the second question suppose T1, . . . , Tk is a finite set of commuting measure
preserving maps on (X, β, μ) and that φ1, . . . , φk are nonconstant polynomials
mapping the natural numbers to themselves and for p > 1 that f ∈ Lp(X, β, μ).
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Then is it the case that limN→∞ 1
N

∑N
n=1 f
(
T
φ1(pn)
1 · · ·Tφk(pn)

k x
)
μ exists μ al-

most everywhere? In the case where pn is the nth natural number this is a the-
orem, at least when p = 2 [Bo2].

Proposed by R. Nair.
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1.20. Square functions for subsequence ergodic averages

For a probability space (X, β, μ), measure preserving T : X → X, a non-constant
polynomial φ mapping the natural numbers to themselves and a μ measurable
function f defined on X and a strictly increasing sequence of integers (Nk)

∞
k=1,

set ANf(x) =
1
N

∑N
n=1 f
(
Tφ(n)x

)
(N = 1, 2, . . . ) and set

S(f)(x) =

( ∞∑
k=1

|ANk+1
f(x)− ANk

f(x)|2
)1
2

.

In the situation where φ(n) = n and (Nk)
∞
k=1 is any strictly increasing sequence

of natural numbers it is shown in [JOR] that there exists C > 0 such that

μ
({x : S(f)(x) > λ}) ≤ C ||f ||1

λ . One implication of this is that for any p > 1
there exists Cp > 0 such that ||S(f)||p ≤ Cp||f ||p. Results of this sort provide
an alternative means, to almost everywhere convergence, of measuring the sta-
bility of the averages (ANf)

∞
N=1. Ideally we would like to prove an analogue

of the [JOR] inequality for general φ or if it were not true to find out the extent
to which it was and how and when it fails. One approach to questions of these
sorts is via spectral theory and this reduces to a study of the behaviour of ex-
ponential sums of the form an(α) =

1
n

∑n
l=1 e

2πiφ(n)α (n = 1, 2, . . . ). In the case
where φ(n) = n these are for each α, averages of geometric progressions and
consequently have well understood distributions. For more general φ these are
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Weyl sums, are more complicated and our understanding is less complete. What
is known follows from an application of the Hardy-Littlewood circle method.
Using this, for Nk = k (k = 1, 2, . . . ), the author has shown that for each p > 1
there exists Cp > 0 such that we have ||S(f)||p ≤ Cp||f ||p. The same inequality

is also true in the case p = 2 where 1 < a ≤ Nk+1

Nk
< b for some a and b. These

results are not as yet published [Na6] though see [NW] where variants of the
method involved appear.

Proposed by R. Nair.
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1.21. Sets of integers of positive density

In this section for simplicity we confine attention to sets of integers of positive
density in N, though much of what we deal with can be meaningfully discussed
in higher dimensions. For a set of natural numbers S ⊂ N and a countable
collection I = (In)n≥1 of intervals with |In| tending to infinity as n does, let

B(S, I) = lim sup
n→∞

|S ∩ In|
|In| .

We call

B(S) = sup
I
B(S, I),

where the supremum is taken over all collections I, the Banach density of S.
The second definition we need is that of upper density defined as

d∗(S) = lim sup
n→∞

|S ∩ [0, n)|
n

.

If the limit exists, we call d∗(S) the density of S and denote it by d(S). Plainly
B(S) > 0 if d∗(S) > 0. A sequence of integers k =

(
k(n)
)
n≥1

is called intersective

if given any S ⊂ N with B(S) > 0 there exist a and b in S such that a − b is
in k. A sequence of integers k =

(
k(n)
)
n≥1

is called a set of Poincaré recurrence

if given any (X, β, μ) any measure preserving transformation T : X → X, and
any A in β with μ(A) > 0 there exists k in k such that

μ(A ∩ T kA) > 0.
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The terminology is motivated by the fact that as proved by H. P o i n c a r é , k is
a set of Poincaré recurrence in the case k(n) = n. What makes ergodic theory
relevant to the study of intersectivity is that as proved by A. B e r t r a n d-
-M a t h i s [Be] and H. F u r s t e n b e r g [F] a sequence on integers is a set
of intersectivity if and only if it is a set of Poincaré recurrence. Furstenberg used
this viewpoint to show that when k(n) = n2 (n = 1, 2, . . . ) then k = (k(n))∞n=1

is intersective. We say a sequence k = (kn)
∞
n=1 is S. H a r t m a n uniformly

distributed [Ha] if for every non-integer θ we have

lim
N→∞

1

N

N∑
n=1

e2πiθkn = 0.

It can be shown that any k that is Hartman uniformly distributed is also inter-
sective [Bo]. E. S z e m e r e d i [S] showed that if B(S) > 0 then S contains arith-
metic progressions of arbitrary length. This was shown by H. F u r s t e n b e r g
to be a consequence of the fact that given any (X, β, μ) any measure preserving
transformation T : X → X, and any A in β with μ(A) > 0 there exists a natural
number n such that [F]

μ
(
A ∩ TnA ∩ · · · ∩ Tn(k−1)A

)
> 0. (1)

Motivated by (1) it would be interesting to decide whether if k is Hartman uni-
formly distributed then given any S ⊂ N with B(S) > 0 there exist R ⊂ N
with d(R) > 0 existing and d(R) ≥ B(S) such that for any finite subset{
h(1), . . . , h(l)

}
of R,

B
(
S ∩ S + k

(
h(1)
) ∩ · · · ∩ S + k

(
h(l)
))
> 0.

The question arose in a conversation with H. F u r s t e n b e r g at the Newton
Institute in 2000. So far it has been possible to prove this hypothesis subject
to conditions similar to but stronger than S. H a r t m a n uniform distribution
[Na7] [NW] [NZ]. A theorem of V. B e r g e l s o n and A. L e i b m a n [BL] is
that given any polynomials P1(x), . . . , Pk(x) with integer coefficients such that
0 = P1(0) = P2(0) = · · · = Pk(0), any (X, β, μ) any measure preserving transfor-
mation T : X → X and any A in β with μ(A) > 0 there exists a natural number
n such that

μ
(
A ∩ TP1(n)A ∩ · · · ∩ TPk(n)A

)
> 0.

This implies both Szemeredi’s theorem and the intersectivity of k where

k(n) = n2.

It can also be shown [Na8] that given any polynomial Q(x) such that for each
non-zero integer m there exists another integer l(m) with

(
m,Q(l(m))

)
=1 any
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probability space (X, β, μ) any measure preserving transformation T : X → X,
any A in β with μ(A) > 0 there exists a prime p such that

μ
(
A ∩ TQ(p)A

)
> 0.

This leads one to conjecture that given polynomials Q1(x), . . . , Qk(x), all with
the property assumed for Q(x), then given any probability space (X, β, μ), any
measure preserving transformation T : X → X, and any A in β with μ(A) > 0,
there exists a prime number p such that

μ
(
A ∩ TQ1(p)A ∩ · · · ∩ TQk(p)A

)
> 0.

If proved this conjecture would imply analogues of both the Szemeredi theorem
and the Furstenberg intersectivity phenomenon with the integer n chosen to be a
prime. Examples of polynomials Q are not quite as easy to construct as examples
of polynomials satisfying the Bergelson-Leibman condition but they include

Q(x) = xn + 1 or xn − 1

for any natural number n. Recently B. G r e e n and T. T a o have proved that
the set of primes contain arithmetic progressions of arbitrary length. It becomes
natural to ask if, by analogy with the Bergelson-Leibman theorem, the primes
contain arithmetic progressions of arbitrary length whose common difference is
the value P (a) say, for a given integer valued polynomial P (x) with P (0) = 0
and some natural number a. We might also ask whether the primes contain
arithmetic progressions of arbitrary length whose common difference is Q(p) for
a given polynomial Q such that for each non-zero integer m there exists another
integer l(m) with

(
m,Q(l(m))

)
= 1 and some prime p.

Proposed by R. Nair.
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1.22. Uniform distribution of the weighted sum-of-digits function

Let γ = (γ0, γ1, . . .) be a sequence in R and let q ∈ N, q ≥ 2. For n ∈ N0

with base q representation n = n0 + n1q + n2q
2 + · · · define the weighted q-ary

sum-of-digits function by

sq,γ(n) := γ0n0 + γ1n1 + γ2n2 + · · ·
For d ∈ N, weight-sequences γ(j) =

(
γ
(j)
0 , γ

(j)
1 , . . .

)
in R and qj ∈ N, qj ≥ 2,

j ∈ {1, . . . , d}, define
sq1,...,qd,γ(n) :=

(
sq1,γ(1)(n), . . . , sqd,γ(d)(n)

)
,

where γ = (γ0,γ1, . . .) and γk =
(
γ
(1)
k , . . . , γ

(d)
k

)
for k ∈ N0.

Open question: Let q1, . . . , qd ≥ 2 be pairwisely coprime integers. Under which

conditions on the weight-sequences γ(j) =
(
γ
(j)
0 , γ

(j)
1 , . . .
)
in R, j ∈ {1, . . . , d}, is

the sequence
sq1,...,qd,γ(n)mod1, n = 0, 1, 2, . . . (1)

u.d. mod 1?

Proposed by F. Pillichshammer.

Notes. (I) For example if γ
(j)
k = q−k−1

j for all j ∈ {1, . . . , d} and all k ∈ N0,
then we obtain the d-dimensional van der Corput-Halton sequence which is well
known to be uniformly distributed modulo one.

(II) If γ
(j)
k = qkj αj for all j ∈ {1, . . . , d} and all k ∈ N0, then the sequence (1)

is the sequence
({n(α1, . . . , αd)}

)
n≥0

which is well known to be uniformly dis-

tributed modulo one if and only if 1, α1, . . . , αd are linearly independent over Q.

(III) If γ
(j)
k = αj ∈ R for all j ∈ {1, . . . , d} and all k ∈ N0, then it was shown by

M. D r m o t a and G. L a r c h e r (2001) that the sequence (1) is u.d. mod1 if
and only if α1, . . . , αd ∈ R \Q.

(IV) For q1 = · · · = qd = q it was shown by F. P i l l i c h s h a mm e r (2007)
that the sequence (1) is u.d. mod 1 if and only if for every h ∈ Zd \ {0} one of
the following properties holds: Either

∞∑
k=0

〈h,γk〉q �∈Z

‖〈h,γk〉‖2 = ∞
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or there exists a k ∈ N0 such that 〈h,γk〉 	∈ Z and 〈h,γk〉q ∈ Z. Here ‖ · ‖
denotes the distance to the nearest integer, i.e., for x ∈ R, ‖x‖ = mink∈Z |x− k|
and 〈·, ·〉 is the usual inner product.

(V) The generalization can be found in R. H o f e r, G. L a r c h e r and
F. P i l l i c h s h a mm e r (2007), where a similar result was proved with the
weighted sum-of-digits function replaced by a generalized weighted digit-block-
-counting function.

(VI) R. H o f e r (2007) proved: Let q1, . . . , qd ≥ 2 be pairwise coprime inte-
gers and γ(1), . . . , γ(d ) be given weight sequences in R. If for each dimension
j ∈ {1, . . . , d } the following sum

∞∑
i=0

∥∥∥h(γ(j)2i+1 − qjγ
(j)
2i

)∥∥∥2
is divergent for every nonzero integer h, then the sequence (1) is u.d. in [ 0, 1)d.

REFERENCES

DRMOTA, M.—LARCHER, G.: The sum-of-digits function and uniform distribution

modulo 1, J. Number Theory 89 (2001), 65–96.

HOFER, R.: Note on the joint distribution of the weighted sum-of-digits function mod-

ulo one in case of pairwise coprime bases, Unif. Distrib. Theory 2 (2007), 1–10.

HOFER, R.—LARCHER, G.—PILLICHSHAMMER, F.: Average growth-behavior and

distribution properties of generalized weighted digit-block-counting functions, 2007 (sub-

mitted).

PILLICHSHAMMER,F.: Uniform distribution of sequences connected with the weighted

sum-of-digits function, Unif. Distrib. Theory 2 (2007), 1–10.

1.23. Moment problem

1.23.1. Truncated Hausdorff moment problem

Recovered a d.f. g(x), given its moments

sn =

1∫
0

xndg(x), n = 1, 2, . . . , N. (1)

The set of all points (s1, s2, . . . , sN ) in [0, 1]N for which there exists d.f. g(x)
satisfying (1) is called the Nth moment space ΩN . It can be shown:

(i) the point (s1, s2, . . . , sN ) belongs to the moment space ΩN if and only if∑k
i=0(−1)i

(
k
i

)
si+j ≥ 0 for all j, k = 0, 1, 2, . . . , N .

(ii) ΩN is a simply connected, convex, and closed subset of [0, 1]N.

(iii) If the point (s1, s2, . . . , sN ) belongs to the interior of the moment space
ΩN the truncated moment problem (1) has infinitely many solutions.
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(iv) If (s1, s2, . . . , sN) belongs to the boundary of the ΩN , the (1) has a unique
solution g(x).

(v) If the sequence xn ∈ [0, 1), n = 1, 2, . . . , satisfies lim 1
N

∑N
n=1 xn = s1,

lim 1
N

∑N
n=1 x

2
n = s2,. . . , lim

1
N

∑N
n=1 x

N
n = sN , where (s1, s2, . . . , sN ) be-

longs to the boundary of the ΩN , then xn has an a.d.f. g(x).

Exact characterization of the moment spaceΩN can be found in S. K a r l i n and
L. S. S h a p l e y (1953), also see G. A. A t h a n a s s o u l i s and P. N. G a v r i -
l i a d i s (2002).

1.23.2. L2 moment problem

Given a triple of numbers (X1, X2, X3) ∈ [0, 1]3 O. S t r a u c h (1994) gave
a complete solution to the moment problem

(X1, X2, X3) =

⎛⎝ 1∫
0

g(x) dx,

1∫
0

xg(x) dx,

1∫
0

g2(x) dx

⎞⎠
in d.f. g(x) : [0, 1] → [0, 1]. He expresses the boundary of the body

Ω =

⎧⎨⎩
⎛⎝ 1∫

0

g(x) dx,

1∫
0

xg(x) dx,

1∫
0

g2(x) dx

⎞⎠; g is d.f.

⎫⎬⎭
as Π1, . . . ,Π6 surfaces and the curve Π7 such that for (X1, X2, X3) ∈ ∪6

i=1Πi
the moment problem has unique solution, for (X1, X2, X3) ∈ Π7 exactly two
solutions, and in the interior of Ω has infinitely many solutions (see [SP, 2–20,
2.2.21] for exact results). Now, if a sequence xn, n = 1, 2, . . . , in [0, 1] has limits

X1 = 1− limN→∞ 1
N

∑N
n=1 xn,

X2 = 1
2
− 1

2
limN→∞ 1

N

∑N
n=1 x

2
n and

X3 = 1− limN→∞ 1
N

∑N
n=1 xn − 1

2 limN→∞ 1
N2

∑N
m,n=1 |xm − xn|

and if (X1, X2, X3) ∈ ⋃1≤i≤7 Πi, then the sequence xn possess an asymptotic

distribution function g(x).

Open problem is to solve the moment problem

(X1, X2, X3, X4) =

⎛⎝ 1∫
0

g(x) dx,

1∫
0

xg(x) dx,

1∫
0

x2g(x) dx,

1∫
0

g2(x) dx

⎞⎠ .
E.g., for g(x) = 2x− x2 it has the unique solution.

Proposed by O. Strauch.
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1.24. Scalar product

Let xn = (xn,1, . . . , xn,s) and yn = (yn,1, . . . , yn,s) be infinite sequences in [0, 1)s.
Assume that the sequence (xn,yn), n = 1, 2, . . . , is u.d. in [0, 1]2s. Then the
sequence of the inner (i.e., scalar) products

xn = xn · yn =

s∑
i=1

xn,iyn,i, n = 1, 2, . . .

has the a.d.f. gs(x) =
∣∣{(x,y) ∈ [0, 1]2s ; x · y < x}∣∣ on the interval [0, s], and

gs(x) = (−1)s
∫

x1+···+xs<x
x1∈[0,1],...,xs∈[0,1]

1 . logx1 . . . log xs dx1 . . .dxs.

For x ∈ [0, 1] we have

g1(x) = x− log x,

g2(x) =
x2

2

(
(log x)2 − 3 logx+ 7

2 − 1
6π

2
)
,

g3(x) =
x3

27

(− 9
2 (log x)

3+ 99
4 (log x)

2+
(−255

4 + 9
4π

2
)
log x+ 575

8 − 33
8 π

2− 9ζ(3)
)
,

gs(x) = (−1)sxs
∑s
j=0

(
s
j

)
(log x)s−j 1

(s−j)! ·
∫
[0,1]j

∏j
i=1

(
log x1 + · · ·+ log xj−1

+ log(1− xj)
)
xs−1
1 . . . xs−jj dx1 . . .dxj.

Open is the explicit formula of gs(x) for x ∈ [1, s].

Notes. (I) O. S t r a u c h (2003). The formula for gs(x) with x ∈ [0, 1] was
proved by L. H a b s i e g e r (Bordeaux) (personal communication). A motivation
is an application of gs(x) to one-time pad cipher, see O. S t r a u c h (2004).

(II) E. H l a w k a (1982) investigated the question of the distribution of the
scalar product of two vectors on an s-dimensional sphere and also the problem
of the associated discrepancies.

Proposed by O. Strauch.
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1.25. Determinant

Let x
(i)
n =

(
x
(i)
n,1, . . . , x

(i)
n,s

)
, i = 1, . . . , s, be infinite sequences in the s-dimen-

sional ball B(r) with the center at (0, . . . , 0) and radius r. Assume that these

sequences are u.d. and statistically independent in B(r), i.e.,
(
x
(1)
n , . . . ,x

(s)
n

)
is

u.d. in B(r)s. Then the sequence

xn =
∣∣∣det(x(1)

n , . . .x
(s)
n

)∣∣∣
has the a.d.f. gs(r, x) defined on the interval [0, rs] by

gs(r, x) =

∣∣{(x(1), . . . ,x(s)) ∈ B(r)s ; | det(x(1), . . . ,x(s))| < x}∣∣
|B(r)|s ,

and for λ = x
rs there exists g̃s(λ) such that gs(r, x) = g̃s(λ) if λ ∈ [0, 1]. Here we

have

g̃1(λ) = λ,

g̃2(λ) =
2
π (1 + 2λ2) arcsinλ+ 6

πλ
√
1− λ2 − 2λ2,

g̃3(λ) = 1 + 9
4λ
∫ 1
λ

arccos x
x dx− 3

4λ
3 arccosλ−√

1− λ2 + 7
4λ

2
√
1− λ2.

Open is the explicit form of g̃s(λ) for s > 3. A further open question is the
explicit form of the a.d.f. of the above sequence with [0, 1]s instead of B(r).

Notes. (I) O. S t r a u c h (2003).

(II) Note that the integral in g̃3(λ) cannot be expressed as a finite combination of
elementary functions, cf. I. M. R y s h i k and I. S. G r a d s t e i n [1951, p. 122].

(III) The d.f.’s g̃s(λ) and gs(x) from 1.24 form the basis of a new one-time pad
cryptosystem introduced in O. S t r a u c h (2002).

Proposed by O. Strauch.
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1.26. Ramanujan function

Let τ(n) be the Ramanujan function given by

q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.

Is
{
τ(n+ 1)/τ(n)

}
n∈N

dense in R?

Proposed by F. Luca.

1.27. Apéry sequence

Let (An)n≥0 be the Apéry sequence given by

An =

n∑
k=0

(
n

k

)2(
n+ k

k

)2
.

Let P = {p prime : p | An for some n}.
(i) Is it true that P misses infinitely many primes?

(ii) For a positive real number x let P(x) = P ∩ [1, x]. Find lower bounds for
#P(x).

Regarding (ii), it follows from the results of F. L u c a (2007) that #P(x) �
log log x.

Proposed by F. Luca.
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1.28. Urban’s conjecture

Let k ∈ N be fixed, and let λi, μi, for 1 ≤ i ≤ k be real algebraic numbers
with absolute values greater than 1. Assume that, for 1 = 1, 2, . . . , k, the pairs
λi, μi are multiplicatively independent (i.e., they are not integers m,n such that
λmi = μni ), and (λi, μi) 	= (λj, μj) for i 	= j. Then for any real numbers θ1, . . . , θk
with at least one θi /∈ Q

(∪ki=1{λi, μi}
)
the double sequence

k∑
i=1

λmi μ
n
i θimod 1, m, n = 1, 2, . . .

is dense in [0, 1].

Notes. (I) R. U r b a n (2007). In a first step he proved (Theorem 1.6):

Let λ1, μ1 and λ2, μ2 be two distinct pairs of multiplicatively independent real
algebraic integers of degree 2, with absolute values greater than 1, such that
the absolute values of their conjugates λ̃1, μ̃1, λ̃2, μ̃2 are also greater than 1. Let
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μ1 = g1(λ1) for some g1 ∈ Z[x] and μ2 = g2(λ2) for some g2 ∈ Z[x]. Assume
that at least one element in each pair λi, μi has all positive powers irrational.
Assume further that there exist k, lk′, l′ ∈ N such that

(a) min
(|λ2|k|μ2|l, |λ̃2|k|μ̃2|l

)
> max

(|λ1|k|μ1|l, |λ̃1|k|μ̃1|l
)
and

(b) min
(|λ1|k′ |μ1|l′, |λ̃1|k′ |μ̃1|l′

)
> max

(|λ2|′k|μ2|l′, |λ̃2|k′ |μ̃2|l′
)
.

Then for any real numbers θ1, θ2 with at least one θi 	= 0 the sequence

λm1 μ
n
1 θ1 + λm2 μ

n
2 θ2 mod1, m, n = 1, 2, . . .

is dense in [0, 1]. For illustration(√
23 + 1

)m(√
23 + 2

)n
θ1 +
(√

61 + 1
)m(√

61− 6
)n
θ2 mod1, m, n = 1, 2, . . .

is dense in [0, 1], assuming (θ1, θ2) 	= (0, 0).

R. U r b a n note that (a) and (b) hold, when

|λ2| > |λ̃2| > |λ1| > |λ̃1| > 1 and |μ1| > |μ̃1| > |μ2| > |μ̃2| > 1.

He also note that Theorem 1.6 can be extended in the case when not all of λi, μi
are of degree 2, but if λi, μi are rationals, then θi must be irrational. As example,
for every θ2 	= 0, the sequence(

3 +
√
3
)m

2n + 5m7nθ2
√
2mod 1, m, n = 1, 2, . . .

is dense in [0, 1].

(II) The Conjecture is motivated by H. F u r s t e n b e r g’ s (1967) result: If p, q >
1 are multiplicatively independent integers, i.e., they are not both integer powers
of some integer, then for every irrational θ the double sequence

pnqmθmod 1, m, n = 1, 2, . . .

is everywhere dense in [0, 1].

(III) Further generalization was given by B. K r a (1999): For positive integers
1 < pi < qi, i = 1, 2, . . . , k, assume that all pairs pi, qi are multiplicatively
independent and pairs (pi, qi) 	= (pj , qj) for i 	= j. Then for distinct θ1, . . . , θk
with at least one irrational θi the sequence

K∑
i=1

pni q
m
i θimod1, m, n = 1, 2, . . . (1)

is dense in [0, 1].

(IV) D. B e r e n d in MR1487320 (99j:11079) reformulated Kra’s result:

Let pi, qi integers and θi real, i = 1, 2, . . . , k. If p1 and q1 are multiplicatively
independent, θ1 is irrational, and pairs (pi, qi) 	= (p1, q1) for i ≥ 2, then the
sequence (1) is dense in [0, 1].
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(V) Precisely, H. F u r s t e n b e r g (1967) proved: Let S be a non-lacunary semi-
group of rational integers. Then Sαmod1 is dense in [0, 1] for any irrational α.

D. B e r e n d (1987) extends it:

Let K be a real algebraic number field and S a subsemigroup of the multi-
plicative group of K such that

(i) S ⊂ (−∞,−1) ∪ (1,∞),

(ii) there exit multiplicatively independent λ, μ ∈ S (i.e., there exist no integers
m and n, not both of which are 0, with λm = μn),

(iii) Q(S) = K. Then for every α /∈ K the set Sαmod 1 is dense in [0, 1].
If, moreover

(iv) S 	⊂ PS(K), then Sαmod 1 is dense in [0, 1] for every α 	= 0.

Here, if [K : Q] = m denotes by PS(K) the semigroup of all Pisot or Salem
number of degree m over Q.

Furthermore, if Sαmod 1 is dense in [0, 1] for every α /∈ K or for all α 	= 0,
then S has a subsemigroup having the same property generated by two elements.

(VI) D. B e r e n d (1987a): Let p, q, and c be non-zero integers with p and q
multiplicatively independent, ξ an irrational and β arbitrary. Then the set{

pmqnξ + cm+nβ : m,n ∈ N
}

is dense modulo 1.

(VII) R. U r b a n (2009): Let a1 > a2 > 1 and b1 > b2 > 1 be two pairs
of multiplicatively independent integers, and let c be a positive real number.
Suppose that a1 < b1 and a2 > b2. Then, for any real numbers ξ1, ξ2 with at
least one ξi irrational, there exists q ∈ N such that for any real number β, the set{

am1 a
n
2 qξ1 + bm1 b

n
2 qξ2 + cm+nβ : m,n ∈ N

}
is dense modulo 1.

Submitted by O. Strauch.
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1.29. Extreme values of
∫ 1
0

∫ 1
0
F (x, y) dx dy g(x, y) for copulas g(x, y)

Let F (x, y) be a Riemann integrable function defined on [0, 1]2 and xn, yn,
n = 1, 2, . . . , be two u.d. sequences in [0, 1). A problem is to find limit points
of the sequence

1

N

N∑
n=1

F (xn, yn), N = 1, 2, . . . (1)

Applying Helly theorems we obtain limit points of (1) form the set⎧⎨⎩
1∫

0

1∫
0

F (x, y) dx dy g(x, y); g(x, y) ∈ G((xn, yn))

⎫⎬⎭ , (2)

where G(xn, yn) is the set of all d.f.’s of the two-dimensional sequence (xn, yn),
n = 1, 2, . . . In this case, two-dimensional sequence (xn, yn) need not be u.d. but
every d.f. g(x, y) ∈ G((xn, yn)) satisfies

(i) g(x, 1) = x for x ∈ [0, 1] and

(ii) g(1, y) = y for y ∈ [0, 1].

The d.f. g(x, y) which satisfies (i) and (ii) is called copula and a basic theory
of copulas can be found in R. B. N e l s e n (1999), see [OP, 2.3, Deterministic
analysis of sequences].

Open problem: Find extreme values of
∫ 1
0

∫ 1
0
F (x, y ) dx dy g(x, y), where g(x, y)

is a copula.

Notes. (I) Firstly, for F (x, y) = |x−y|, this problem was formulated by F. P i l -
l i c h s h a mm e r and S. S t e i n e r b e r g e r (2009). They proved: Let xn and
yn be two uniformly distributed sequences in [0, 1). Then

lim sup
N→∞

1

N

N−1∑
n=0

|xn − yn| ≤ 1

2

and in particular,

lim sup
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| ≤ 1

2

and this result is best possible. They also found

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| = 2(b− 1)

b2

166



UNSOLVED PROBLEMS

for van der Corput sequence xn in the base b and

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| = 2{α}(1− {α})
for xn = nαmod1, where α is irrational.

(II) Secondly, S. S t e i n e r b e r g e r (2009) study (1) for F (x, y) = f1(x)f2(x)
and for u.d. sequences xn = Φ(zn) and yn = Ψ(zn), where Φ(x) and Ψ(x)
are uniformly distributed preserving (u.d.p.) functions and zn is a u.d. se-
quence. For u.d.p. see this [OP, 2.1 Uniform distribution theories]. He proved:
Let f : [0, 1]→R be a Lebesgue measurabble function, we see it as random vari-
able, and g(x) = |f−1([0, x))| be its d.f. and put f∗(x) = g−1(x). If d.f. g(x)
does not have inverse function we put f∗(x) = inf

{
t ∈ R; g(t) ≥ x

}
.

Let f1, f2 be Riemann integrable functions on [0, 1]. Let Φ,Ψ be arbitrary
u.d.p. transformations. Then

1∫
0

f∗1 (x)f
∗
2 (1− x) dx ≤

1∫
0

f1
(
Φ(x)
)
f2
(
Ψ(x)
)
dx ≤

1∫
0

f∗1 (x)f
∗
2 (x) dx

and these bounds are best possible. Also, every number within the bounds is at-
tained by some u.d.p. Φ,Ψ. In his proof Steinerberger used the Hardy-Littlewood
inequality [H a r d y, L i t t l e w o o d and P ó l y a (1934), Th. 378]

1∫
0

f1(x)f2(x) dx ≤
1∫

0

f∗1 (x)f
∗
2 (x) dx.

(III) J. F i a l o v á and O. S t r a u c h (2010) proved: Let F (x, y) be a Riemann
integrable function defined on [0, 1]2. For differential of F (x, y) let us assume
that dx dy F (x, y) > 0 for every (x, y) ∈ [0, 1]2. Then

max
g(x,y)-copula

1∫
0

1∫
0

F (x, y) dx dy g(x, y) =

1∫
0

F (x, x) dx,

min
g(x,y)-copula

1∫
0

1∫
0

F (x, y) dx dy g(x, y) =

1∫
0

F (x, 1− x) dx,

where, precisely, max is attained in g(x, y) = min(x, y) and min in g(x, y) =
max(x+ y − 1, 0), uniquely. In proof they used expression
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1∫
0

1∫
0

F (x, y) dx dy g(x, y) = F (1, 1)−
1∫

0

g(1, y) dy F (1, y)

−
1∫

0

g(x, 1) dx F (x, 1) +

1∫
0

1∫
0

g(x, y) dx dy F (x, y)

which holds for every Riemann integrable function F (x, y) and d.f. g(x, y) which
have no any common discontinuity points. And then they used Fréchet-Hoeffding
bounds [R. B. N e l s e n (1999), p. 9] max(x + y − 1, 0) ≤ g(x, y) ≤ min(x, y)
which holds for every (x, y) ∈ [0, 1]2 and for every copula g(x, y).

(IIIa) Using Sklar theorem that every d.f. g(x, y) can be express as g(x, y) =
c
(
g(x, 1), g(1, y)

)
for related copula c(x, y) J. F i a l o v á and O. S t r a u c h ex-

tend: Let us assume that F (x, y) is a continuous function such that

dxdyF (x, y) > 0 for every (x, y) ∈ (0, 1)2.

Then for the extremes of integral
∫ 1
0

∫ 1
0
F (x, y) dx dy g(x, y) for g(x, y) for which

g(x, 1) = g1(x) and g(1, y) = g2(y) we have

max
g(x,y)

1∫
0

1∫
0

F (x, y) dx dy g(x, y) =

1∫
0

F
(
g−1
1 (x), g−1

2 (x)
)
dx,

min
g(x,y)

1∫
0

1∫
0

F (x, y) dx dy g(x, y) =

1∫
0

F
(
g−1
1 (x), g−1

2 (1− x)
)
dx,

where the maximum is attained in g(x, y) = min
(
g1(x), g2(y)

)
and the minimum

in g(x, y) = max
(
g1(x) + g2(y)− 1, 0

)
, uniquely.

(IIIb) J. F i a l o v á and O. S t r a u c h (2011) criterion: Assume that a copula

g(x, y) maximize
∫ 1
0

∫ 1
0
F (x, y) dx dy g(x, y) and let [X1, X2] × [Y1, Y2] be an in-

terval in [0, 1]2 such that the differential

g(X2, Y2) + g(X1, Y1)− g(X2, Y1)− g(X1, Y2) > 0.

If for every interior point (x, y) of [X1, X2]×[Y1, Y2] the differential dx dy F (x, y)
has a constant sign, then

(i) if dxdyF (x, y) > 0 then

g(x, y) = min
(
g(x, Y2) + g(X1, y)− g(X1, Y2), g(x, Y1) + g(X2, y)− g(X2, Y1)

)
(ii) if dxdyF (x, y) < 0 then

g(x, y) = max
(
g(x, Y2) + g(X2, y)− g(X2, Y2), g(x, Y1) + g(X1, y)− g(X1, Y1)

)
for every (x, y) ∈ [X1, X2]× [Y1, Y2].
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(IV) J. F i a l o v á and O. S t r a u c h (2010) also consider F (x, y) in the form
F (x, y) = f(x)y and study the limit points of

1

N

N∑
n=1

f(xn)yn,

where xn is u.d. sequence and u.d. sequence yn is given by yn = Φ(xn), where
Φ(x) is a u.d.p. This problem is equivalent to find

max
Φ(x)−u.d.p.

1∫
0

f(x)Φ(x) dx, min
Φ(x)−u.d.p.

1∫
0

f(x)Φ(x) dx.

J. F i a l o v á (2010) solve this problem for piecewise linear f(x). Here the func-
tion f : [0, 1] → [0, 1] is piecewise linear (p.l.) if there exists a system of ordinate
intervals Jj , j = 1, 2, . . . , u which are disjoint and fulfilled the whole interval
[0, 1], and a corresponding system of abscissa intervals Ij,i, i = 1, 2, . . . , lj, such
that f(x)/Ij,i is the increasing or decreasing diagonal of Ij,i × Jj . J. F i a l o v á
(2010) proved: Let f : [0, 1] → [0, 1] be a p.l. function with ordinate decompo-
sition Jj , j = 1, 2, . . . n, and abscissa decomposition Ij,i, i = 1, 2, . . . lj . Define
a p.l. function Ψ(x) in the same abscissa decomposition Ij,i, but in a new ordi-

nate decomposition J ′
j , with the lengths |J ′

j | =
∑lj
i=1 |Ij,i|, j = 1, 2, . . . n, ordered

similarly as Jj , j = 1, 2, . . . , u. Put the graph of Ψ(x)/Ij,i on Ij,i × J ′
j as the

diagonal ↗ or ↘ if and only if f(x)/Ij,i is the ↗ or ↘ diagonal. Note that if
f(x) is a constant on the interval Ij,i, then Ji is a point, and the graph Ψ(x)/Ij,i
can be defined arbitrary, either increasing or decreasing in Ij,i × J ′

j . Then Ψ(x)
is the best u.d.p. approximation of f(x).

For example

0 1

J1

J2

J3

J4

1

�
�
���

�
�� �

�
�
�
�
�
�
�
�
�
�
�
�
�

0 1

J ′
1

J ′
2

J ′
3

J ′
4

1

�
�
��

�
�

f(x) Ψ(x)
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(IVa) The result in (IV) correspond (II) since we have Ψ(x) = gf
(
f(x)
)
. But

J. F i a l o v á used

1∫
0

(
f(x)−Ψ(x)

)2
dx =

1∫
0

f2(x) dx− 2

1∫
0

f(x)Ψ(x) dx+

1∫
0

Ψ2(x) dx,

∫ 1
0
Ψ2(x)dx = 1

3 which gives

max

1∫
0

f(x)Ψ(x) dx = min

1∫
0

(
f(x)−Ψ(x)

)2
dx.

(V) S. S t e i n e r b e r g e r (2009) generalized open problem to give bounds
for

1∫
0

f1
(
Φ1(x)
)
f2
(
Φ2(x)
)
. . . fs
(
Φs(x)
)
dx

of Riemann integrable f1, . . . , fs and u.d.p. maps Φ1, . . . ,Φs. He proved the
following partial results:

a) maxΦ1,...,Φs

∫ 1
0
f1
(
Φ1(x)
)
f2
(
Φ2(x)
)
. . . fs
(
Φs(x)
)
dx ≤(∏ni=1

∫ 1
0
|fi(x)|sdx

)1
s.

b) minΦ1,...,Φn

∫ 1
0
Φ1(x)Φ2(x) . . .Φs(x) dx ≥ 1

es .

c) minΦ1,...,Φs

∫ 1
0
Φ1(x)Φ2(x) . . .Φs(x) dx ≤ e

1
6s

s
s−2

4
π

1
es
.

Comments: Let xn, n = 1, 2, . . . , be a u.d. sequence in [0, 1) and g(t1, . . . , ts)
be an a.d.f. of the s-dimensional sequence

(
Φ1(xn), . . . ,Φs(xn)

)
, n = 1, 2, . . .

We have

g(t1, . . . , ts) =
∣∣Φ−1

1

(
[0, t1)
) ∩ · · · ∩ Φ−1

s

(
[0, ts)
)∣∣,

g(1 . . . , ti, 1 . . . , 1) = ti for i = 1, . . . , s, i.e., it is a copula and

1∫
0

f1
(
Φ1(x)
)
. . . fs
(
Φs(x)
)
dx =

∫
[0,1]s

f1(t1) . . . fs(ts) dg(t1, . . . , ts).

(VI) Thus we arrive at the open problem:
Find extreme values of

∫
[0,1]s

F (x) dg(x), where g(x) is an s-dimensional copula.

(VII) S. S t e i n e r b e r g e r (2010) generalized (I) to give bounds for the as-
ymptotic behavior of

1

N

N∑
n=1

||xn − yn||,
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where xn,yn are u.d. sequences in a bounded Jordan measurable domain Ω.
E.g., for s-dimensional ball he found the sharp inequality

1

N

N∑
n=1

||xn − yn|| ≤ 2s

s+ 1
.

(VIII) Open problem: Transform the theory of d.f.’s to the multidimensional
unit sphere S and find extremes of the energy integral∫

S

||x− y||sdg(x) dg(y).

The expository paper on Riesz energy can be found in J. B r a u c h a r t (2011).

(IX) See also problem 1.37.

Submitted by O. Strauch.
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1.30. Niederreiter-Halton (NH) sequence

Directly from R. H o f e r and G. L a r c h e r (2010): Niederreiter-Halton (NH)
sequence is a combination of different digital (Ti, wi)-sequences in different prime
bases q1, . . . , qr with w1 + · · ·+ wr = s into a single sequence in [0, 1)s.

Finite row NH sequence is a NH sequence if all generating matrices of the
component digital (Ti, wi)-sequences have each row containing only finitely
many entries different from zero.

Infinite row NH sequence is a (NH) sequence which is not finite row.

Digital (T, s)-sequence over Fq.
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• Let s be a dimension;

• q be a prime;

• Represent n = n0 + n1q + n2q
2 + · · · in base q;

• Let C1, . . . , Cs be N× N-matrices in the finite field Fq;

• Ci · (n0, n1, . . . )T = (y
(i)
0 , y

(i)
1 , . . . )

T ∈ FN
q ;

• x
(i)
n :=

y
(i)
0

q +
y
(i)
1

q2 + · · · ;
• The sequence xn =

(
x
(1)
n , . . . , x

(s)
n

)
is said to be (T, s)-sequence if for every

m ∈ N there existsT(m) such that 0 ≤ T(m) ≤ m and for all d1+· · ·+ds =
m−T(m) and the

(
m−T(m)

)×m-matrix consisting of
the upper left d1 ×m-submatrix of C1

the upper left d2 ×m-submatrix of C2

. . .
the upper left ds ×m-submatrix of Cs
has rank m−T(m).

If T is minimal we speak strict digital (T, s)-sequence.

Open Problem: Determine whether the following two-dimensional NH se-
quences in base 3 and, respectively, 2 are low-discrepancy sequences (i.e., D∗

N =
O((logN)s)/N)) or not:

1. C(1) is the unit matrix in F3 and

C(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 00 . . .0︸ ︷︷ ︸
l1

1 0 0 . . .

0 1 00 . . . . . . 0︸ ︷︷ ︸
l2

1 0 0 . . .

0 0 1 00 . . . . . . . . . 0︸ ︷︷ ︸
l3

1 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
in F2 with l1, l2, l3, . . . arbitrary but limn→∞ ln = ∞.

2. C(1) is the unit matrix in F3 and

C(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

l1︷ ︸︸ ︷
00 . . .0 1

l2︷ ︸︸ ︷
00 . . .0 1 0 . . .

0 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
in F2 and the first row contains infinitely many 1′s but with density 0.
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3.

C(1) = C(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . .

0 1 0 0 . . .

0 0 1 0 . . .

0 0 1 0 . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
but C(1) in F3 and C(2) in F2.

Notes. (I) A basic example is the Halton sequence which is a combination of s
digital (0, 1)-sequences in different prime bases q1, . . . , qs generated by the unit
matrices in Fqi for each i.

(II) General NH sequences were first investigated by R. H o f e r, P. K r i -
t z e r, G. L a r c h e r and F. P i l l i c h s h a mm e r (2009) and R. H o f e r
(2009) and she proved: NH sequence is u.d. if and only if each (Ti, wi) is u.d.

(III) A strictly digital (T, s)-sequence is u.d. if and only if

lim
m→∞
(
m−T(m)

)
= ∞.

If T(m) ≤ t for all m, then (T, s)-sequence is (t, s)-sequence.

(IV) R. H o f e r and G. L a r c h e r (2010) give concrete examples of digital
(0, s)-sequences generated by matrices with finite rows.
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1.31. Gauss-Kuzmin theorem and g(x) = gf (x)

Denote

f(x) = 1/xmod1,

gf (x) =

∫
f−1([0,x))

1.dg (x),

(gfn)f (x) = gfn+1(x),

g0(x) =
log(1 + x)

log 2
.

173



OTO STRAUCH

The problem is to find all solutions g(x) of the functional equation g(x) = gf (x)
for x ∈ [0, 1]. It is equivalent to

g(x) =

∞∑
n=1

g

(
1

n

)
− g

(
1

n+ x

)
for d.f. g(x), x ∈ [0, 1]. (1)

The following is known:

(I) g0(x) satisfies (1).

(II) Gauss-Kuzmin theorem: If g(x) = x, then gfn(x) → g0(x) and the rate

of convergence is O
(
q
√
n
)
, 0 < q < 1.

(III) Theorem in (II) was proved by R. K u zm i n (1928) assuming for a start-
ing function g(x)
(i) 0 < g′(x) < M and
(ii) |g′′(x)| < μ.
Thus, if g(x) satisfies (i), (ii), and (1), then g(x) = g0(x).

(IV) Theorem (II) was inspired by Gauss. He conjecturedmn(x) → g0(x), where
mn(x) =

∣∣{α ∈ [0, 1]; 1/rn(α) < x
}∣∣ and for continued fraction expansion

α =
[
a0(α); a1(α), a2(α), . . .

]
, rn(α) =

[
an+1(α); an+2(α), . . . ,

]
. In this

case mn(x) = gfn(x) for g(x) = x, since f
(
1/rn(α)

)
= 1/rn+1(α).

(V) For starting point x0 ∈ [0, 1] we define the iterate sequence xn as

x1 = f(x0), x2 = f
(
f(x0)
)
, x3 = f

(
f
(
f(x0)
))
, . . .

Then a.d.f. g(x) solves (1). For example, the sequence x1 = 1/r1, x2 =

1/r2, . . . for
√
5−1
2 = [0; 1, 1, 1, . . . ] produces solution g(x) = c√

5−1
2

(x).

(VI) Chain of solutions. If d.f. g1(x) solve the equation gf (x) = g(x) and
(g2)f (x) = g1(x), then g2(x) solve gf (x) = g(x), again. The g2(x) can be
found as solution

g1(x) =

∞∑
n=1

g2

(
1

n

)
− g2

(
1

n+ x

)
.

From it

g2

(
1

x+ 1

)
= 1− g1(x) +

∞∑
n=2

g2

(
1

n

)
− g2

(
1

n+ x

)
and thus it is suffice to define a non-increasing g2(x) on [0, 1/2), such that
(i) g2(0) = 0,

(ii)
∑∞
n=2 g2

(
1
n

)− g2
(

1
n+x

) ≤∑∞
n=1 g1

(
1
n

)− g1
(

1
n+x

)
,

(iii)
∑∞
n=2 g

′
2

(
1
n

)
1

(x+n)2 ≤∑∞
n=1 g

′
2

(
1
n

)
1

(x+n)2.
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(VII) If d.f. g1(x) and g2(x) satisfy (1) and g1(x) = g2(x) for x ∈ [0, 1/2), then
g1(x) and g2(x) coincide on the whole interval [0, 1]. Other sets of unique-
ness are

[
0, 1

n+1

) ∪ ( 1n , 1] for arbitrary positive integer n.

(VIII) If xn ∈ [0, 1) has a.d.f. g1(x), then
{

1
xn

}
has a.d.f.

g2(x) =
∑∞
n=1 g1

(
1
n

)− g1
(

1
n+x

)
.

Submitted by O. Strauch.
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1.32. Benford law

Let b ≥ 2 be an integer considered as a base for the development of positive
real number x > 0 and Mb(x) be a mantissa of x defined by x = Mb(x)× bn(x)

such that 1 ≤ Mb(x) < b holds, where n(x) is a uniquely determined integer.
Let K = k1k2 . . . kr be a positive integer expressed in the base b, that is

K = k1 × br−1 + k2 × br−2 + · · ·+ kr−1 × b+ kr,

where k1 	= 0 and at the same time K = k1k2 . . . kr is considered as an r-
consecutive block of integers in the base b. We have

K ≤Mb(x)× br−1 < K + 1

⇐⇒ K

br−1
≤Mb(x) <

K + 1

br−1

⇐⇒ logb

(
K

br−1

)
≤ logb

(
Mb(x)

)
< logb

(
K + 1

br−1

)

⇐⇒ logb

(
K

br−1

)
≤ logb xmod1 < logb

(
K + 1

br−1

)
. (1)

����������� A sequence xn, n = 1, 2, . . . , of positive real numbers satisfies
Benford law (abbreviated to B.L.) of order r if for every r-digits number
K = k1k2 . . . kr we have

lim
N→∞

#{n ≤ N ; first r digits of Mb(xn) are equal to K}
N

= logb(K+1)−logbK.

Here “the first r digits of Mb(xn) = K is the same as” the first r digits (starting
a non-zero digit) of xn = K.

����������� If a sequence xn, n = 1, 2, . . . , satisfies B.L. of order r, for ev-
ery r = 1, 2, . . . , then it is called that xn satisfies strong B.L. or extended or
generalized B.L. In the following we will described it as B.L.
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From (1) directly follows:

(I) 	
������ A sequence xn, xn > 0, n = 1, 2, . . . , satisfies B.L. if and only
if the sequence logb xnmod1 is u.d. in [0, 1).

(II) 	
������ For every K and r there rexists infinitely many n such that the
first r digits (starting a non-zero digit) of xn = K if and only if logb xnmod 1
is dense in [0, 1).

Characterization u.d. of logb xnmod 1 using d.f ’.s in G(xnmod 1)

In V. B a l á ž, K. N a g a s a k a and O. S t r a u c h (2010) is proved:

(III) 	
������ Let xn, n = 1, 2, . . . , be a sequence in (0, 1) and G(xn) be
the set of all d.f.s of xn. Assume that every d.f. g(x) ∈ G(xn) is continuous
at x = 0. Then the sequence xn satisfies B.L. in the base b if and only if for
every g(x) ∈ G(xn) we have

x =

∞∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
for x ∈ [0, 1]. (2)

Find all solutions of (2). Some examples are:

g(x) =

{
x if x ∈ [0, 1b ] ,
1 + logb x+ (1− x) 1

b−1 if x ∈ [ 1b , 1] .
g̃(x) =

{
0 if x ∈ [0, 1b ] ,
1 + log x

log b if x ∈ [ 1b , 1] ,
g∗(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, 1

b2

]
,

2 + log x
log b if x ∈ [ 1b2 , 1b ] ,

1 if x ∈ [ 1b , 1]

g∗∗(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, 1

b3

]
,

3 + log x
log b if x ∈ [ 1b3 , 1

b2

]
,

1 if x ∈ [ 1b2 , 1] .
(IV) Simple results:

(i) Fibonacci numbers Fn, n!, n
n, nn

2

, satisfy B.L.

(ii) The positive sequences xn and 1/xn, n = 1, 2, . . . satisfy B.L. in the base b
simultaneously.
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(iii) The positive sequences xn and nxn, n = 1, 2, . . . satisfy B.L. in the base b
simultaneously.

(iv) For a sequence xn > 0, n = 1, 2, . . . , assume that
– limn→∞ xn = ∞ monotonically,
– limn→∞ log xn+1

xn
= 0 monotonically.

Then the sequence xn satisfies B.L. in every base b if and only if

lim
n→∞

n log
xn+1

xn
= ∞.

(v) Assume xn > 0, n = 1, 2, . . . . If for every k = 1, 2, . . . the ratio sequence
xn+k/xn, n = 1, 2, . . . , satisfies B.L. in the base b, then the original se-
quence xn, n = 1, 2, . . . also satisfies B.L. in the base b, see A. I. P a v l o v
(1981).

(IX) J. L. B r o w n, J r. and R. L. D u n c a n (1970): Let xn be a sequence
generated by the recursion relation

xn+k = ak−1xn+k−1 + · · ·+ a1xn+1 + a0xn, n = 1, 2, . . . ,

where a0, a1, . . . , ak−1 are non-negative rationals with a0 	= 0, k is a fixed integer,
and x1, x2, . . . , xk are starting points. Assume that the characteristic polynomial

xk − ak−1x
k−1 − · · · − a1x− a0

has k distinct roots β1, β2, . . . , βk satisfying

0 < |β1| < · · · < |βk|
and such that none of the roots has magnitude equal to 1.

Then log xnmod 1 is u.d.

Furthermore, the general solution of the recurrence is xn =
∑k
j=1 αjβ

n
j and

if j0 is the largest value of j for which αj 	= 0 and if logb βj0 is irrational, then
also

logb xnmod1 is u.d.,

i.e., xn satisfies B.L. in the base b. This implies that Fibonacci and Lucas num-
bers obey B.L. what rediscovered L. C. W a s h i n g t o n (1981).

Submitted by O. Strauch.
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1.33. The integral
∫
[0,1]s

F (x,y) dg(x) dg(y) for d.f.’s g(x)

• Let F (x, y) be a real continuous symmetric function defined on [0, 1]2 and let
G(F ) be a set of all d.f.s g(x) satisfying

1∫
0

1∫
0

F (x, y) dg(x) dg(y) = 0. (1)

The study of G(F ) is motivated by the fact that for every sequence xn ∈ [0, 1)
we have

G(xn) ⊂ G(F ) ⇐⇒ lim
N→∞

1

N2

N∑
m,n=1

F (xm, xn) = 0,

where G(xn) is the set of all d.f.s of the sequence xn, n = 1, 2, . . . 1

This immediately follows from Riemann-Stieltjes integral

1∫
0

1∫
0

F (x, y) dFN (x) dFN (y) =
1

N2

N∑
m,n=1

F (xm, xn),

where FN (x) =
1
N#{n ≤ N ;xn < x}. Assuming limk→∞ FNk

(x) = g(x) for all
continuity points x of g, then Helly-Bray lemma implies

lim
k→∞

1∫
0

1∫
0

F (x, y) dFNk
(x) dFNk

(y) =

1∫
0

1∫
0

F (x, y) dg(x) dg(y).

Open problem is to solve
∫ 1
0

∫ 1
0
F (x, y) dg(x) dg(y) = 0 in d.f.’s g(x). The

multi-dimensional case is mentioned in Problem 2.2 (II).

Partial results:

(I) Let us denote

Fg̃(x, y) =

1∫
0

g̃2(t) dt−
1∫
x

g̃(t) dt−
1∫
y

g̃(t) dt+ 1−max(x, y).

1Define G(F = A) is the set of all d.f.s g(x) for which
∫ 1
0

∫ 1
0 F (x, y) dg(x) dg(y) = A, and

G(A ≤ F ≤ B) is the set of all d.f.s g(x) for which A ≤ ∫ 1
0

∫ 1
0 F (x, y) dg(x) dg(y) ≤ B.

Then again G(xn) ⊂ G(F = A) is equivalent to limN→∞ 1
N2

∑N
m,n=1 F (xm, xn) = A, and

G(xn) ⊂ G(A ≤ F ≤ B) is equivalent to A ≤ lim infN→∞ 1
N2

∑N
m,n=1 F (xm, xn) and

lim supN→∞
1
N2

∑N
m,n=1 F (xm, xn) ≤ B.
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From the relation

1∫
0

(
g(x)− g̃(x)

)2
dx =

1∫
0

1∫
0

Fg̃(x, y) dg(x) dg(y),

we see that the moment problem (1) with F (x, y) = Fg̃(x, y) has the unique
solution g(x) = g̃(x).

(II) Let F : [0, 1]2 → R be a continuous and symmetric function. For every
distribution functions g(x), g̃(x) we have

1∫
0

1∫
0

F (x, y) dg(x) dg(y) = 0 ⇐⇒
1∫

0

1∫
0

F (x, y) dg̃(x) dg̃(y)

=

1∫
0

(
g(x)− g̃(x)

)⎛⎝2 dxF (x, 1)− 1∫
0

(
g(y) + g̃(y)

)
dy dxF (x, y)

⎞⎠.
Especially, putting g̃(x) = c0(x), we have

1∫
0

1∫
0

F (x, y) dg(x) dg(y) = 0

⇐⇒ F (0, 0) =

1∫
0

(
g(x)− 1

)⎛⎝2 dxF (x, 1)− 1∫
0

(
g(y) + 1

)
dy dxF (x, y)

⎞⎠ .
• A symmetric continuous F (x, y) defined on [0, 1]2 is called copositive if

1∫
0

1∫
0

F (x, y) dg(x) dg(y) ≥ 0

for all distribution functions g : [0, 1] → [0, 1].

(III) Let F (x, y) be a copositive function having continuous F ′
x(x, 1) a.e., and

let g1(x) be a strictly increasing solution of the moment problem (1). Then for
every strictly increasing d.f. g(x) we have

1∫
0

1∫
0

F (x, y) dg(x) dg(y) = 0 ⇔ F ′
x(x, 1) =

1∫
0

g(y) dyF
′
x(x, y) a.e. on [0, 1],

Proposed by O. Strauch.
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1.34. Comparison of random sequences using the game theory

A finite two-person zero-sum matrix game with the payoff matrix A.

A =

⎛⎜⎜⎜⎝
a1,1 a1,2 . . . a1,m

a1,1 a1,2 . . . a1,m

. . . . . . . . . . . . . . . . . . . . . . .

am,1 am,2 . . . am,m

⎞⎟⎟⎟⎠
In this form, Player I chooses a row, Player II chooses a column, and II pays I the
entry in the chosen row and column. Note that the entries of the matrix are the
winnings of the row chooser and losses of the column chooser. This pure strategy
for Player I of choosing row imay be represented as the ei = (0, . . . , 0, 1, 0, . . . , 0),
the unit vector with a 1 in the ith position and 0-f’s elsewhere. Similarly,
the pure strategy for II of choosing the jth column may be represented by
ej = (0, . . . , 0, 1, 0, . . . , 0) and the payoff to I is

eiAeTj = ai,j .

Now, let Player I use a sequence e
(I)
n , n = 1, 2, . . . , of pure strategy and Player II

a sequence e
(II)
n , n = 1, 2, . . . , of pure strategy. Then the mean-value of the payoff

of I after N games is

1

N

N∑
n=1

e(I)n A(e(II)n )
T
.

Assume that there exist densities

lim
N→∞

1

N
#
{
n ≤ N ; e(I)n = ei

}
= pi, i = 1, 2, . . . ,m,

lim
N→∞

1

N
#
{
n ≤ N ; e(II)n = ei

}
= qi, i = 1, 2, . . . ,m.
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The vector

p = (p1, p2, . . . , pm)

is called a mixed strategy for Player I. Similarly,

q = (q1, q2, . . . , qn)

is a mixed strategy for Player II. If the sequences e
(I)
n and e

(II)
n are statistically

independent, then we have

lim
N→∞

1

N

N∑
n=1

e(I)n A
(
e(II)n

)T
= pAqT =

m∑
i,j=1

piai,jqj . (1)

The mixed strategies p and q can be computed optimally such that pAqT = 0,

but independence of e
(I)
n and e

(II)
n is a problem. Player with better sequence

can be found payoff positive.

Now, we transform the above matrix game to continuous case: Put

Ii,j = [p1 + p2 + · · ·+ pi−1, p1 + p2 + · · ·+ pi)

× [q1 + q2 + · · ·+ qj−1, q1 + q2 + · · ·+ qj).

Define F (x, y) on [0, 1]2 such that

F (x, y) = ai,j if (x, y) ∈ Ii,j, i, j,= 1, 2, . . . ,m. (1’)

Let Player I use u.d. sequence xn and Player II u.d. sequence yn, n = 1, 2, . . .
If (xn, yn) ∈ Ii,j the Player I choices pure strategy ei and Player II pure strate-
gy ej. Then mean value of the payoff of the Player I is

lim
N→∞

1

N

N∑
n=1

F (xn, yn) =

1∫
0

1∫
0

F (x, y) dg(x, y), (2)

where g(x, y) is a d.f. of the sequence (xn, yn), n = 1, 2, . . . .

Example: Odd or Even� Players I and II simultaneously call out one of the
numbers one or two. Player I wins if the sum of the numbers is odd. Player II
wins if the sum of the numbers is even. The payoff matrix A is

A =

(
−1 1

1 −1

)
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and the function F (x, y) corresponding to (1) is

-1 1

1 -1

F (x, y)

Let xn and yn, n = 1, 2, . . . be u.d. sequences such that (xn, yn has a.d.f. g(x, y).

(i) If g(x, y) = xy then
∫ 1
0

∫ 1
0
F (x, y) dx dy = 0.

(ii) If g(x, y) = min(x, y) then
∫ 1
0

∫ 1
0
F (x, y) dmin(x, y) =

∫ 1
0
F (x, x) dx = −1.

(iii) If g(x, y) = max(x + y − 1, 0) then
∫ 1
0

∫ 1
0
F (x, y) dmax(x + y − 1, 0) =∫ 1

0
F (x, 1− x) dx = 1.

(iv) If (xn, yn) =
(
γq(n), γq(n+1)

)
, where γq(n) is the van der Corput sequence

in the base q, then∫ 1
0

∫ 1
0
F (x, y) dg(x, y) = 4

q − 1. Thus for q = 2 Player I wins prize 1 and in the

case q > 5 he loses.

Proposed by O. Strauch.

1.35. Oscillating sums

Directly from J. A r i a s d e R e y n a and J. v a n d e L u n e (2008):

• Sα(n) =
∑n
j=1(−1)[jα] where α is any real number.

• Denoted by t0 = 0, t1, t2, . . . the sequence of those n for which Sα(n)
assumes a value for the first time, i.e., is larger/smaller than ever before.

• Let α = [a0; a1, a2, . . . ] and β = α/2 = [b0; b1, b2, . . . ] be simple continued
fraction expansins.

Open Problem: Determine whether the tk is recurrent and the sequence
sign
(
S(tk)
)
is to be purely periodic.

Notes. (I) H. D. R u d e r m a n (1977) proposed and D. B o r w e i n (1978)

solved (among other) that the series
∑∞
n=1(−1)[n

√
2]/n converges.

(II) P. B u n d s c h u h (1977) proved that the series
∑∞
n=1 (−1)[nα]/n converges

for numbers α with bounded bi of β = α/2 = [b0; b1, b2, . . . ].

(III) J. S c h o i s s e n g e i e r (2007) proved that the series
∞∑
n=1

(−1)[nα]/n and

∞∑
k=0,2�qk

(−1)k(log bk+1)/qk
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converge simultaneously. Here pk
qk

are convergents of β = α/2 = [b0; b1, b2, . . . ].

(IV) A. E. B r o u w e r and J. v a n d e L u n e (1976) have shown that Sα(n) ≥
0 for all n if and only if the partial quotients a2i of α = [a0; a1, a2, . . . ] are even
for all i ≥ 0.

(V) J. A r i a s d e R e y n a and J. v a n d e L u n e (2008) proved that Sα(n)
is not bounded, so that the corresponding sequence tk actually is an infinite
sequence. They also prove that for every j ≥ 1 there is an index k such that
tj−tj−1 = Qk, where Pk/Qk is a certain convergent of α = [a0; a1, a2, . . . ]. They
also give a fast algorithm for the computation of Sα(n) for any irrational α and
for very large n in terms of β = α/2 = [b0; b1, b2, . . . ], e.g., S√

2(10
1000) = −10,

S√
2(10

10000) = 166, Sπ(10
10000) = 11726.

REFERENCES

ARIAS DE REYNA, J.—VAN DE LUNE, J.: On some oscillating sums, Unif. Distrib.

Theory 3 (2008), 35–72.

BORWEIN, D.: Solution to problem no. 6105, Amer. Math. Monthly 85 (1978),

207–208.

RUDERMAN, H. D.: Problem 6105∗, Amer. Math. Monthly 83 (1977), 573.

BUNDSCHUH, P.: Konvergenz unendlicher Reihen und Gleichverteilung mod 1,
Arch. Math. 29 (1977), 518–523.

SCHOISSENGEIER, J.: The integral mean of discrepancy of the sequence (nα), Mo-

natsh. Math. 131 (2000), 227–234.

BROUWER, A. E.—VAN DE LUNE, J.: A note on certain oscillating sums, Math.

Centrum, Amsterdam, Afd. zuivere Wisk. ZW 90/76, 16 p. 1976.

1.36. Discrepancy system in the unit cube

Let Sn−1 be the unit sphere of the n-dimensional euclidean space Rn and a cap
is a portion of the sphere cut of by hyperplane. P. G r u b e r (2009) discus the
problem whether the family of all caps of given size is a discrepancy system.
A. V o l č i č (2011) in the planar case proved that the family of all arcs of S1

of a constant length l is a discrepancy system if l
2π is irrational. For rational

l
2π there exists a non-uniformly distributed sequence xm, m = 1, 2, . . . , in S1

such that {m≤N ;xn∈C}
N → l

2π for every arc C ⊂ S1 of the length l. In the case
n − 1 ≥ 2, V o l č i č (2011) proved that if s is a zero of a d + 2 dimensional
Legendre polynomial of even degree, then xm need not be uniformly distributed

even if #{n≤N ;xm∈Cs}
N → P (Cs) for any spherical cap Cs(u) = {v ∈ Sn−1;

u.v ≥ s}. Here P is the the normalized Hausdorff measure on the sphere and u.v
is the usual scalar product in Rn. In his proof he used P. U n g a r result (1954)
that
∫
Cs
fdP = 0 for all spherical caps Cs need not imply f = 0.
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(I) Open Problem: Discuss a similar problem in [0, 1]s. For example:

(II) Let xn, n = 1, 2, . . . , be a sequence in [0, 1) such that #{n≤N ;xn∈I}
N → |I|

for all intervals I ⊂ [0, 1] of the fixed length |I| = a. Then xn need not be u.d.

P r o o f . All g(x) ∈ G(xn) must satisfy

g(x+ a) = g(x) + a for x ∈ [0, 1− a]. (1)

The following d.f. g(x) satisfies (1) but g(x) 	= x.

�
�
�
�
�
�

g(x)

0 1a

Proposed by O. Strauch.
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1.37. Extremes of
∫ 1
0

∫ 1
0
F (x, y) dx dy g(x, y) attained at shuffles of M

(I) R. B. N e l s e n [1999, p. 59, 3.2.3.]: Let Ii, i = 1, 2, . . . , n be a decompo-
sition of the unit interval [0, 1], let π be a permutation of (1, 2, . . . , n), and let
T : [0, 1] → [0, 1] be an one-to-one map whose graph T is formed by diagonals
or anti-diagonals of squares Ii × Iπ(i), i = 1, 2, . . . , n. Then the copula C(x, y)
defined by

C(x, y) =
∣∣∣Projectx(([0, x)× [0, y)

) ∩ T)∣∣∣
is called the shuffle of M .

(II) M. H o f e r and M. R. I a c ò (2013) proved: Let (ai,j), i, j = 1, 2, . . . , n
be a real-valued n× n matrix. Let

Ii,j =

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
, i, j = 1, 2, . . . , n
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and let the piecewise constant function F (x, y) be defined as

F (x, y) = ai,j if (x, y) ∈ Ii,j, i, j = 1, 2, . . . , n.

Then

max
g(x,y)-copula

1∫
0

1∫
0

F (x, y) dx dyg(x, y) =
1

n

n∑
i=1

ai,π∗(i).

Here π∗(i) maximizes
∑n
i=1 ai,π(i), where π is a permutation of (1, 2, . . . , n).

The maximum is attained at g(x, y) = C(x, y), where C(x, y) is the shuffle of M
whose graph T is formed by diagonals or anti-diagonals in Ii,π∗(i), i = 1, 2, . . . , n.

(III) Applying (II) M. H o f e r and M. R. I a c ò approximate extremes of

1∫
0

1∫
0

F (x, y) dg(x, y)

which respect to copulas g(x, y) by the following: For continuous F (x, y) on [0, 1]2

define piecewise constant functions F1(x, y), F2(x, y) as

F1(x, y ) = min
(u,v)∈Ii,j

F (u, v) if (x, y) ∈ Ii,j , i, j = 1, 2, . . . , n,

F2(x, y) = max
(u,v)∈Ii,j

F (u, v) if (x, y) ∈ Ii,j , i, j = 1, 2, . . . , n,

where

Ii,j =

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
.

Let C0(x, y), C1(x, y), C2(x, y) be copulas such that

C1(x, y) maximizes

1∫
0

1∫
0

F1(x, y) dg(x, y),

C2(x, y) maximizes

1∫
0

1∫
0

F2(x, y) dg(x, y)

and

C0(x, y) maximizes

1∫
0

1∫
0

F (x, y) dg(x, y).

over all copulas g(x, y). Then

1∫
0

1∫
0

F (x, y)dC0(x, y) = lim
n→∞

1∫
0

1∫
0

F1(x, y) dC1(x, y) = lim
n→∞

1∫
0

1∫
0

F2(x, y) dC2(x, y).

185



OTO STRAUCH

(IV) Open problem: Using (III) and a numerical experiment the authors con-

jecture that the extreme of
∫ 1
0

∫ 1
0
sin
(
π(x+ y)

)
dx dyg(x, y) is

max
g(x,y)-copula

1∫
0

1∫
0

sin
(
π(x+ y)

)
dx dyg(x, y) =

3

4
√
2
− 1

2π

and it is attained at shuffle of M formed by anti-diagonal of
[
0, 34
]× [0, 34 ] and

by diagonal
[
3
4 , 1
]× [ 34 , 1]. Compare with Problem 1.29.

(V) The copula in (IV) satisfies (IIIb) in 1.29 which is a necessary condition for
a copula maximizing a related integral.

(VI) Note that if xn, n = 1, 2, . . . , is a u.d. sequence, then two-dimensional
sequence

(
xn, T (xn)

)
has a.d.f C(x, y) and thus for every continuous F (x, y) we

have
1∫

0

1∫
0

F (x, y) dC(x, y) =

1∫
0

F
(
x, T (x)

)
dx.

REFERENCES
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1.38. Two-dimensional Benford’s law

Let xn > 0, yn > 0, n = 1, 2, . . . and b > 1 be an integer base, K1, K2 be positive
integers, and

K1 = k
(1)
1 k

(1)
2 . . . k(1)r1 in base b, K2 = k

(2)
1 k

(2)
2 . . . k(2)r2 in base b,

u1 = logb

(
K1

br1−1

)
, u2 = logb

(
K1 + 1

br1−1

)
,

v1 = logb

(
K2

br2−1

)
, v2 = logb

(
K2 + 1

br2−1

)
.

(I) As in Problem 1.32 we have

first r1 digits (starting a non-zero digit) of xn = K1 ⇐⇒ {logb xn} ∈ [u1, u2),

first r2 digits (starting a non-zero digit) of yn = K2 ⇐⇒ {logb yn} ∈ [v1, v2).
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Denote 2

FN (x, y) =
#{n ≤ N ; {logb xn} < x and {logb yn} < y}

N
.

(II) From definition of d.f.’s the following holds:

Let g(x, y) ∈ G
({logb xn}, {logb yn}) and limk→∞ FNk

(x, y) = g(x, y) for

(x, y) ∈ [0, 1]2. Then

lim
k→∞

#{n ≤ Nk; first r1 digits of xn = K1 and first r2 digits of yn = K2

Nk

= g(u2, v2) + g(u1, v1)− g(u2, v1)− g(u1, v2).

(III) As example we give:

G
({

logb n}, {logb(n+ 1)
})

=

{
gu(x, y) =

bmin(x,y) − 1

b− 1

1

bu
+
bmin(x,y,u) − 1

bu
;u ∈ [0, 1]

}
.

By the Sklar theorem

gu(x, y) = min
(
gu(x), gu(y)

)
, where

gu(x) =
bx − 1

b− 1
· 1

bu
+
bmin(x,u) − 1

bu
.

Put xn = logb nmod 1 and yn = logb(n+ 1)mod1. Then by (II)

lim
k→∞

#{n ≤ Nk; first r1 digits of xn = K1 and first r2 digits of yn = K2

Nk

= gu(u2, v2) + gu(u1, v1)− gu(u2, v1)− gu(u1, v2).

If K1 = K2 then = gu(u2)− gu(u1). It can be found directly.

In the following examples we use statistical independent sequences: Let xn ∈
[0, 1), n = 1, 2, . . . , be an u.d. sequence. Then

(IV) xn and logb nmod1 are statistically independent (G. R a u z y (1973) see
[SP, p. 2–27, 2.3.6.].

(V) xn and logb(n logn)mod 1 are statistically independent Y. O h k u b o (2011).

(VI) xn and logb pnmod 1 are statistically independent (Y. O h k u b o (2011)).

(VII) The sequences logb nmod 1, logb pnmod1 and logb lognmod1 have the
same set of d.f.’s. (Y. O h k u b o (2011).

(VIII) From (IV) it follows: Let xn ∈ [0, 1), n = 1, 2, . . . , be u.d. sequence.

2In the following the sentence “starting a non-zero digit” we will not mention.
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Then

G
(
xn, {logb n}

)
=
{
gu(x, y) = x.gu(y);u ∈ [0, 1]

}
,

where

gu(x) =
bx − 1

b− 1
· 1

bu
+
bmin(x,u) − 1

bu

and FNk
(x, y) → gu(x, y) if {logbNk} → u.

(IX) Let xn ∈ [0, 1), n = 1, 2, . . . , be u.d. sequence. Then

G
(
xn, {logb pn}

)
=
{
gu(x, y) = x.gu(y);u ∈ [0, 1]

}
,

where

gu(x) =
bx − 1

b− 1
· 1

bu
+
bmin(x,u) − 1

bu

and FNk
(x, y) → gu(x, y) if {logbNk} → u.

(X) We have

G
({logb Fn}, {logb pn}) = {x.gu(y);u ∈ [0, 1]

}
and let {logbNk} → u. Then

lim
k→∞

#{n ≤ Nk; first r1 digits of Fn = K1 and first r2 digits of pn = K2}
Nk

= u2gu(v2) + u1gu(v1)− u2gu(v1)− u1gu(v2),

where Fn is the sequence of Fibonacci numbers and pn is the increasing sequence
of all primes and

u1 = logb

(
K1

br1−1

)
, u2 = logb

(
K1 + 1

br1−1

)
,

v1 = logb

(
K2

br2−1

)
, v2 = logb

(
K2 + 1

br2−1

)
,

gu(x) =
bx − 1

b− 1
· 1

bu
+
bmin(x,u) − 1

bu
.

(XI) Problem 1.38 is inspired by the result of F. L u c a and P. S t a n i c a
(2014): There exists infinite many n such that Fibonacci number Fn starts with
digits K1 and φ(Fn) starts with digits K2 in the base b representation. Here K1

and K2 are arbitrary and ϕ(x) is the Euler function.

We see that (XI) is equivalent to the sequence(
logb Fn, logb ϕ(Fn)

)
mod 1, n = 1, 2, . . . ,

is everywhere dense in [0, 1]2, but the authors use the following method:

(i) By the first author ϕ(Fn)/Fn is dense in [0, 1]. Thus, for an interval I with
arbitrary small length which containingK2/K1, there exists ϕ(Fa)/Fa ∈ I.

188



UNSOLVED PROBLEMS

(ii) Then ϕ(Fap)/Fap ∈ I for all sufficiently large primes p.

(iii) There exists infinitely many primes p such that Fap starts with K1.

(iv) Finally, multiplying I by Fap they find ϕ(Fap) which starts with K2.

(XII) ����������� The sequence (xn, yn), xn > 0, yn > 0, n = 1, 2, . . . , satisfies
2-dimensional B.L. in base b, if for every K1, K2 we have

lim
N→∞

#{n ≤ N ; the first r digits of xn= K1 and the first l digits of yn = K2}
N

= logb

(
1 +

1

K1

)
. logb

(
1 +

1

K2

)
.

(XIII) From definition follows: The sequence (xn, yn) satisfies 2-dimensional Ben-
ford law (B.L.) if and only if (logb xn, logb yn)mod1 is u.d. in [0, 1)2.

(XVI) Open problem: Prove that the sequence (nn
2

, nn) satisfies 2-dimen-
sional B.L. in any base b. Motivation is that by [SP, 3.13.4.] the sequence
(n2 logn, n logn)mod1 is u.d. in [0, 1]2.

(XV) Open problem: Prove that the sequence (logb n, logb logn)mod1 is dense
in [0, 1]2. If this is true, then there exists infinite many n such that n starts
with digits K1 and log n starts with digits K2 in the base b representation,
where K1 and K2 are arbitrary positive integers. By [SP, 3.13.5.] the sequence
(logn, log logn)mod 1 is dense in [0, 1]2 but not u.d.

Proposed by O. Strauch.
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2. Open theories

2.1. Uniform distribution theories

There are some different ways for generalizing of the classical u.d. theory, see
[KN, Chap. 3 and 4], [H, Chap. 2], [DT, Chap. 2] and [SP, p. 1–5, 1.5]. For ex-
ample:

• Points of investigated sequences xn are elements from a general space.

• For basic sets Ax =
{
n ∈ N;xn ∈ [0, x)

}
in the definition of u.d. as

d(Ax) = x, the asymptotic density d is exchanged by another types of den-
sities.

• The asymptotic density d is preserved but in Ax the relation xn ∈ [0, x) is
exchanged by more complicated relations (cf. O. S t r a u c h (1998)).

Here we start with a main theorem of u.d. theory due to H. W e y l (cf. [KN,
p. 2, Th. 1.1], [SP, p. 1–4, Th. 1.4.0.1]):

����� ����� ��������� The sequence u(n), n = 1, 2, . . . from the unit interval
[0, 1] is u.d. if and only if for every continuous f : [0, 1] → R we have

1∫
0

f(x) dx = lim
N→∞

1

N

N∑
n=1

f
(
u(n)
)
.

This relation can be used as a definition of u.d. of u(n) and also for defini-
tion of u.d. in abstract spaces, see [KN, p. 171, Def. 1.1]: Let X be a compact
Hausdorff space and C(X) consists of all real-valued continuous functions on X.
Let dX be a nonnegative regular normed Borel measure in X. The sequence
u(n) ∈ X, n = 1, 2, . . . is called u.d. in X with respect to dX if

∀ (f ∈ C(X)
)∫
X

f(X) dX = lim
N→∞

1

N

N∑
n=1

f
(
u(n)
)
.

The basic application of Weyl’s limit relation is a possibility computing the Rie-

mann integral
∫ 1
0
f(x) dx on [0, 1] of a continuous function f(x) as the limit

limN→∞ 1
N

∑N
n=1 f
(
u(n)
)
of arithmetic means of f(x) (quasi-Monte Carlo me-

thod) and vice-versa, the limit of arithmetic means by integral. Looking at

limN→∞ 1
N

∑N
n=1 f
(
u(n)
)
as an integral defined on Z+, then the classical u.d.

theory is the theory of coherence between two types of integrals. Thus the con-
cept of u.d. theory can be generalized (see O. S t r a u c h [1999, Chap. 4])
to a theory of the integral equation∫

X

f(X) dX =

∫
Y

f
(
u(Y )
)
dY, (1)
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of two types of integrals, where X,Y are arbitrary spaces equipped with inte-
grals or measures dX and dY, respectively, or more generally, equipped with
functionals which in the following we also call integrals. Here f : X → R and
u : Y → X. The main problem is to compute integral of the first type on the
left-hand (1) by the integral of the second type on the right-hand side. This is
our aim in these new u.d. theories. Here are a few selected spaces with theories
of integration.

X1 = [0, 1], equipped with the integral
∫ 1
0
f(x) dx;

X2 = {1, 2, . . .}, equipped with the integral limN→∞ 1
N

∑N
n=1 f(n);

X3 = [0,+∞), equipped with the integral limT→∞ 1
T

∫ T
0
f(x) dx;

X4 = [0, 1], equipped with the integral maxx∈[0,1] f(x);

X5 = {1, 2, . . .}, equipped with the integral lim supN→∞
1
N

∑N
n=1 f(n);

X6 = [0,+∞), equipped with the integral
∫ +∞
0

f(x) dx;

X7 = {1, 2, . . .}, equipped with the integral limN→∞ 1
Nα

∑N
n=1 f(n);

X8 = [0, 1]s, equipped with the integral
∫
[0,1]s

f(x) dx;

X9 = {1, 2, . . .} × [0,+∞), equipped with the integral

limN,T→∞ 1
NT

∑N
n=1

∫ T
0
f(n, x) dx.

Varying couples (Xi,Xj) we find the following known u.d. theories

• ∫ 1
0
f(x) dx = limN→∞ 1

N

∑N
n=1 f
(
u(n)
)
– classical u.d. theory;

• ∫ 1
0
f(x) dg(x) = limN→∞ 1

N

∑N
n=1 f
(
u(n)
)
– theory of g-distributed se-

quences, see [KN, pp. 54–57] and [SP, p. 1–11, 1.8.1.];

• ∫ 1
0
f(x) dx = limT→∞ 1

T

∫ T
0
f
(
u(x)
)
dx – c.u.d. theory, see [KN, pp. 78–87]

and [DT, pp. 277–300];

• ∫ 1
0
f(x) dx =

∫ 1
0
f
(
u(x)
)
dx – theory of u.d. preserving functions, it was

introduced by Š. P o r u b s k ý, T. Š a l á t and O. S t r a u c h (1998), see
[SP, p. 2–45, 2.5.1];

• maxx∈[0,1] f(x) = lim supN→∞
1
N

∑N
n=1 f
(
u(n)
)
– theory of maldistributed

sequences, it was introduced by G. M y e r s o n (1993), see [SP, p. 1–19,
1.8.10];

• limN→∞ 1
N

∑N
n=1 f(n) = limN→∞ 1

N

∑N
n=1 f
(
u(n)
)
– u.d. theory in Z, see

[KN, pp. 305–319].

These examples lead to the following common definition.
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����������� Let C be a set of functions f : X→R. The u.d. theory (C,X,Y)-u.d.
is a theory of functions u : Y → X satisfying

∀ (f ∈ C)
∫
X

f(X) dX =

∫
Y

f
(
u(Y )
)
dY. (2)

These functions u are called u.d. in (C,X,Y)-u.d. theory.

• The (X,Y)-u.d. theory is a theory of the integral equation (1), in which
the set C is not strictly specified.

• The (Y,X)-u.d. is the inverse theory to the (X,Y)-u.d.

• The (X,Y)-u.d. theory is empty if there does not exist any u for some
class f such that (1) is valid.

• The (X,X)-u.d. theory of
∫
X
f(X) dX =

∫
X
f
(
u(X)
)
dX is a theory of in-

tegration, where the inside part u(X) can be omitted. We shall call it u.d.
preserving theory (abbreviating u.d.p. theory), because the equation∫

X

f(X) dX =

∫
X

f
(
u(X)
)
dX=

∫
Z

f
(
u
(
v(Z)
))
dZ (3)

gives

	
������ Let u be u.d. in (C,X,X)-u.d. theory and C ◦ u = C, where C ◦ u ={
f(u(X); f ∈ C}. Then

v is u.d. in (C,X,Z) ⇐⇒ u ◦ v is u.d. in (C,X,Z).
• Using the equation∫

X

f(X) dX =

∫
Y

f
(
u(Y )

)
dY =

∫
Z

f
(
u
(
v(Z)

))
dZs (4)

a new (Y,Z)-u.d. theory can be found by means of known (X,Y)-u.d. and
(X,Z)-u.d. theory.

In the following we list some new u.d theories:

(I) limN→∞ 1
N

∑N
n=1 f(n) =

∫ 1
0
f
(
u(x)
)
dx is an inverse theory to the classical

u.d. one.

(II) limT→∞ 1
T

∫ T
0
f(x) dx =

∫ 1
0
f
(
u(x)
)
dx is an inverse theory to the c.u.d.

theory.

(III)
∫ +∞
0

f(x) dx = limN→∞ 1
N

∑N
n=1 f
(
u(n)
)
is an empty u.d. theory.

(IV) In
∫ 1
0

∫ 1
0
f(x, y) dx dy =

∫ 1
0
f
(
u(x), v(x)

)
dx, the curve

(
u(x), v(x)

)
must

be Peano. The equation (4) in the form
1∫

0

1∫
0

f(x, y) dx dy =

1∫
0

f
(
u(x), v(x)

)
dx = lim

N→∞
1

N

N∑
n=1

f
(
u
(
w(n)

)
, v
(
w(n)

))
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gives that
(
u(x), v(x)

)
is u.d. in this theory if and only if for every classical

u.d.sequence w(n), n = 1, 2, . . . , in [0, 1], the sequence
(
u(w(n)), v(w(n))

)
is u.d. in [0, 1]2.

(V) In limT→∞ 1
T

∫ T
0
f(x) dx = limN→∞ 1

N

∑N
n=1 f
(
u(n)
)
, assuming that C

contains only bounded continuous functions f which have bounded vari-
ation on every interval [0, n] such that V

(
f/[0, n]

)
= O(n), then we can

construct u.d. sequence u(n) directly: u(i), i = 1, 2, . . . , n2 is composed
with n parts that are contained in the intervals [0, 1), [1, 2), . . . , [n− 1, n),
all are congruent mod 1 and having discrepancy D∗

n → 0. By applying
Koksma inequality we have∣∣∣∣ 1n

n∫
0

f(x) dx− 1

n2

n2∑
i=1

f
(
u(i)

)∣∣∣∣≤ D∗
n
V (f/[0, n))

n
.

(VI) In
∫ 1
0
f(x) dx = limN,T→∞ 1

NT

∑N
n=1

∫ T
0
f
(
u(n, x)

)
dx we can used the fol-

lowing L2 discrepancy

D
(2)
N,T (u) =

1

3
+

1

NT

N∑
n=1

T∫
0

(
u(n, x)

)2
dx− 1

NT

N∑
n=1

T∫
0

u(n, x) dx

− 1

2(NT )2

N∑
m,n=1

T∫
0

T∫
0

|u(m, x1)− u(n, x2)| dx1 dx2,

which characterizes u.d. of u(n, x).

(VII) The
∫ 1
0
f(x) dx =

∫ 1
0
f
(
u(x)
)
dx is known u.d.p. theory, where the (3) has

the form
1∫

0

f(x) dx =

1∫
0

f
(
u(x)

)
dx = lim

N→∞
1

N

N∑
n=1

f
(
u
(
v(n)

))
which gives

(∗) u(x) is u.d.p. ⇐⇒ u
(
v(n)
)
is u.d. in [0, 1].

In [SP, p. 2–45, 2.5.1] the result (*) was used as definition: The map u : [0, 1]→
[0, 1] is called uniform distribution preserving (abbreviated u.d.p.) if for any
u.d. sequence xn, n = 1, 2, . . . , in [0, 1] the sequence u(xn) is also u.d. In this
u.d.p. theory we register the following progress:

A Riemann integrable function u : [0, 1] → [0, 1] is a u.d.p. transformation
if and only if one of the following conditions is satisfied:

(i)
∫ 1
0
h(x) dx =

∫ 1
0
h
(
u(x)
)
dx for every continuous h : [0, 1] → R.

(ii)
∫ 1
0

(
u(x)
)k
dx = 1

k+1 for every k = 1, 2, . . .

(iii)
∫ 1
0
e2πiku(x)dx = 0 for every k = ±1,±2, . . .
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(iv) There exists an increasing sequence of positive integers Nk and an Nk–
–almost u.d. sequence xn for which the sequence u(xn) is also Nk–almost
u.d.

(v) There exists an almost u.d. sequence xn in [0, 1) such that the sequence
u(xn)− xn converges to a finite limit.

(vi) There exists at least one x ∈ [0, 1] of which orbit x, u(x), u
(
u(x)
)
, . . . is

almost u.d.

(vii) u is measurable in the Jordan sense and |u−1(I)| = |I| for every subinterval
I ⊂ [0, 1].

(viii)
∫ 1
0
u(x) dx =

∫ 1
0
x dx = 1

2 ,∫ 1
0

(
u(x)
)2

dx =
∫ 1
0
x2 dx = 1

3 ,∫ 1
0

∫ 1
0
|u(x)− u(y)| dx dy =

∫ 1
0

∫ 1
0
|x− y| dx dy = 1

3 .

From the other properties of u.d.p. transformations let us mention:

(ix) Let u1, u2 be u.d.p. transformations and α a real number. Then u1
(
u2(x)
)
,

1− u1(x) and u1(x) + αmod 1 are again u.d.p. transformations.

(x) Let un be a sequence of u.d.p. transformations uniformly converging to u.
Then u is u.d.p.

(xi) Let u : [0, 1] → [0, 1] be piecewise differentiable. Then u is u.d.p. if and
only if

∑
x∈u−1(y)

1
|u′(x)| = 1 for all but a finite number of points y ∈ [0, 1].

(xii) A piecewise linear transformation u : [0, 1] → [0, 1] is u.d.p. if and only
if |Jj | = |Ij,1| + · · · + |Jj,nj

| for every Jj = (yj−1, yj), where 0 = y0 <
y1 < · · · < ym = 1 is the sequence of ordinates of the ends of line segment
components of the graph of f and u−1(Jj) = Ij,1 ∪ · · · ∪ Jj,nj

.

(xiii) u(x) is u.d.p. if and only if

1∫
0

1∫
0

F
(
u(x), u(y)

)
dx dy = 0,

where

F (x, y) = (1/2)
(|x− u(y)|+ |y − u(x)| − |x− y| − |u(x)− u(y)|).

Notes.

The problem to find all continuous u.d.p. is formulated in J a.- I. R i v k i d (1973).
The results (i)-(vii), (ix)-(xii) are proved in Š. P o r u b s k ý, T. Š a l á t and
O. S t r a u c h (1988). The criterion (viii) and (xiii) are given in O. S t r a u c h
[1999, p. 116, 67]. Some parts of these results are also proved independently
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in W. B o s c h (1988). R. F. T i c h y and R. W i n k l e r (1991) gave a generali-
zation for compact metric spaces. Some related results can be found in: M. P a š -
t é k a (1987), Y. S u n (1993, 1995), P. S c h a t t e (1993), S. H. M o l n á r (1994)
and J. S c h m e l i n g and R. W i n k l e r (1995).

Multidimensional u.d.p. map Φ: [0, 1]s→ [0, 1]s is called uniformly distribu-
tion preserving (u.d.p.) map if for every uniformly distributed (u.d.) sequence
xn, n=1, 2, . . . , the image Φ(xn) is again u.d. The main criterion of u.d.p. map is

	
������ A map Φ(x) is u.d.p. if and only if for every continuous f : [0, 1]s→R
we have ∫

[0,1]s

f
(
Φ(x)
)
dx =

∫
[0,1]s

f(x) dx.

The multi-dimensional u.d.p. functions are:

(i) Φ(x) = x⊕ σ, where

x⊕ σ = x0+σ0 (mod b)
b + x1+σ1 (mod b)

b2 + · · · and

x⊕ σ = (x1 ⊕ σ1, x2 ⊕ σ2, . . . , xs ⊕ σs);

(ii) Φ(x) =
(
Φ1(x1), . . . ,Φs(xs)

)
, where Φn(x) are one-dimensional u.d.p.

maps, especially

(iii) Φ(x) = bαx mod1 =
(
bα1
1 x1, . . . , b

αs
s xs
)
mod 1;

(iv) Φ(x) = x+ σ mod 1 = (x1 + σ1, . . . , xs + σs)mod 1;

(v) Φ(x) = (Ax)T mod 1, where A is an s × s nonsingular integer matrix,
cf. S. S t e i n e r b e r g e r [Th. 2, 2009];

(vi) Φ(x) = π(x), where π(x) =
(
xπ(1), . . . , xπ(n)

)
is a permutation.

Open question: Find another multidimensional u.d.p.

Proposed by O. Strauch.
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PORUBSKÝ, Š.—ŠALÁT, T.—STRAUCH, O.: Transformations that preserve uni-

form distribution, Acta Arith. 49 (1988), 459–479.

RIVKIND, JA. I.: Problems in Mathematical Analysis (2nd ed.). Izd. Vyšejšaja škola,
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2.2. Distribution functions of sequences

For a multi-dimensional sequence xn, n = 1, 2, . . . , in [0, 1)s, the theory of the set
G(xn) of all d.f.s of xn, n = 1, 2, . . . , is open. A motivation to study of G(xn) is
the deterministic analysis of sequences in 2.3.3 The set G(xn) has the following
fundamental properties for every sequence xn in [0, 1)s:

(I) G(xn) is non-empty, and it is either a singleton or has infinitely many ele-
ments. Precisely, G(xn) is non-empty, closed and connected set in the weak to-
pology, and these properties are characteristic for G(xn), i.e., given a non-empty
set H of distribution functions, there exists a sequence xn in [0, 1)s such that
G(xn) = H if and only if H is closed and connected.

(II) There are no general methods for computing G(xn), without the following
one: Let F (x,y) be a continuous function defined on [0, 1]s× [0, 1]s and let G(F )
be the set of all d.f.’s g(x) satisfying∫

[0,1]s×[0,1]s

F (x,y) dg(x) dg(y) = 0. (1)

If the sequence xn, n = 1, 2, . . . , satisfies

lim
N→∞

1

N2

N∑
n,m=1

F (xm,xn) = 0,

then G(xn) ⊂ G(F ).

Open problem 1. Find a method for solving the moment problem (1).

3We shall identify the notion of the distribution of a sequence xnmod 1, n = 1, 2, . . . , with

the set G(xnmod 1), i.e., the distribution of xnmod 1 is known if we know the set G(xnmod1).
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(III) The definition of d.f.s of sequences in the multi-dimensional case is different
as in the one-dimensional one.

• If x = (x1, . . . , xs) ∈ Rs is given, then xmod1 denotes the sequence
({x1}, . . .

. . . , {xs}
)
. If xn = (xn,1, . . . , xn,s) is the sequence of points in Rs, then we define

• the s-dimensional counting function by

A
(
[u1, v1)× · · · × [us, vs);N ;xnmod 1

)
=

#
{
n ≤ N{xn,1} ∈ [u1, v1), . . . , {xn,s} ∈ [us, vs)

}
.

• the s-dimensional step d.f. also called the empirical distribution by

(i) FN (x) =
1
NA
(
[0, x1)× · · · × [0, xs);N ;xnmod1

)
if x ∈ [0, 1)s,

(ii) FN (x) = 0 for every x having a vanishing coordinate,

(iii) FN (1) = 1,

(iv) FN (1, . . . , 1, xi1, 1, . . . , 1, xi2 , 1, . . . , 1, xil, 1 . . . , 1) = FN (xi1 , xi2 , . . . , xil)
for every restricted l-dimensional face sequence (xn,i1 , xn,i2 , . . . , xn,il)
of xn for l = 1, 2, . . . , s.

Then

• If f : [0, 1]s → R is continuous, again

1

N

N∑
n=1

f(xnmod 1) =

∫
[0,1]s

f(x) dFN (x).

• A function g : [0, 1]s → [0, 1] is called a d.f. if

(i) g(1) = 1,

(ii) g(0) = 0, and moreover g(x) = 0 for any x with a vanishing coordinate,

(iii) g(x) is non-decreasing, i.e., Δ
(s)
hs

(
. . .(Δ

(1)
h1
g(x1, . . . , xs))

)≥ 0 for any hi≥0,
xi + hi ≤ 1, where

Δ
(i)
hi
g(x1, . . . , xs) = g(x1, . . . , xi + hi, . . . , xs)− g(x1, . . . , xi, . . . , xs).

• If g is such d.f. then
∫
[0,1]2

dg(x) = 1.

• If dg(x) = Δ
(s)
dxs

. . .Δ
(1)
dx1

g(x1, . . . , xs) is the differential of g(x) at the point

x = (x1, . . . , xs), then also dg(x) = Δ(g, J), where J = [x1, x1 + dx1] × . . .
· · · × [xs, xs + dxs], and Δ(g, J) is an alternating sum of the values of g at the
vertices of J (function values at the adjacent vertices have opposite signs), i.e.,

Δ(g, J) =

2∑
ε1=1

· · ·
2∑

εk=1

(−1)ε1+···+εkg
(
x(1)ε1 , . . . , x

(k)
εk

)
for an interval J =

[
x
(1)
1 , x

(1)
2

]× [x(2)1 , x
(2)
2

]×· · ·× [x(k)1 , x
(k)
2

] ⊂ [0, 1]k. Moreover,
g(x) is non-decreasing if and only if dg(x) ≥ 0 for every x ∈ [0, 1]s and dx ≥ 0.
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• The d.f. g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil, 1 . . . , 1) is called an l-dimen-
sional face d.f. of g in variables (xi1 , xi2 , . . . , xil) ∈ (0, 1)l, 0 ≤ l ≤ s.

• We shall identify two d.f.’s g(x) and g̃(x) if:

(i) g(x) = g̃(x) at every common point x ∈ (0, 1)s of continuity, and

(ii) g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) =

= g̃(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1)

at every common point (xi1 , xi2 , . . . , xil) ∈ (0, 1)l of continuity in every
l-dimensional face d.f. of g and g̃, l = 1, 2, . . . , s.

• The s-dimensional d.f. g(x) is a d.f. of the sequence xnmod 1 if

(i) g(x) = limk→∞ FNk
(x) for all continuity points x ∈ (0, 1)s of g (so-called

the weak limit) and,

(ii) g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) =

= limk→∞ FNk (xi1 , xi2 , . . . , xil)

weakly over (0, 1)l and every l-dimensional face sequence of xn for
l = 1, 2, . . . , s, and for a suitable sequence of indices N1 < N2 < · · ·

• The Second Helly theorem shows that the weak limit4 FNk
(x) → g(x) implies∫

[0,1]s

f(x) dFNk
(x) →

∫
[0,1]s

f(x) dg(x)

for every continuous f : [0, 1]s → R.

• G(xnmod 1) denotes the set of all d.f.’s of xnmod 1.

(IV) For one-dimensional case s = 1 we have:

(1) The continuity of all d.f.s in G(xnmod 1) follows from the limit

limK→∞ 1
K

∑K
k=1 βk = 0, where βk = lim supN→∞

∣∣ 1
N

∑N
n=1 e

2πikxn
∣∣2.

(2) The lower and upper d.f. g, g of xn belong to G(xnmod1) if and only if∫ 1

0

(
g(x)− g(x)

)
dx = lim supN→∞

1
N

∑N
n=1{xn} − lim infN→∞ 1

N

∑N
n=1{xn}.

(3) Let H be non-empty, closed, and connected set of d.f.’s. Denote g
H
(x) =

infg∈H g(x) and gH(x) = supg∈H g(x). Further, if g ∈ H let Graph(g) be

the continuous curve formed by all the points
(
x, g(x)

)
for x ∈ [0, 1], and

the all line segments connecting the points of discontinuity(
x, lim infx′→x g(x

′)
)
and

(
x, lim supx′→x g(x

′)
)
.

Assume that for every g ∈ H there exists a point (x, y) ∈ Graph(g) such
that (x, y) /∈ Graph(g̃) for any g̃ ∈ H with g̃ 	= g. If moreover g = g

H
and

g = gH for the lower d.f. g and the upper d.f. g of the sequence xn ∈ [0, 1)

and G(xn) ⊂ H, then G(xn) = H.

4that is (i), and (ii) above are fulfilled
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(4) For given two different d.f.s g1(x), and g2(x), we define

Fg2(x, y) =
∫ x
0
g2(t) dt+

∫ y
0
g2(t) dt−max(x, y) +

∫ 1

0

(
1− g2(t)

)2
dt,

Fg1,g2(x) =
∫ x
0 (g2(t)−g1(t)) dt−

∫ 1
0 (1−g2(t))(g2(t)−g1(t)) dt∫

1
0 (g2(t)−g1(t))2 dt

,

Fg1,g2(x, y) = Fg2(x, y)− Fg1,g2(x)Fg1,g2(y)
∫ 1

0

(
g2(t)− g1(t)

)2
dt.

Let g1(x) 	= g2(x) be two d.f.’s. Then the set of d.f.s G(xn) of xn in [0, 1)
satisfies

G(xn) =
{
tg1(x) + (1− t)g2(x); t ∈ [0, 1]

}
if and only if

(i) limN→∞ 1
N2

∑N
m,n=1 Fg1,g2(xm, xn) = 0,

(ii) lim infN→∞ 1
N

∑N
n=1 Fg1,g2(xn) = 0,

(iii) lim supN→∞
1
N

∑N
n=1 Fg1,g2(xn) = 1.

(5) A symmetric continuous F (x, y) defined on [0, 1]2 is called copositive if∫ 1
0

∫ 1
0
F (x, y) dg(x) dg(y)≥ 0 for all distribution functions g : [0, 1]→ [0, 1].

Let F (x, y) be a copositive function having continuous F ′
x(x, 1) a.e. and

let d.f. g1(x) be a strictly increasing solution of the moment problem (1).
Then for every strictly increasing d.f. g(x) we have∫ 1

0

∫ 1

0
F (x, y) dg(x) dg(y) = 0 ⇐⇒ F ′

x(x, 1) =
∫ 1

0
g(y) dyF

′
x(x, y) a.e. on [0, 1].

(6) Let F (x, y) be a continuous, symmetric, copositive and F ′′
xy = 0 a.e. such

that the set H(F ) of jumps of F ′
x(x, y) is covered by

H(F ) ⊂ ⋃M
i,j=1

{
(xi(t), xj(t)); t ∈ [α, β)

}
with pairwise disjoint sets{

x1(t); t ∈ [α, β)
}
, . . . ,

{
xM (t); t ∈ [α, β)

}
.

Assume that the derivatives x′i(t), i = 1, 2, . . . , k, are continuous and let

A(t) denote the associated matrix defined by

A(t) = 1
2

(
dyF

′
x(xi(t), xj(t))|x′i(t)|+ dyF

′
x(xj(t), xi(t))|x′j(t)|

)
and

g(t) =
(
g(x1(t)), g(x2(t)), . . . , g(xM (t))

)
is the vector associated with g : [0, 1] → [0, 1]. Finally, let g1 be a strictly
increasing solution of the moment problem (1). Then we have

1∫
0

1∫
0

F (x, y) dg(x) dg(y) =

β∫
α

(
g(t) − g1(t)

)
A(t)

(
g(t)− g1(t)

)T
dt

for all distribution functions g : [0, 1] → [0, 1].

(7) Directly by definition G(xn) we showed: Assume
• f(x) be a real-valued function defined for x ≥ 1 such that f(x) is
strictly increasing with its inverse function f−1(x).

• limk→∞
f−1(k+x)−f−1(k)
f−1(k+1)−f−1(k) = g̃(x) for each x ∈ [0, 1], point of continuity

of g̃(x);
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• limk→∞
f−1(k+u)
f−1(k) =ψ(u) for each u∈ [0, 1], point of continuity of ψ(u),

or ψ(u) = ∞ for u > 0;
• limk→∞ f−1(k + 1) − f−1(k) = ∞. Then we have: If 1 < ψ(1) < ∞
and f ′(x) → 0 as x→ ∞, then

G
(
f(n)mod 1

)
=

{
gu(x) =

min(ψ(x),ψ(u))−1
ψ(u)

+ 1
ψ(u)

g̃(x);u ∈ [0, 1]
}
,

where g̃(x) = ψ(x)−1
ψ(1)−1 and FNi

(x) → gu(x) as i → ∞ if and only if

f(Ni)mod1 → u. The lower d.f. g(x) and the upper d.f. g(x)

of f(n)mod1 are g(x) = g̃(x), g(x) = 1− 1
ψ(x)

(
1− g̃(x)). Furthermore

g(x) = g0(x) = g1(x) belongs to G
(
f(n)mod1

)
but g(x) = gx(x)

does not.
(8) Let xn and yn be two sequences in [0, 1) and G((xn, yn)) denote the

set of all d.f.s of the two-dimensional sequence (xn, yn). If zn = xn
+ ynmod1, then the set G(zn) of all d.f.s of zn has the form

G(zn) =

{
g(t) =

∫
0≤x+y<t

1.dg(x, y) +

∫
1≤x+y<1+t

1.dg(x, y); g(x, y) ∈ G((xn, yn))

}

assuming that all the used Riemann-Stieltjes integrals exist.

Notes.

(I) A purely topological characterization of G(xn) with a short history can be
found in R. W i n k l e r (1997).

(II) O. S t r a u c h (1994).

(III) For definitions, cf. [SP, 1.11, p. 1–60].

(IV) (1) is a generalization of the Wiener–Schoenberg theorem given by
P. K o s t y r k o, M. M a č a j, T. Š a l á t and O. S t r a u c h (2001). (2), (3)
and (4) are from O. S t r a u c h (1997). (5) and (6) are proved in O. S t r a u c h
(2000), (7) in R. G i u l i a n o A n t o n i n i and O. S t r a u c h (2008) and (8)
in O. S t r a u c h and O. B l a ž e k o v á (2006).

Proposed by O. Strauch.
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2.3. Deterministic analysis of sequences

Assume that the s-dimensional sequence

xn = (xn,1, . . . , xn,s) ∈ [0, 1)s, n = 1, 2, . . . , N

is a result of anN often repeated measurement of s physical variablesX1, . . . , Xs.
If g(x1, . . . , xs) is an a.d.f. of xn, n = 1, 2, . . . (assuming in the moment that
N → ∞), then g(x1, . . . , xs) contains some informations about relations between
variables X1, . . . , Xs. For example

(i) X1, . . . , Xs are independent if and only if every d.f. g(x) ∈ G(xn) can be
written as a product g(x) = g1(x1) . . . gs(xs) of one-dimensional d.f.s. Here gi,
i = 1, . . . , s depend on g ∈ G(xn).

(ii) If Xs depends on X1, . . . , Xs−1, and I1, . . . , Is are subintervals in [0, 1),
then the implication

(X1 ∈ I1 ∧ · · · ∧Xs−1 ∈ Is−1) =⇒ (Xs ∈ Is),

can be evaluated by
∫
I1×···×Is h(x) dx, where h(x) is the density of g(x)

(if it exists).

The studying of xn, n = 1, 2, . . . via G(xn) we shall call deterministic
analysis of the sequence xn, since for approximate computation of g(x) ∈ G(xn)
can be used discrepancies of xn, n = 1, 2, . . . , N . We do not use probabilities
and statistical methods.

For approximate computation of G(xn) we need there solve the following
problem.

Open problem: For a big dimension s there exists no real employing N for
a good approximation of a d.f. g(x1, . . . , xs) of xn by the step d.f.

FN (x1, . . . , xs) =
#{n ≤ N ; xn,1 < x1, . . . , xn,s < xs}

N
.
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But using partial sequences

(xn,i1 , . . . , xn,ik), n = 1, 2, . . . , N

with small dimension k it can be found N such that the corresponding step d.f.
well approximates the marginal d.f. g(1, . . . , 1, xi1 , 1, . . . , 1, xi2, 1, . . . ). Problem
is to reconstruct g(x1, . . . , xs) by using marginals

g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . )

with small dimensions.

In the following we shall formulate above problem more elementary.

Open problem 1. Let xn = (xn,1, xn,2, . . . , xn,s), n = 1, 2, . . . , be an infinite
s-dimensional sequence in the unit cube [0, 1)s. Assume that, for fixed k < s, all
k-dimensional marginal sequences (xn,i1 , . . . , xn,ik) are u.d.

(I) Find all possible d.f.s of xn.

(II) Find some (possible “minimal”) criterions which imply u.d. of the original
sequence xn, n = 1, 2, . . .

• In connection with (I) we denote by Gs,k the set of all d.f.s g(x) on [0, 1]s for
which all k-dimensional marginals (i.e., faces) of d.f.’s satisfy

g(1, . . . , 1, xi1 , 1, . . . , 1, xi2, 1, . . . , 1, xik , 1, . . . , 1) = xi1xi2 . . . xik .

• For k=1, these d.f.’s are called copulas, which were introduced by M. S k l a r
(1959). All basic properties of copulas can be found in the monograph R. B. N e l -
s e n (1999).

• Thus, by definition Gs,k, the G2,1 is the set of all two-dimensional d.f.s g(x, y)
defined on [0, 1]2 such that their marginals d.f.’s satisfy g(x, 1) = x and
g(1, y) = y.

G2,1 contains:

– g1(x, y) = xy,

– g2(x, y) = min(x, y),

– g3(x, y) = max(x+ y − 1, 0),

– gθ(x, y) =
(
min(x, y)

)θ
(xy)1−θ, where θ ∈ [0, 1] (Cuadras-Augé family,

cf. R. B. N e l s e n [1999, p. 12, Ex. 2.5],

– g4(x, y) =
xy

x+y−xy (see R. B. N e l s e n [1999, p. 19, 2.3.4],

– g̃(x, y) = x+y−1+g(1−x, 1−y) for every g(x, y) ∈ G2,1 (Survival copula,
see R. B. N e l s e n [1999, p. 28, 2.6.1],

– g5(x, y) = min
(
ya(x), x(b(y)

)
, where a(0) = b(0) = 0, a(1) = b(1) = 1

and a(x)/x, b(y)/y are both decreasing on (0, 1] (Marshall copula, cf.
R. B. N e l s e n [1999, p. 51, Exerc. 3.3].
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Here are some new copulas:

– g6(x, y) =
1
z0

min(xy, xz0, yz0) for fixed z0, 0 < z0 ≤ 1.

– g7(x, y) =
1

z0u0
min(xyz0, xyu0, xz0u0, yz0u0) for fixed z0, u0 ∈ [0, 1]2.

– Shuffle of M is a copula defined in R. B. N e l s e n [1999, p. 59, 3.2.3.],
cf. the Problem 1.37.

– Generalized shuffle of M : Let f : [0, 1] → [0, 1] be an arbitrary uniform
distribution preserving function (called u.d.p., see Problem 2.1 (VII)) and
graph f =

{
(x, f(x));x ∈ [0, 1]

}
. Then the generalized shuffle of M is the

copula

g(x, y) =
∣∣Project x(graph f ∩ [0, x)× [0, y)

)∣∣.
There are some basic properties of G2,1:

– G2,1 is closed under point-wise limit and convex linear combinations.

– For every g(x, y) ∈ G2,1 and every (x1, y1), (x2, y2) ∈ [0, 1]2 we have
|g(x2, y2)− g(x1, y1)| ≤ |x2 − x1|+ |y2 − y1|.

– For every g(x, y) ∈ G2,1 we have g3(x, y) = max(x+ y − 1, 0) ≤ g(x, y) ≤
min(x, y) = g2(x, y) (Fréchet–Hoeffding bounds, see R. B. N e l s e n
[1999, p. 9].

– M. S k l a r (1959) proved that for every d.f. g(x, y) on [0, 1]2 there exists
g̃(x, y) ∈ G2,1 such that

g(x, y) = g̃
(
g(x, 1), g(1, y)

)
for every (x, y) ∈ [0, 1]2.

If g(x, 1) and g(1, y) are continuous, then g̃(x, y) is unique (cf. R. B. N e l -
s e n [1999, p. 15, Th. 2.3.3].

• Let (xn, yn), n = 1, 2, . . . , be a sequence in [0, 1)2 such that both coordinate
sequences xn, n = 1, 2, . . . , and yn, n = 1, 2, . . . are u.d. Then the set G((xn, yn))
of all d.f. of (xn, yn), n = 1, 2, . . . satisfies

– G((xn, yn)) ⊂ G2,1,

– G((xn, yn)) is nonempty, closed and connected, and vice-versa

– for every nonempty, closed and connectedH ⊂ G2,1, there exists a sequence
(xn, yn) ∈ [0, 1)2 such that G((xn, yn)) = H.

– Let F (x, y, u, v, ) be a continuous function defined on [0, 1]4 and assume
that

lim
N→∞

1

N2

N∑
m,n=1

F (xm, ym, xn, yn) = 0.
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Then every d.f. g(x, y) ∈ G((xn, yn)) satisfies the following equation:

1∫
0

1∫
0

g(u, v) du dvF (1, 1, u, v) +

1∫
0

1∫
0

g(x, y) dx dyF (x, y, 1, 1)

−
1∫

0

1∫
0

1∫
0

g(u, v)y dy du dvF (1, y, u, v)−
1∫

0

1∫
0

1∫
0

g(u, v)x dx du dvF (x, 1, u, v)

−
1∫

0

1∫
0

1∫
0

g(x, y)v dv dx dyF (x, y, 1, v)−
1∫

0

1∫
0

1∫
0

g(x, y)u du dx dyF (x, y, u, 1)

+

1∫
0

1∫
0

1∫
0

1∫
0

g(x, y)g(u, v) du dv dx dyF (x, y, u, v)

= −F (1, 1, 1, 1) +

1∫
0

v dvF (1, 1, 1, v) +

1∫
0

u duF (1, 1, u, 1)

+

1∫
0

xdxF (x, 1, 1, 1) +

1∫
0

y dyF (1, y, 1, 1)

−
1∫

0

1∫
0

yv dy dvF (1, y, 1, v)−
1∫

0

1∫
0

yu dy duF (1, y, u, 1)

−
1∫

0

1∫
0

xv dx dvF (x, 1, 1, v)−
1∫

0

1∫
0

xudx dduF (x, 1, u, 1).

• By definition of Gs,k, the G3,2 is the set of all three-dimensional d.f.s g(x, y, z)
defined on [0, 1]3 such that their two-dimensional marginals (or faces) d.f.’s sat-
isfy g(x, y, 1) = xy, g(1, y, z) = yz and g(x, 1, z) = xz.

The G3,2 contains

– g1(x, y, z) = xyz,

– g2(x, y, z) = min(xy, xz, yz),

– g3(x, y, z) =
1
u0

min(xyz, xyu0, xzu0, yzu0), for fixed u0, 0 < u0 ≤ 1,

– g4(x, y, z) is a.d.f. of a three-dimensional sequence
(
un, vn, {un − vn}

)
,

where two-dimensional (un, vn) is u.d. in [0, 1]2. Applying Weyl’s criterion
we see that also

(
un, {un − vn}

)
and
(
vn, {un − vn}

)
are u.d. and the d.f.

g4(x, y, z) has the following explicit form (cf. O. S t r a u c h (2003).)
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g4(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1x2 if (x1, x2) ∈ A,

−1
2 (x

2
1 + x22 + x23) + x1x2 + x2x3 if (x1, x2) ∈ B,

−1
2 x

2
1 + x1x2 if (x1, x2) ∈ C,

1
2 x

2
2 if (x1, x2) ∈ D,

−1
2 x

2
3 + x2x3 if (x1, x2) ∈ E,

−1
2 x

2
2 + x1x2 + x1x3 + x2x3 − x1 − x3 +

1
2 if (x1, x2) ∈ F,

1
2 x

2
1 + x1x3 + x2x3 − x1 − x3 +

1
2 if (x1, x2) ∈ G,

1
2 (x

2
1 + x22 + x23) + x1x3 − x1 − x3 +

1
2 if (x1, x2) ∈ H,

x1x2 + x2x3 − x2 if (x1, x2) ∈ I.

where the regions A,B,C,D,E, F,G,H, I are shown on the following figure

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
��

�
�
�

�
�
�
�
�
�

�
��

�
�

�
�
�
�

(0, 0) (1− x3, 0) (1, 0)
→ x1

(0, 1) ↑
x2

(1− x3, 1) (1, 1)

(0, x3) (1, x3)

A

B

E

H

I

C

D

F

G

– For every g(x, y, z) ∈ G3,2 and fixed z0, 0 < z0 ≤ 1 we have 1
z0
g(x, y, z0) ∈ G2,1.

Vice versa, if gz(x, y), z ∈ [0, 1] is a system of d.f.s in G2,1 such that g1(x, y) = xy
and for every z′ ≤ z, we have z′dxdygz′(x, y) ≤ zdxdygz(x, y) on [0, 1]2, then
g(x, y, z) = zgz(x, y) ∈ G3,2.

– Multi-dimensional case: Let g(x1, x2, . . . , xs) be an s-dimensional d.f. and let

g1(x1) = g(x1, 1, . . . , 1), g2(x2) = g(1, x2, 1, . . . , 1), . . .

be margins of g(x1, x2, . . . , xs). By Sklar’s theorem there exists s-dimensional
copula c(x1, x2, . . . , xs) such that

g(x1, x2, . . . , xs) = c
(
g1(x1), g2(x2), . . . , gs(xs)

)
.
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Furthermore, for arbitrary continuous F (x1, x2, . . . , xs) we have∫
[0,1]s

F (x1, x2, . . . , xs) dg(x1, x2, . . . , xs)

=

∫
[0,1]s

F
(
g−1
1 (x1), g

−1
2 (x2), . . . , g

−1
s (xs)

)
dc(x1, x2, . . . , xs).

• In the direction (II) of Open problem for testing of u.d. of xn it can be used
statistical independence of marginal sequences, but formulas for L2 discrepancy
of statistical independence and classical L2 discrepancy have the following similar
structures: For x = (x1, . . . , xs) and y = (y1, . . . , ys) denote

(
1−max(x,y)

)
=(

1 − max(x1, y1)) . . . (1 − max(xs, ys)
)
, 0 = (0, . . . , 0) and 1 = (1, . . . , 1). For

every two d.f.’s g1(x) and g2(x) defined in [0, 1]s we have (see O. S t r a u c h
(2003))

1∫
0

(
g1(x)−g2(x)

)2
dx =

1∫
0

1∫
0

(
1−max(x,y)

)
d
(
g1(x)−g2(x)

)
d
(
g1(y)−g2(y)

)
(1)

Now, divide the vector x = (x1, . . . , xs) into two face vectors x(1) = (xi1 , . . . , xil)

and x(2) = (xj1 , . . . , xjk), l+k = s. Similarly, divide the s-dimensional sequence

xn, n = 1, 2, . . . in [0, 1)s with step d.f. FN (x) = FN
(
x(1),x(2)

)
into two face

sequences

l-dimensional x
(1)
n , n = 1, 2, . . . , with step d.f. FN

(
x(1),1
)
, and

k-dimensional x
(2)
n , n = 1, 2, . . . , with step d.f. FN

(
1,x(2)

)
.

Using (1) we see that the L2 discrepancy (with respect to g(x)) and statistical
L2 discrepancy have the following similar structures

1∫
0

(
FN (x)− g(x)

)2
dx =

1∫
0

1∫
0

(
1−max(x,y)

) · d (FN (x)− g(x)
)
d
(
FN (y)− g(y)

)
,

1∫
0

(
FN (x)− FN

(
x(1),1

)
FN (1,x

(2))
)2
dx

=

1∫
0

1∫
0

1∫
0

1∫
0

(
1−max

(
x(1),y(1)

))(
1−max

(
x(2),y(2)

))
· d
(
FN (x

(1),x(2))− FN (x
(1),1, )FN

(
1,x(2)

))
· d
(
FN
(
y(1),y(2)

)− FN
(
y(1),1,

)
FN
(
1,y(2)

))
.
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Expressing L2 discrepancy as

1∫
0

(
FN (x)− g(x)

)2
dx

=

1∫
0

1∫
0

[(
FN

(
x(1),x(2))− FN

(
x(1),1

)
FN

(
1,x(2)))

+
(
FN

(
x(1),1

)− g
(
x(1),1

))
FN

(
1,x(2))

+ g
(
x(1),1

)(
FN

(
1,x(2))− g(1,x(2))

)
+

(
g
(
x(1),1

)
g
(
1,x(2))− g

(
x(1),x(2)))]2dx(1)dx(2)

the Cauchy inequality implies√√√√√
1∫

0

(
FN (x)− g(x)

)2
dx

≤

√√√√√
1∫

0

1∫

0

(
FN

(
x(1),x(2)

)− FN
(
x(1),1

)
FN

(
1,x(2)

))2
dx(1) dx(2)

+

√√√√√
1∫

0

1∫

0

(
g
(
x(1),x(2)

)− g
(
x(1),1

)
g
(
1,x(2)

))2
dx(1) dx(2)

+

√√√√√
1∫

0

(
FN

(
x(1),1

)− g
(
x(1),1

))2
dx(1)

1∫

0

F 2
N

(
1,x(2)

)
dx(2)

+

√√√√√
1∫

0

(
FN

(
1,x(2)

)− g
(
1,x(2)

))2
dx(2)

1∫

0

g2
(
x(1),1

)
dx(1).

Thus we have an upper bound of the classical L2 discrepancy of x1, . . . ,xN
which contains the L2 discrepancy of statistical independence of partial se-

quences x
(1)
1 , . . . ,x

(1)
N and x

(2)
1 , . . . ,x

(2)
N . Note that the infinite partial sequences

x
(1)
n , n = 1, 2, . . . , and x

(2)
n , n = 1, 2, . . . of the sequence xn, n = 1, 2, . . . are

statistically independent if and only if for every d.f. g(x) ∈ G(xn) we have
g(x) = g

(
x(1),1
) · g(1,x(2)

)
in common points of continuity od d.f.s. It can be

used as a definition of independence.

Proposed by O. Strauch.
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2.4. Exponential sequences

The theory of the sequences λθnmod 1, n = 1, 2, . . . , θ > 1 is not satisfactory.
Characterization of distribution of such sequences is a well-known and largely
unsolved problem, see [SP, p. 2–149]. In the following we listed some conjec-
tures and some positive results.

Notes.

(1) J. F. K o k s m a (1935) proved that the sequence λθnmod 1 with λ 	= 0
fixed is u.d. for almost all real θ > 1. If we take λ = 1 then we get that the
sequence θnmod1 is u.d. for almost all real numbers θ > 1. However, no explicit
example of a real number θ is known for which this sequence is u.d.

(2) If θ > 1 is fixed then H. W e y l (1916) proved that the sequence λθnmod 1
is u.d. for almost all real λ.

(3) A. D. P o l l i n g t o n (1983) proved that the Hausdorff dimension of the set
of all λ ∈ R for which the sequence λθnmod 1 is nowhere dense is ≥ 1

2 .

(4) (3/2)nmod 1 is u.d. in [0, 1] (conjecture).

(5) (3/2)nmod 1 is dense in [0, 1] (conjecture).

(6) lim supn→∞
{
(3/2)n

} − lim infn→∞
{
(3/2)n

}
> 1/2 (T. V i j a y a r a g h a -

v a n’ s (1940) conjecture).

(7) K. M a h l e r’ s (1968) conjecture: There is no 0 	= ξ ∈ R such that 0 ≤{
ξ(3/2)n

}
< 1/2 for all n = 0, 1, 2, . . . . Such ξ does not exists if for each ξ > 0

the sequence of integer parts
[
ξ(3/2)n

]
, n = 1, 2, . . . , contains infinitely many

odd numbers.

(8) There is no 0 	= ξ ∈ R such that the closure of
{{ξ(3/2)n} ; n = 0, 1, 2, . . .

}
is nowhere dense in [0, 1] (conjecture).

(9) L. F l a t t o, J. C. L a g a r i a s and A. D. P o l l i n g t o n (1995) showed that
for every ξ > 0 we have lim supn→∞

{
ξ(3/2)n

}− lim infn→∞
{
ξ(3/2)n

} ≥ 1/3.

(10) G. C h o q u e t (1980) proved the existence of infinitely many ξ ∈ R for
which 1/19 ≤ {ξ(3/2)n} ≤ 18/19 for n = 0, 1, 2, . . . . Him is ascribed the conjec-
ture (v).

(11) A. D u b i c k a s (2006[a]) proved that for any ξ 	= 0 the sequence of frac-
tional part

{
ξ(3/2)n

}
, n = 1, 2, . . . , contains at least one limit point in the
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interval [0.238117 . . . , 0.761882 . . . ] of length 0.523764 . . . . This immediately fol-
lows from:

(12) A. D u b i c k a s (2006[a]): Set T (x) =
∏∞
n=0

(
1 − x2

n)
. If ξ 	= 0 then

the sequence ||ξ(3/2)n||, n = 1, 2, . . . , has a limit point ≥ (3 − T (2/3)
)
/12 =

0.238117 . . . and a limit point ≤ (1 + T (2/3)
)
/4 = 0.285647 . . .

(12’) A. D u b i c k a s (2007) from (22’) derived:
{
ξ(−3/2)n

}
has a limit point

≤ 0.533547 and a limit point ≥ 0.466452.

(13) S. A k i y a m a, C. F r o u g n y and J. S a k a r o v i t c h (2006): There is
ξ 	= 0 such that ||ξ(3/2)n|| < 1/3 for n = 1, 2, . . .

(14) A. P o l l i n g t o n: There is ξ 	=0 such that ||ξ(3/2)n||>4/65 for n=1, 2, . . .

(15) R. T i j d e m a n (1972) showed that for every pair of integers k,m with
k ≥ 2 and m ≥ 1 there exists ξ ∈ [m,m+ 1) such that 0 ≤ {ξ((2k + 1)/2)n

} ≤
1/(2k − 1) for n = 0, 1, 2, . . .

(16) O. S t r a u c h (1997) proved that every d.f. g(x) of ξ(3/2)nmod 1 satisfies
the functional equation

g(x/2)+g
(
(x+1)/2

)−g(1/2) = g(x/3)+g
(
(x+1)/3

)
+g

(
(x+2)/3

)−g(1/3)−g(2/3).

A non-trivial solution (cf. O. S t r a u c h (1999, p. 126)) is

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ [0, 1/6],

2x− 1/3 if x ∈ [1/6, 3/12],

4x− 5/6 if x ∈ [3/12, 5/18],

2x− 5/18 if x ∈ [5/18, 2/6],

7/18 if x ∈ [2/6, 8/18],

x− 1/18 if x ∈ [8/18, 3/6],

8/18 if x ∈ [3/6, 7/9],

2x− 20/18 if x ∈ [7/9, 5/6],

4x− 50/18 if x ∈ [5/6, 11/12],

2x− 17/18 if x ∈ [11/12, 17/18],

x if x ∈ [17/18, 1].

(17) O. S t r a u c h (1997) introduced: The setX⊂ [0, 1] is said to be a set of uniq-
ueness of d.f.s of ξ(3/2)nmod 1, if for every two d.f.s g1(x), g2(x) of ξ(3/2)

nmod 1
with g1(x) = g2(x) for x ∈ X then g1(x) = g2(x) for every x ∈ [0, 1]. He gives the
following sets of uniqueness: X = [0, 2/3], X = [1/3, 1], X = [0, 1/3] ∪ [2/3, 1],
X = [2/9, 1/3]∪ [1/2, 1] or X = [0, 1/2] ∪ [2/3, 7/9].

(18) The elements of the sequence (3/2)n appear in the Waring problem. Let

g(k) = min
{
s; a = nk1 + · · ·+ nks for all a ∈ N and suitable ni ∈ N0

}
.
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S. P i l l a i (1936) proved that if k ≥ 5 and if we write 3k = q2k + r with
0 < r < 2k, then g(k) = 2k +

[
(3/2)k

] − 2, provided that r + q < 2k, i.e.,

3k − 2k
[
(3/2)k

]
< 2k − [(3/2)k].

(19) Open problem is to characterize distribution of enmod1 and πnmod 1.

(20) If p > q > 1 are integers and gcd(p, q) = 1 then the sequence (p/q)nmod 1,
n = 1, 2, . . . , has an infinite number of points of accumulation. This was firstly
proved by C h. P i s o t (1938), then by T. V i j a y a r a g h a v a n (1940) and
L. R é d e i (1942). The density of (p/q)nmod1 in [0, 1] is an open problem
posed by C h. P i s o t and T. V i j a y a r a g h a v a n.

(21) L. F l a t t o, J. C. L a g a r i a s and A. D. P o l l i n g t o n (1995) proved
that if ξ > 0, then lim supn→∞

{
ξ(p/q)n

}− lim infn→∞
{
ξ(p/q)n

} ≥ 1/p.

(22) A. D u b i c k a s (2006[a]): Denote T (x)=
∏∞
n=0(1−x2

n

), E(x)= 1−(1−x)T (x)
2x .

If ξ 	= 0 and p > q > 1, gcd(p, q) = 1, then the sequence ||ξ(p/q)n||, n = 1, 2, . . .
has a limit point ≥ E(q/p)/p and a limit point ≤ 1/2− (1− e(q/p)

)
T (q/p)/2q,

where e(q/p) = 1− (q/p) if p+ q is even and e(q/p) = 1 if p+ q is odd.

(22’) A. D u b i c k a s (2007): Set F (x) =
∏∞
k=1

(
1 − x(2

k+(−1)k−1)/3
)
. For two

coprime positive integers p > q > 1 and any real number ξ 	= 0, the sequence of
fractional part

{
ξ(−p/q)n}, n = 0, 1, 2, . . . , has a limit point ≤ 1−(1−F (q/p))/q

and a limit point ≥ (1− F (q/p)
)
/q.

(22”) A. D u b i c k a s (2006[a]): Set

T (x) =
∏∞
n=0

(
1− x2n

)
and E(x) = 1−(1−x)T (x)

2x
.

Let ξ be an irrational number and let p > 1 be an integer. Then the sequence
||ξpn||, n = 1, 2, . . . has a limit point ≥ ξp = E(1/p)/p, and a limit point

≤ ξ̂p = e(1/p))T (1/p)/2, where e(1/p) = 1− (1/p) if p is odd and e(1/p) = 1 if

p is even. Furthermore, both bounds are best possible: in particular, ξp, ξ̂p are

irrational and ||ξppn|| < ξp, ||ξ̂ppn|| > ξ̂p for every n = 1, 2, . . .

(23) S. D. A d h i k a r i, P. R a t h and N. S a r a d h a (2005) prove that evey
d.f. g(x) of {ξ(p/q)n} satisfies the functional equation∑q−1

i=0 g
(
x+i
q

)−∑q−1
i=0 g

(
i
q

)
=

∑p−1
i=0 g

(
x+i
p

)−∑p−1
i=0 g

(
i
p

)
.

(24) S. D. A d h i k a r i, P. R a t h and N. S a r a d h a (2005) prove that ev-
ery interval I ⊂ [0, 1] of the length |I| = (p − 1)/q and every complement
[0, 1]− [(i− 1)/p, i/p

]
, i = 1, 2, . . . , p, are sets of uniquenes of d.f.s of

{
ξ(p/q)n

}
,

for definition see (17). In the second case, if j/q ∈ [(i − 1)/p, i/p
]
for some

1 ≤ j < q they assume p ≥ q2 − q.

(25) T. V i j a y a r a g h a v a n (1940a): Let θ = q
1
k be irrational, where k and

q ≥ 2 are integers. Then the set of limit points of the sequence θnmod 1 is
infinite.
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(26) H. H e l s o n and J.- P. K a h a n e (1965): Let θ > 1 be a real number.
There exists uncountably many ξ such that the sequence ξθnmod 1 does not
have the a.d.f.

(27) A. Z am e (1967): For an arbitrary d.f. g(x) and for any sequence un of real
numbers which satisfies limn→∞(un+1 − un) = ∞, there exists a real number θ
such that the sequence θun mod 1 has g(x) as its a.d.f.

• A real algebraic integer θ > 1 is called a P.V. number (Pisot–Vijayaraghavan
number) if all its conjugates 	= θ lie strictly inside the unit circle.

(28) Let θ be a P.V. number. Then θnmod 1 → 0 as n→ ∞.

(29) A. T h u e (1912) proved that θ is a P.V. number if and only if {θn} = O(cn)
for some 0 < c < 1.

(30) G. H. H a r d y (1919) proved that if θ > 1 is any algebraic number and
λ > 0 is a real number so that {λθn} = O(cn), (0 < c < 1), then θ is a P.V.
number. Hardy posed an interesting and still unanswered question whether
there is a transcendental numbers θ > 1 for which a λ > 0 exists such that
{λθn} → 0.

(31) T. V i j a y a r a g h a v a n (1941) proved that if θ > 1 is an algebraic and if
θn, n = 1, 3, . . . , has only a finite set of limit points, then θ is a P.V. number.

(32) C h. P i s o t (1937, [a]1937) proved that if θ > 1 and λ > 0 are real numbers
such that

∑∞
n=1{λθn} < +∞, then θ is a P.V. number.

(33) The set S of all P.V. numbers is closed (R. S a l e m (1944)). Two smallest
elements of S are 1.324717 . . . , and 1.380277 . . . , the real roots of x3 − x − 1,
and x4 − x3 − 1, respectively. Both are isolated points of S and S contains
no other point in the interval (1,

√
2] (C.L. S i e g e l (1944)). The next one is

1.443269 . . . , the real root of x5−x4−x3+x2−1 and 1.465571 . . . , the real root

of x3 − x2 − 1. The smallest limit point of S is the root (1+
√
5)

2 = 1.618033 . . .

of x2 − x− 1, an isolated point of the derived set S′ of S (J. D u f r e s n o y and
C h. P i s o t (1952), (1953)). The smallest number S′′ is 2.
• The real algebraic integer θ > 1 is called a Salem number if all its conjugates
lie inside or on the circumference of the unit circle and at least one of conjugates
of θ lies on the circumference of the unit circle. It is well known that if θ is
a Salem number of degree d, then d is even, d ≥ 4 and 1/θ is the only conjugate
of θ with modulus less than 1, all the other conjugates are of modulus 1.

(34) Let θ be a Salem number. the sequence θnmod1 is dense in [0, 1],
but not u.d. (C h. P i s o t and R. S a l e m (1964)) Salem numbers are the only
known concrete numbers whose powers are dense mod 1 in [0, 1], see the mono-
graph of M. J. B e r t i n, A. D e c o m p s- G u i l l o u x, M. G r a n d e t- H u g o t,
M. P a t h i a u x- D e l e f o s s e , and J. P. S c h r e i b e r [1992, pp. 87–89]. The
survey paper of E. G h a t e and E. H i r o n a k a (2001) deals with the fol-
lowing open problem: Is the set of Salem numbers bounded away from 1?
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D. H. L e h m e r (1933) found the monic polynomial

L(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1,

where its real root θ = 1.17628 . . . is both the smallest known Salem number.

(35) Let θ be the Salem numbers of degree greater than or equal to 8. Then
the sequence xn = θnmod1, n = 1, 2, . . . , has a.d.f. g(x) 	= x which satisfies∣∣(g(y) − g(x)

) − (y − x)
∣∣ ≤ 2ζ

(deg(θ)−2
4

)
(2π)1−

deg(θ)
2 (y − x), where ζ(z) is the

Riemann zeta function, deg(θ) is the degree of θ over Q and 0 ≤ x < y ≤ 1. This
was proved by S. A k i y a m a and Y. T a n i g a w a (2004).

(35’) T o u f i k Z a ı̈ m i (2006): Let θ be a Salem number and let λ be a nonzero
element of the field Q(θ) and denote Δ = lim supn→∞{λθn}− lim infn→∞{λθn}.
Then (i) Δ > 0. (ii) If λ is an algebraic integer, then Δ = 1. Furthermore, for
any 0 < t < 1 there is an algebraic integer λ and a subinterval I ⊂ [0, 1] with
the length t such that the sequence {λθn}, n = 1, 2, . . . has no limit point in I.
(iii) If θ − 1 is a unit, then Δ ≥ 1/L, where L is the sum of the absolute values
of the coefficients of the minimal polynomial of θ. (iv) If θ−1 is not a unit, then
infλΔ = 0.

(35”) A. D u b i c k a s (2006[b]): If θ is either a P.V. or Salem number and λ 	= 0
and λ /∈ Q(θ), then Δ ≥ 1/L, where Δ and λ are defined as in (35’).

(35”’) A. D u b i c k a s (2006[b]): Let d ≥ 2 be a positive integer. Suppose that
α > 1 is a root of the polynomial xd − x − 1. Let ξ be an arbitrary positive
number that lies outside the field Q(α) if d = 2 or d = 3. Then the sequence
[ξαn], n = 1, 2, . . . , contains infinitely many even numbers and infinitely many
odd numbers. Thus α satisfies Mahler’s conjecture (7), i.e., 0 ≤ {ξαn} < 1/2,
does not holds for all n = 1, 2, . . .
(35””) D. B e r e n d and G. K o l e s n i k (2011): If λ is a Salem number of de-
gree 4, then the sequence nλnmod 1, n = 1, 2, . . . is u.d. Precisely they proved:
Let λ be a Salem number of degree 4 and P (x) a nonconstant polynomial with
integer coefficients. Then the sequence(
P (n)λn, P (n + 1)λn+1, P (n+ 2)λn+2, P (n+ 3)λn+3

)
mod 1, n = 1, 2, . . . is u.d.

(36) I. I. P j a t e c k i ı̆– Š a p i r o (1951) proved that every distribution function
g(x) of the sequence αqnmod 1 with integer q > 1 satisfies the functional equa-
tion

g(x) =

n−1∑
i=0

(
g((x+ i)/q)− g(i/q)

)
.

(37) If α is a non-zero real number and q ≥ 2 an integer then the sequence

αqnmod 1 has a.d.f. g(x) if and only if
∫ 1
0
f(x)dg(x) =

∫ 1
0
f(qx)dg(x) for every

continuous f(x) which is defined on [0, 1]. (I. I. P j a t e c k i ı̆– Š a p i r o (1951)).

(38) Let α be a non-zero real and q ≥ 2 be an integer. If the sequence
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xn = αqnmod1 has absolutely continuous a.d.f. g(x), then g(x) = x and thus
the sequence xn is u.d.

(39) If α is irrational, then for any integer q ≥ 2 the set of all limit points of the
sequence αqnmod 1 is infinite (T. V i j a y a r a g h a v a n (1940a)).

(39’) A. D u b i c k a s (2007): For an integer b ≤ −2 and any irrational ξ we have
lim infn→∞{ξbn} ≤ F (−1/b))/q and lim supn→∞{ξbn} ≥ (1−F (q/p))/q, where
F (x) =

∏∞
k=1

(
1−x(2k+(−1)k−1)/3

)
. From it he derives: (i) lim infn→∞{ξ(−2)n} <

0.211811 and lim supn→∞{ξ(−2)n} > 0.788189; (ii) The sequence of integer
parts [ξ(−2)n], n = 0, 1, 2, . . . , contains infinitely many numbers divisible by 3
and infinitely many numbers divisible by 4.
• The number α is normal in the base q if and only if αqnmod1 is u.d. The
number α is called absolutely normal if it is normal in the base q for all integers
q ≥ 2. The number α is called simply normal to base q if each digit from 0 to
q − 1 appears with the asymptotic frequency 1

q .

(40) It is not known whether the following constants of general interest e, π,√
2, log 2, ζ(3), ζ(5), . . . are normal in the base 10. All are, conjecturally, abso-

lutely normal.

(41) The first classical example α0 = 0.123456789101112 . . . of a simple normal
number in base q = 10 is given by C h am p e r n o w n e (1933). It is also normal
in q = 10.

(42) Let f(x) = α0x
β
0 +α1x

β1 + · · ·+αkx
βk be a generalized polynomial, where

α’s and β’s are real numbers such that β0 > β1 > · · · > βk ≥ 0. Assume that
f(x) ≥ 1 for x ≥ 1 and that q ≥ 2 is a fixed integer. Put α = 0.

[
f(1)
][
f(2)
]
. . . ,

where the integer part
[
f(n)
]
is represented in the q-adic digit expansion. Then α

is normal in the base q. This was proved by Y.- N. N a k a i and I. S h i o k a w a
in the series of papers (1990, [a]1990, 1992). They give the following examples

α = 0.1247912151822 . . . with f(x) = x
√
2, and α = 0.151222355069 . . . with

f(x) =
√
2x2.

(43) If f(x) is a non-constant polynomial with rational coefficients all of whose
values at x = 1, 2, . . . , are positive integers, then the normality of α in base 10
was proved by H. D a v e n p o r t and P. E r d ő s (1952).

(44) K. M a h l e r (1937) proved that α defined by an integer polynomial f(x)
is a transcendental number of the non-Liouville type.

(45) Y.- N. N a k a i and I. S h i o k a w a (1997): Let f(x) be a non-constant
polynomial which takes positive integral values at all positive integers. The num-
ber α=0.f(2)f(3)f(5)f(7)f(11) . . . , where f(p) is represented in the q-adic digit
expansion and p runs through the primes, is normal in the integral base q. The
normality of α = 0.235711 . . . with respect to base q = 10 was conjectured
by D. G. C h am p e r n o w n e (1933) and proved by A. H. C o p e l a n d and
P. E r d ő s (1946).
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(45’) M. G. M a d r i t s c h, J. M. T h u s w a l d n e r and R. F. T i c h y (2008)
extended the results of Nakai and Shiokawa by showing that, if f is an entire
function of logarithmic order, then the numbers 0.

[
f(1)
][
f(2)
][
f(3)
]
. . . and

0.
[
f(2)
][
f(3)
][
f(5)
][
f(7)
]
. . . , where

[
f(n)
]
stands for the base q expansion of

the integer part of f(n), are normal.

(46) H. F u r s t e n b e r g (1967) proved that if p, q > 1 are integers not both
integer powers of the same integer (i.e., p and q are multiplicatively indepen-
dent), then for every irrational α the sequence pmqnαmod 1, m,n = 1, 2, . . . is
everywhere dense in [0, 1].

(47) B. K r a (1999) extended (46) to the following: Let pi and qi be integers
and αi real, i = 1, 2, . . . , k. If p1, q1 > 1 are multiplicatively independent, α1 is

irrational, and (pi, qi) 	= (p1, q1) for i > 1 then the sequence
∑k
i=1 p

m
i q

n
i αimod 1,

m,n = 1, 2, . . . is dense in [0, 1]. He also gave the following:

(48) Let p, q>1 be multiplicatively independent integers and let xn, n=1, 2, . . . ,
be any sequence of real numbers. Then for any irrational α the sequence pmqnα+
xnmod1, m,= 1, 2, . . . is dense in [0, 1].

(49) Conjecture: Let λi, μi, for i = 1, 2, . . . , k be real algebraic numbers,
|λi|, |μi| > 1, λi, μi are multiplicatively independent, and (λi, μi) 	= (λj , μj) for
i 	=j. Then for any real numbers α1, . . . , αk with at least one αi 	∈Q

(∪ki=1{λi, μi}
)

the sequence
∑k
i=1 λ

m
i μ

n
i αimod1, m,n = 1, 2, . . . is dense in [0, 1].

(50) Conjecture (49) was stated by R. U r b a n (2007). He proved it for special
algebraic integers of degree 2, see 1.28. As illustrating examples he gave:

For any α1, α2 with at least one non-zero, the sequence
{
(
√
23+1)m(

√
23+2)n

α1+(
√
61 + 1)m(

√
61 − 6)nα2

}
, m, n = 1, 2, . . . is everywhere dense and also

for irrational α2 the sequence
{
(3 +

√
3)m2n + 5m7nα2

√
2
}
, m,n = 1, 2, . . . , is

everywhere dense in [0, 1]. For more information see Problem 1.28.

Submitted by O. Strauch
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DAVENPORT, H.—ERDŐS, P.: Note on normal numbers, Canad. J. Math. 4 (1952),

58–63.

[a] DUBICKAS, A.: On the distance from a rational power to the nearest integer, J.

Number Theory 117 (2006), 222–239,

[b] DUBICKAS, A.: Arithmetical properties of powers of algebraic numbers, Bull. Lon-

don Math. Soc. 38 (2006), 70–80.

DUBICKAS, A.: On a sequence related to that of Thue-Morse and its applications,

Discrete Math. 307 (2007), 1082–1093.

DUFRESNOY, J.—PISOT, CH.: Sur un problème de M. Siegel relatif à un ensemble
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sup. Pisa, Sci. fis. mat. (2) 7 (1938), 205–248 (Identical with the previous item)

POLLINGTON, A. D.: Progressions arithmétiques généralisées et le problème des
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2.5. Duffin-Scheaffer conjecture and related sequences

D.S.C.: Let f(q) be a function defined on the positive integers and let ϕ(q) be
the Euler totient function. The Duffin and Schaeffer conjecture (D.S.C.) says
that for an arbitrary function f ≥ 0 defined on positive integers (zero values are
also allowed for f) the diophantine inequality∣∣∣∣x− p

q

∣∣∣∣ < f(q), gcd(p, q) = 1, q > 0 (1)

has infinitely many integer solutions p and q for almost all x ∈ [0, 1] (in the sense
of Lebesgue measure) if and only if the following series diverges

∞∑
q=1

ϕ(q)f(q) = ∞.

Notes:

(I) The D.S.C. is one of the most important unsolved problems in metric number
theory, cf. Encyclopaedia of Mathematics 2000 (M. H a z e w i n k e l , ed.).

(II) It was inspired by A. K h i n t c h i n e (1924) result: If q2f(q) is nonincreas-
ing and

∑∞
q=1 qf(q) diverges, then (1) has infinitely many integer solutions for

almost all x. Originally, he did not assume gcd(p, q) = 1.

(III) By the Borel-Cantelli lemma, (1) has only finitely many solutions for almost
all x if

∑∞
q=1 ϕ(q)f(q) converges.

(IV) By the Gallagher ergodic theorem (P. G a l l a g h e r (1965)) the set of all
x ∈ [0, 1] for which (1) has infinitely many integer solutions has measure either
0 or 1.

(V) R. J. D u f f i n and A. C. S c h a e f f e r (1941) improved Khintchine’s theo-

rem in (II) for f(q) satisfying
∑Q
q=1 qf(q) ≤ c

∑Q
q=1 ϕ(q)f(q) for infinitely many

Q and some positive constant c. They also have given an example of f(q) such
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that
∑∞
q=1 qf(q) diverges,

∑∞
q=1 ϕ(q)f(q) converges and (1) has for almost all

x ∈ [0, 1] only finitely many solutions p and q, where the gcd(p, q) = 1 is omit-
ted (cf. (VI’)). This naturally leads to D.S.C. with

∑∞
q=1 ϕ(q)f(q) replaced of∑∞

q=1 qf(q).

(VI) In the following a class of sequences qn n = 1, 2, . . . , distinct positive
integers and a class of functions f is said to satisfy D.S.C. if the divergence∑∞
n=1 ϕ(qn)f(qn) implies that for almost all x ∈ [0, 1] there exist infinitely many

n such that the diophantine inequality∣∣∣∣x− p

qn

∣∣∣∣ < f(qn), gcd(p, qn) = 1 (2)

has an integer solution p. There are tree types of results of qn, f satisfying D.S.C.:

(a) any one-to-one sequence qn and special f ;

(b) any f ≥ 0 and a special qn (e.g., qn = nk);

(c) special qn, f.

For example:

(VIa) Following f ’s satisfy D.S.C. with every one-to-one sequence qn:

(i) f(n) = c
n2 , where c > 0 is a constant.

(ii) f(n) = O(n−2).

(iii) f(n) = O
( exp(g(n))γ

n2

)
, where γ = e

1
2 −ε, ε > 0 and g(n) is the first positive

integer for which
∑
p|n,p>g(n)
p−prime

1
p < 1.

Note that (i) was proved by P. E r d ő s (1970), (ii) by J. D. V a a l e r (1978)
and (iii) by V. T. V i l’ c h i n s k i ı̌ (1979).

(VIb) Following one-to-one sequences qn satisfy D.S.C. with every f ≥ 0 (zero
values are also allowed):

(i) ϕ(qn)
qn

≥ c > 0 for every n.

(ii) ϕ(qn)
ϕ(qn+1)

≤ c < 1 for all sufficiently large n.

(iii)
∑∞
i �=j=1

4ω(qij)

ϕ(qij)
< +∞,

where qij =
qiqj

gcd(qi,qj)2
and ω(n) = #{p− prime, p|n}.

(iv)
∑∞
n=1

ϕ(qn)
qn

< +∞.

(v) (qm, qn) = 1 for every m 	= n.

(vi)
∑∞
i,j=1

(log qij)
2

qij

ϕ(qi)
qi

ϕ(qj)
qj

< +∞.

(vii)
∑∞
n=1

(log qn)
2

q2εn
< +∞ and dij ≤ (qiqj)

1
2−ε for some ε > 0 and every i 	= j,

where dij = gcd(qi, qj).
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(viii) The sequence dij = gcd(qi, qj), i, j = 1, 2, . . . , has only finitely many dif-
ferent terms.

(ix) qn
qn+1

≤ c < 1 for every n.

(x) ϕ(qn)
qn

< Kn−δ for some K, δ > 0 and n = 1, 2, . . .

(xi) qn = nk, for k ≥ 2.

(xii) qn = qn, qn = n!, qn = 22
n

+ 1-Fermat numbers, qn = Fn-Fibonacci
numbers, qn = qn − 1, qn = qn + 1 (for every positive integer q ≥ 2).

(xiii) qn is a one-to-one sequence of primes.

Note that (i) and (ii) can be found in R. J. D u f f i n and A. C. S c h a e f -
f e r (1941).
(iii) and (iv) was proved by O. S t r a u c h [1982, Th. 14 and 15].
(v) and (vi) by O. S t r a u c h [1983, Th. 7 and 2].
(vii) by O. S t r a u c h [1984, Th. 6].
(viii) by O. S t r a u c h [1986, Th. 8].
(ix), (x), (xi) by G. H a r m a n [1990, Th. 1].
(xii) by O. S t r a u c h (1986).
(xiii) is an example in R. J. D u f f i n and A. C. S c h a e f f e r [1941, p. 245].
Also G. H e r m a n [1998, p. 27, Cor. 2] notes that Duffin-Schaeffer criterion in
(VIc(i)) (also in (VIb(i))) holds for one-to-one sequence qn of primes, since it
satisfies D.S.C. with every f ≥ 0.

(VIc) The following special sequences qn and functions f satisfy D.S.C.:

(i)
∑N
n=1 qnf(qn) ≤ c

∑N
n=1 ϕ(qn)f(qn) for N = 1, 2, . . .

(i’) qn = n and qcnf(qn) is non-increasing. Here c may be any real constant.

(ii)
∑N
n=1 ϕ(qn)f(qn) > cN δ for infinitely many N , where c, δ > 0 are con-

stants.

(iii) f(qn) > cqn(ϕ(qn)/qn)
R for n = 1, 2, . . . , where c, R > 0 are constants.

(iv) qn strictly increase, qnf(qn) does not increase and the lower asymptotic
density d(qn) > 0.

(v) f(qn)ϕ(qn) = O
(
(n logn log logn)−1

)
and c1n

A ≤ qn ≤ c2n
B, where

c1,c2,A,B are positive constants and B ≥ 1.

(vi)
maxi≤n ϕ(qi)∑n

i=1 ϕ(qi)
≥ c > 0 for n = 1, 2, . . . and f(qn) is nonincreasing.

(vii) qn is strictly increasing with d(qn) > 0 and f(q) ≥ cf(s) for all q = 1, 2, . . . ,
every s ∈ {q + 1, q + 2, . . . , 2q} and some constant c > 0.

Note that (i) and (i’) was proved by R. J. D u f f i n and A. C. S c h a e f f e r
(1942); (ii) and (iii) G. H a rm a n (1990, 1998, p. 66, Th. 3.7); (iv) G. H a r m a n
[1998, p. 41, Cor. 3]; (v) G. H a r m a n [1998, p. 57, Th. 2.10]; (vi) O. S t r a u c h
(1982); and (vii) E. Z o l i (2008).
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(VI’) O. S t r a u c h (1982): Let pn, n=1, 2, . . . be the increasing sequence of all
primes and put qn=p1p2 . . . pn and f(qn)=(qnn logn)

−1. Then
∑∞
n=1 ϕ(qn)f(qn)

converges,
∑∞
n=1 qnf(qn) diverges and for almost all x ∈ [0, 1] the inequality (2)

has only finitely many solutions p, qn, but infinitely many if the assumption
gcd(p, qn) = 1 is omitted.

(VI”) P. A. C a l t i n (1976) conjectured that the divergence∑∞
q=1 ϕ(q)maxm≥1 f(m.q)

is the necessary and sufficient condition for (1) to have infinitely many solutions.
The D.S.C. implies this conjecture, cf. G. H a r m a n [1998, pp. 28–29].

(VI*) It is interesting that one-dimensional D.S.C. is open, but multidimensional
D.S.C. was proved by A. D. P o l l i n g t o n and R. C. V a u g h a n (1999) in
the following form: For every k = 2, 3, . . . , for every one-to-one sequence qn,
n = 1, 2, . . . , of positive integers and for any nonnegative function f, if the

series
∑∞
n=1

(
ϕ(qn)f(qn)

)k
diverges, then for almost all x = (x1, . . . , xk) and for

infinitely many n there exists an integer vector p = (p1, . . . , pk) such that the
inequalities ∣∣∣∣x− p1

qn

∣∣∣∣ < f(qn), . . . ,

∣∣∣∣x− pk
qn

∣∣∣∣ < f(qn),

hold, where gcd(p1p2 . . . pk, qn) = 1.

(VI*b) G. H a r m a n [1998, p. 65, Th. 3.6] proved another multidimensional
D.S.C.: Let f1(n), . . . , fk(n) be functions of n taking values in [0, c) for some

c > 0. Write θ(n) =
∏k
j=1

(
nfj(n)

)
and suppose, for some positive reals ε and K,

that for each n for which θ(n) 	= 0 we have max1≤j≤k
θ(n)
nfj(n)

≤ K
(
θ(n)
)ε
. Let qn

be a sequence of distinct positive integers for which
∞∑
n=1

(
ϕ(qn)f1(qn)

)
. . .
(
ϕ(qn)fk(qn)

)
= ∞.

Then for almost all x = (x1, . . . , xk) ∈ [0, 1]k there are infinitely many solutions∣∣∣∣x− p1
qn

∣∣∣∣ < f1(qn), . . . ,

∣∣∣∣x− pk
qn

∣∣∣∣ < fk(qn), gcd(p1p2 . . . pk, qn) = 1.

There are two following types of sequences inspired by D.S.C., namely eutaxic
and quick.

Eutaxic sequences. Let xn ∈ [0, 1), zn ∈ R+, n = 1, 2, . . . , be two sequences
and x ∈ [0, 1]. O. S t r a u c h (1994) introduced a new counting function

A
(
x;N ; (xn, zn)

)
= #
{
n ≤ N ; |x− xn| < zn

}
.

• The sequence xn is said to be eutaxic if for every non-increasing sequence zn
the divergence of

∑∞
n=1 zn implies that

lim
N→∞

A
(
x;N ; (xn, zn)

)
= ∞
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for almost all x ∈ [0, 1]. If furthermore

lim
N→∞

A(x;N ; (xn, zn))

2
∑N
n=1 zn

= 1,

then xn is called strongly eutaxic.

Notes: (VII) Eutaxic sequences were introduced by J. L e s c a (1968). He proved
that if θ is irrational then the sequence nθmod1 is eutaxic if and only if θ has
bounded partial quotients.

(VIII) M. R e v e r s a t proved the same for the strong eutaxicity of nθmod 1,
i.e., for sequence nθmod 1 both notions coincide.

(IX) B. d e M a t h a n (1971) defined the counting function

A∗(N, xn) = #
{
0 ≤ k < N ; ∃n ≤ N

(
xn ∈ k/N, (k + 1)/N

)}
and proved that lim infN→∞A∗(N, xn)/N = 0 implies that xn is not eutaxic.
Since for the sequence xn = nθmod 1 and for θ with unbounded partial quotients
we have lim infN→∞A∗(N, xn)/N = 0, B. d e M a t h a n (1971) recovered half
of Lesca’s result.

(X) A characterization of strong eutaxicity in terms of L2 discrepancy is an open
problem, cf. O. S t r a u c h (1994).

Quick sequences. Let X = ∪∞
m=1Im be a decomposition of an open set X ⊂

[0, 1] into a sequence Im, m = 1, 2, . . . , of pairwise disjoint open subintervals
of [0, 1] (empty intervals are allowed). Let xn be an infinite sequence in [0, 1).
Define a new counting function

Ã(X;N ;xn) =#{m ∈ N; ∃n ≤ N such that xn ∈ Im}
+#{n ≤ N ; xn /∈ X},

i.e., if xn ∈ X for n = 1, 2, . . . , then Ã(X;N ;xn) is the number of intervals Im
containing at least one element of x1, x2, . . . , xN .

• The sequence xn is said to be quick if for any open set X ⊂ [0, 1] with the
Lebesgue measure |X| < 1, there exists a constant c = c(X) such that

Ã(X;N ;xn)

N
≥ c > 0.

(X’) Examples of quick sequences:

(i) The sequence xn of all dyadic rational numbers from [0, 1] ordered by 0
2
, 1
2
, 1
4
,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8 ,

1
16 , . . .

(ii) The sequence xn of all rational numbers (reduced fractions) from (0, 1]
ordered by 1

1
, 1
2
, 1
3
, 2
3
, 1
4
, 3
4
, 1

5
, 2
5
, 3
5
, 4
5
, 1
6
,. . .

(iii) The sequence xn of all non-reduced fractions from (0, 1] ordered by 1
1
, 1
2
, 2
2
, 1
3
,

2
3 ,

3
3 ,

1
4 ,

2
4 ,

3
4 ,

4
4 ,

1
5 ,. . .
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(iv) The denominators 1, 2, 3, . . . in (iii) can be replaced by any arithmetic
subsequence of positive integers.

• The sequence xn is said to be uniformly quick (abbreviated u.q.) if for any
open set X ⊂ [0, 1] we have

lim
N→∞

Ã(X;N ;xn)

N
= 1− |X|.

• If this limit holds for a special sequence of indices N1 < N2 < . . . , then xn is
said almost u.q.

(XI) Quick and u.q. sequences were introduced and studied by O. S t r a u c h
(1982, 1983, 1984, [a]1984, 1986) in connection with D.S.C.

(XII) Any quick sequence xn is eutaxic, i.e., for every non-increasing sequence
zn,
∑∞
n=1 zn = ∞, for almost all x ∈ [0, 1], the inequality |x− yn| < zn holds for

infinitely many n.

(XII’) Any u.q. sequence xn is u.d. in (0, 1] and it is also strongly eutaxic.

(XIII) The sequence xn = nθmod 1 is u.q. if and only if the simple continued
fraction expansion of the irrational θ has bounded partial quotients
(cf. O. S t r a u c h ([a]1984)).

(XIV) O. S t r a u c h [1982, Th. 3]: The u.d. sequence xn is u.q. if for infinitely
many M there exist cM , c′M , and N0(M ) such that c′M → 0 as M → ∞ and∑

|xi−xj |≤t
M<i �=j≤N

1 ≤ cM t(N −M )2 + c′M (N −M )

for every N ≥ N0(M ) and every t ≥ 0.

(XV) The u.q. sequences xn can be used in the numerical evaluation of integrals∫
X
f(x) dx over open subsets X of [0, 1]. Thus also for Jordan non-measurable

sets X whose boundaries ∂X are of positive measure |∂X| > 0, cf. O. S t r a u c h
(1997).

(XVI) Let qn, n = 1, 2, . . . , be a one-to-one sequence of positive integers and let
An, n = 1, 2, . . . be a sequence composed from blocks

An =

(
1

qn
,
a2
qn
, . . . ,

aϕ(qn)

qn

)
,

where 1 = a1 < a2 < a3 < · · · < aϕ(qn) are the integers< qn coprime to qn. If An,

n = 1, 2, . . . is almost u.q.
(
with respect to the set of indices Nn =

∑n
i=1 ϕ(qi)

)
,

then the D.S.C. holds for qn and for every non-increasing f(qn). Thus the D.S.C.
follows from the following conjecture immediately:
Conjecture: For every one-to-one sequence of positive integers qn, the block
sequence An is almost u.q.
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(XVII) For every one-to-one sequence qn in (VIb) the block sequence An is
almost u.q., e.g., (v) relatively prime qn; (xii) qn = Fibonacci numbers; (ix)
lacunary qn;

(XVIII) From (XIV) it follows immediately: Assume that, for infinitely many m
there exist cm and c′m such that c′m → 0 as m → ∞ and for every 0 < x < 1
and for all sufficiently large n we have the estimation

∑
0< a

qi
− b

qj
<x

(a,qi)=(b,qj)=1
m<i,j≤n

1 ≤ cmx

⎛⎝ ∑
m<i≤n

φ(qi)

⎞⎠2+ c′m

⎛⎝ ∑
m<i≤n

φ(qi)

⎞⎠ . (3)

Then the sequence qn, n = 1, 2, . . . , satisfies D.S.C. with every non-increasing
function f. If the estimation (3) holds for every permuted qπ(n) and for any
subsequences qπ(nk), k = 1, 2, . . . , then the sequence qn, n = 1, 2, . . . , satisfies
D.S.C. with every f ≥ 0, zero values are also allowed. We conjectured that
(3) holds for any one-to-one integers qn, where the constants cm and c′m depend
on qn. All results in (VIb) can be found by proving (3), where we used the
following partial estimations: For given two integers qi and qj denote

a(x) =
∏

p>x,p|a
p−prime

p, dij = gcd(qi, qj), qij =
qiqj
d2ij

, xij = xdijqij.

Then the sum ∑
0< a

qi
− b

qj
<x

(a,qi)=(b,qj)=1

1

has the following upper bounds:

(i) c0xϕ(qi)ϕ(qj)
qij(xij)

ϕ(qij(xij))
;

(ii) c0xϕ(qi)ϕ(qi);

(iii) c0xqiqj;

(iv) c0xϕ(qi)ϕ(qj)
qij

ϕ(qij)
;

(v) c0xϕ(qi)ϕ(qj) + 2ω(qij)ϕ(dij);

where ω(n) is the number of distinct prime divisors of n and c0 is an absolute
constant.

(XIX) Let g(x) be an integer polynomial. In generally, the D.S.C. for qn=g(n)
is an open problem (we know only g(x) = xk, see (VIb(xi))). In connection
with (VIb(vii)) there is a question: When for polynomial g(x) we have

gcd
(
g(m), g(n)

) ≤ c
(
g(m)g(n)

)1
2−ε (4)
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for every sufficiently large integers m 	= n, where the constants c and ε depend
on g(x).

A. S c h i n z e l (personal communication) has shown that the Masser abc-
hypothesis implies (4) for g(x) = x3+ k, k = 1, 2, . . . , with exponent 1

2 − 1
18 + ε′.

He conjectured that (4) holds also for g(x) = xk+1, k = 3, 4, . . . , but he proved
that (4) does not hold for g(x) = x2 + 1.

(XX) The problem of restricting both numerators p and denominators q in (1)
to sets of number-theoretic interest was investigated by G. H a rm a n (1988).

(XX’) Firstly, he considers (1), where p, q are both primes. In this case D.S.C.
has the following form.
Conjecture: For any function f ≥ 0 if the sum

∞∑
q=2

q−prime

f(q)
q

log q
(5)

diverges, then for almost all x there are infinitely many primes p, q which sat-
isfy (1).

(XXI) G. H a rm a n (1988) established this D.S.C. for f(q) ≥ 0 satisfying

0 < σ1 ≤ mf(m)
nf(n) ≤ σ2 for all m with n0 ≤ n < m < 2n, where σ1, σ2, n0 are

positive constants.

(XXII) V. T. V i l’ c h i n s k i ı̌ (1990) replaced (5) by
∞∑
q=2

q−prime

f(q)
q−m+1+(m/n)

log q
(6)

where integers m,n satisfy one from m = n, m > 2n, or n > 2m. He proved that
for special f > 0, if the series (6) diverges, then for almost all x, there exists
infinitely many primes p, q such that

∣∣x− p
qm

∣∣ < f(q).

(XXIII) Using the theory of u.q. sequences, the D.S.C. for prime numbers and
non-increasing f holds if the block sequence An, n = 1, 2, . . . ,

An =

(
q1
qn
,
q2
qn
, . . . ,

qn
qn

)
,

is u.q., where qn, n = 1, 2, . . . is the increasing sequence of all primes. Note
that the sequence of blocks An, n = 1, 2, . . . , is u.d., see 1.9 Block sequence,
Example (I).

(XXIV) G. H a rm a n [1998, p. 168, Th. 6.2]: Let A and B be sets of positive
integers and denote

(i) d(B) > 0;

(ii) A(kn)/A(n) > c + 1 for all n and for some constants k > 1, c > 0. Here
A(n) = #{i ≤ n; i ∈ A};
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(iii) A(2n)− A(n) < C for all n, where C depends only on A,

(iv) limq→∞ limp→∞ gcd(p, q) = ∞, where q ∈ A and p ∈ B;

(v) f(n) is non-increasing;

(vi) 0 < σ1 <
mf(m)
nf(n) < σ2 for all m with n0 ≤ n < m < 2n, where σ1, σ2, n0

are positive constants;
(vii)

lim inf
n→∞

1

A(n)

n∑
q=1
q∈A

1

q

∑
p∈B

p/q∈[x,y]
gcd(p,q)=1

1 > c(y − x)

for all intervals [x, y], where c > 0 is a constant depending on A and B.

Suppose that (i), (vii) and at least one of (ii), (iii), (iv) holds for A and at least
one of (v), (vi) holds for f . If the series

∑∞
q=1,q∈A f(q) diverges, then there are

infinitely many solutions to∣∣∣∣x− p

q

∣∣∣∣ < f(q), q ∈ A, p ∈ B, gcd(p, q) = 1 (7)

for almost all x.

• K(f) =
{
x ∈ R;

∣∣x− p
q

∣∣ < f(q) for infinitely many rationals p
q

}
;

• Exact (f) = K(f)− ∪m≥2K
(
(1− 1/m)f

)
;

(XXV) Y. B u g e a u d (2008) collected known results:

(i) If f(q) is non-increasing and f(q) = o(q−2) then K(f) 	= ∅ (V. J a r n ı́ k
(1931));

(ii) If q2f(q) is non-increasing and
∑∞
q=1 f(q) converges then for Hausdorff

dimension dim Exact (f) = dim K(f) = 2
λ , where λ = lim infx→∞ − log f(x)

log x

(M. M. D o d s o n (1992)).

Since for convergent
∑∞
q=1 f(q) the result (i) is very satisfactory, Y. B u -

g e a u d (2008) proposed two following problems:

Open problem 1. Let f(q) be a non-increasing, f(q) = o(q−2) and
∑∞
q=1 f(q)

diverges then to find Hausdorff dimension of Exact (f).

(iii) Y. B u g e a u d (2008): Let q2f(q) be a non-increasing,
∑∞
q=1 f(q) diverges

and 1/(q2+ε) ≤ f(q) ≤ 1/(100q2 log q) for any ε > 0 and sufficiently large q.
Then dim Exact (f) = dim HK(f) = 1.

Open problem 2. Study the set Exact (c/n2).

(iv) Y. B u g e a u d (2008): For any 0 < c < 1/6 the set Exact (c/n2) is non-
empty.

(XXVI) D. B e r e n d and A. D u b i c k a s (2009) studied diophantine approx-
imation in the form (VII) |x− xn| < zn. Putting

• G(xn, zn) =
{
x ∈ R; |x− xn| < zn for infinitely many n

}
they proved:
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(i) Let xn be an arbitrary dense sequence in [0, 1], and zn be an arbitrary se-
quence of positive numbers. Then the set G(xn, zn) is an uncountable dense
subset of the interval [0, 1].

(ii) Let xn be an arbitrary sequence in [0, 1], and zn be an arbitrary sequence
of positive numbers. If

∑∞
n=1 z

s
n <∞ for some 0<s<1, then dimHG(xn, zn) ≤ s

(the Hausdorff dimension).

(iii) For any sequence zn > 0, limn→∞ zn = 0, there exists well distributed
xn ∈ [0, 1) such that dimHG(xn, zn) = 0.

(iv) For every zn,
∑∞
n=1 zn = ∞, there exists xn ∈ [0, 1] such that G(xn, zn) =

[0, 1].

(v) Note that, by definition of eutaxic sequence and by (VII), for xn = nθmod 1,
if θ has bounded partial quotients, then the measure |G(xn, zn)| = 1, for an
arbitrary sequence zn > 0,

∑∞
n=1 zn = ∞.

(XXVII) L. M i š ı́ k and O. S t r a u c h (2012) are linked to (XXVI) results:

(i) Let xn be a sequence in [0, 1) such that the set G(xn) of all d.f.s of xn
contains only continuous d.f.s. Then for every sequence zn > 0, zn → 0, and
every x ∈ [0, 1] we have: If |x − xnk

| < znk
, k = 1, 2, . . . , then the asymptotic

density d(nk) = 0.

(ii) Ex.: The set G(logn) (was found by A. W i n t n e r (1935)) has only con-
tinuous functions. Thus if |x − {lognk}| < znk

, k = 1, 2, . . . then k
nk

→ 0

for every sequence zn > 0, zn → 0. Note that, recently Y. O h k u b o (2011)
proved: Let pn, n = 1, 2, . . . , be the increasing sequence of all primes. The se-
quence {log pn}, n = 1, 2, . . . , has the same d.f.s as lognmod 1. Thus nk with
|x− {log pnk

}| < znk
, k = 1, 2, . . . satisfies k

nk
→ 0, again.

• G. M y e r s o n (1993) (see [SP, 1.8.10]) introduced the sequence xn in [0, 1)
to be uniformly maldistributed if for every subinterval I ⊂ [0, 1) with positive
length |I|>0 we have both

lim inf
n→∞

#{i ≤ n;xi ∈ I}
n

= 0, lim sup
n→∞

#{i ≤ n;xi ∈ I}
n

= 1.

(iii) Let xn be a uniformly maldistributed sequence in [0, 1). Then there exists a
decreasing sequence zn > 0, n = 1, 2, . . . , zn → 0, such that for every x ∈ [0, 1],
the sequence of all indices nk, |x − xnk

| < znk
, k = 1, 2, . . . , has the upper

asymptotic density d(nk) = 1.

(iv) Ex.: The sequence {log logn}, n = 2, 3, . . . , is uniformly maldistributed,
thus there exists a decreasing sequence zn > 0, n = 1, 2, . . . , zn → 0, such that
for every x ∈ [0, 1], d(nk) = 1 for all possible nk, |x− {log lognk}| < znk

.

(XXVIII) For Hausdorff dimension the analogue of the D.S.C. is true.
G. H a rm a n [1998, Th. 10,7] proved that if

∑∞
q=1 qf(q) = ∞, then the set

X=
{
x∈ [0, 1]; there exists infinitely many integer solutions

∣∣x− p
q

∣∣, gcd(p, q)=1,

q > 0
}
has Hausdorff dimension 1.
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(Note that
∑∞
q=1 ϕ(q)f(q) = ∞ ⇒ ∑∞

q=1 qf(q) = ∞). The dimensional ana-
logue of D.S.C. also proved A. H a y n e s, A. P o l l i n g t o n and S. V e l a n i
(2012).

(XXIX) O. S t r a u c h (1983) also studied the diophantine inequality

|x− xn| < zn/z. (8)

He proved

(i) If xn is dense in [0, 1], zn → 0, the following sets

X1 = {x ∈ [0, 1]; for every z > 0, (8) and xn > x holds for infinitely many n},
X2 = {x ∈ [0, 1]; for every z > 0, (8) and xn < x holds for infinitely many n},

are also dense and they have a power c, and

X0 = {x ∈ [0, 1]; there exists z > 0, (8) holds only for finitely many n}
is of the first category.

(ii) For every xn ∈ [0, 1], zn → 0, with the possible exception of a nullset, the
unit interval [0, 1] can be decomposed into two sets:

X3 = {x ∈ [0, 1]; for every z > 0, (8) holds only for finitely many n},
X4 = {x ∈ [0, 1]; for every z > 0, (8) and xn > x hold for infinitely many n

and also (8) and xn < x hold for infinitely many n}.
(XXX) A. H a y n e s, A. P o l l i n g t o n and S. V e l a n i (2012) replace Duffin-

Schaeffer series
∑∞
q=1 ϕ(q)f(q) by series

∑∞
q=1 ϕ(q)

(
f(q)
)1+ε

and prove that the

divergence
∑∞
q=1 ϕ(q)

(
f(q)
)1+ε

= ∞ implies that the diophantine inequality (1)

has infinitely many integer solutions p and q for almost all x ∈ [0, 1] and for
arbitrary f(q) ≥ 0. Thus D.S.C. holds in this form. L i a n g p a n L i (2013)

replace
∑∞
q=1 ϕ
(
q)(f(q)

)1+ε
by
∑∞
q=1 ϕ(q)q

ε
(
f(q)
)1+ε

in this result.

Submitted by O. Strauch
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