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IMPROVED ZERO-KNOWLEDGE IDENTIFICATION

WITH LATTICES
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– Rosemberg Silva

ABSTRACT. Zero-knowledge identification schemes solve the problem of au-
thenticating one party to another via an insecure channel without disclosing any
additional information that might be used by an impersonator. In this paper
we propose a scheme whose security relies on the existence of a commitment
scheme and on the hardness of worst-case lattice problems. We adapt a code-
-based identification scheme devised by Cayrel, Véron and El Yousfi, which con-

stitutes an improvement of Stern’s construction. Our solution sports analogous
improvements over the lattice adaption of Stern’s scheme which Kawachi et al.
presented at ASIACRYPT ’08. Specifically, due to a smaller cheating probabil-
ity close to 1/2 and a similar communication cost, any desired level of security
will be achieved in fewer rounds. Compared to Lyubashevsky’s scheme presented
at ASIACRYPT ’09, our proposal, like Kawachi’s, offers a much milder security

assumption: namely, the hardness of SIS for trinary solutions. The same assump-
tion was used for the SWIFFT hash function, which is secure for much smaller
parameters than those proposed by Lyubashevsky.

1. Introduction

One of the main objectives in cryptography is to provide means of access con-
trol, and identification (ID) schemes are typically applied in order to reach this
goal. These schemes describe interactive protocols between a designated prover
and verifier with the purpose of demonstrating that the prover knows a secret
that is associated with his identity. In zero-knowledge schemes, no information
about this secret is revealed, except the fact that the prover knows it. Besides,
using hard lattice problems as security basis allows for very mild assumptions
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in the sense that they are worst-case instead of average-case and provide resis-
tance against quantum adversaries.

There is an efficient generic construction due to Fiat and Shamir that trans-
forms any ID scheme into a signature scheme, in the random oracle model [14].
Therefore, having an efficient ID solution from lattices gives rise to a similarly
efficient signature construction, keeping the same hardness assumption. One of
the main hardness assumption for ID schemes based on lattices is the short in-
teger solution (SIS) problem. One is given an average case instance A ∈ Z

n×m
q ,

m = Ω
(
n log(n)

)
, and a norm bound b. Then, the task is to find a non-zero

vector v ∈ Z
m such that Av ≡ 0 (mod q) and ‖v‖∞ ≤ b. This is hard to

accomplish as long as there is at least one single n-dimensional lattice, where
solving the approximate shortest vector problem is hard for approximation fac-
tors γ ≥ b · Õ(1). Hence, it is desirable to build an ID scheme based on SIS with
the least possible norm bound b, which is b = 1.

The most relevant ID schemes based on number theoretic problems, e.g., [14]
and [12], do not resist quantum attacks that use S h o r’ s algorithm [33]. One of
the first schemes to resist such kind of attack was proposed by S t e r n [34]. It re-
lies on the syndrome decoding problem and uses of a 3-pass zero-knowledge proof
of knowledge (ZK-PoK) with a soundness error of 2/3 and perfect completeness.
Recently, K a w a c h i, T a n a k a and X a g a w a [19] were able to change the
security assumption of Stern’s scheme to SIS with norm bound 1. With their
work, K a w a c h i et al. provide a more efficient alternative to Lyubashevsky’s
ID scheme [21], [24], which uses a stronger assumption, SIS with norm bound
O
(
n2 log(n)

)
. In contrast to typical zero-knowledge schemes, Lyubashevsky’s

construction is based on a witness-indistinguishable (not zero-knowledge) proof
of knowledge. Furthermore, it has no soundness error. However, it a complete-
ness error of 1 − 1/e, which leads to increased communication costs and the
undesirable scenario of having an honest prover being rejected by the verifier.

In code-based cryptography, there is also the scheme proposed by C a y r e l ,
V é r o n and E l Y o u s f i [11] that improves Stern’s scheme by reducing the
soundness error to q/

(
2(q − 1)

) ≈ 1/2. This improvement leads to lower the
communication cost, when comparing both schemes for a given security level.
Currently, in terms of efficiency, there is no practical lattice-based construction
that is comparable to that put forward by Cayrel, Véron and El Yousfi.

We propose such a scheme with a soundness error of (q + 1)/2q ≈ 1/2 and
perfect completeness1. It is based on the same efficient version of the SIS problem
that is used by K a w a c h i et al. or by the SWIFFT compression function [25].
Both the small soundness error and the mild assumption make our scheme more
efficient than previous lattice-based ones. Moreover, by transferring code-based

1We conjecture that Cayrel, Véron and El Yousfi’s scheme has the same soundness error by

the arguments given in Section 3.2.
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constructions to lattices, we can exploit efficiency improvements using ideal lat-
tices without losing provable security. As a result, our scheme has smaller public
keys and more efficient operations than those associated with the current code-
based ID schemes.

For a comparison with the most recent lattice-based ID schemes, see Table 1,
which assumes that the parameters listed in Table 2 are used, and that a sound-
ness error of 2−16 (one of the values recommended in the norm ISO/IEC 9798)
is specified. We computed that Lyubashevky’s scheme takes 11 rounds to reach
a completeness error below 1%, when it is using the most efficient parameters
listed in [22]. This paper is a longer version of [9], where we first proposed

Table 1. Comparison of lattice-based identification schemes.

Scheme Secret key Public key Rounds Payload Domain

[Kbyte] [Kbyte] [Kbyte]

Lyubashevsky [24] 0,25 2,00 11 110,00 Lattices

Kawachi et al. [19] 0,25 0,06 27 58,67 Lattices

Section 3 0,25 0,06 17 37,50 Lattices

Stern [34], Gaborit [15] 0,50 0,06 27 20,03 Code

Véron [35] 0,44 0,50 27 18,95 Code

Cayrel et al. [11] 0,20 0,10 16 5,64 Code

our lattice-based identification scheme. In the present work, we also instantiate
a threshold ring signature scheme as an example of the application of Fiat-
Shamir heuristic to the underlying identification scheme. Our signature scheme
was first described in [10].

The content of this paper is organized as follows. We present the concepts
that are used in the construction of the identification scheme in Section 2, as
well as the original schemes by Stern, Cayrel, Véron and El Yousfi, whose key
aspects were combined in the current work. Later, we give a detailed description
of the algorithms that comprise the new scheme, and discuss the decisions that
were made from a performance and security point of view in Section 3. Then,
we analyze potential attacks and show how they affect the choice of parameters
in Section 4. We also present a signature scheme named TRSS, presented in [10],
obtained through the application of Fiat-Shamir transform to our identification
scheme in Section 5. In Section 6 we present our conclusions and indicate further
lines of investigation.
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2. Preliminaries

Notation: We write vectors and matrices in boldface, while one-dimensional
variables such as integers and reals will be regular. All vectors are columnvectors
unless otherwise stated. We use || to signify that multiple inputs of a function
are concatenated. For example, let h : {0, 1}∗ → {0, 1}m be a hash function, and
a,b be vectors, then we write h(a||b) to denote the evaluation of h on some
implicit binary encoding of a concatenated with an implicit encoding of b. For
the scope of this work, the actual encoding used is assumed to be efficient, and
generally not discussed since it has no relevance for the results.

Security Model: We apply in the current work a string commitment scheme
in the trusted setup model, according to which a trusted party honestly sets up
the system parameters for the sender and the receiver.

For security model, we use impersonation under concurrent attacks. This im-
plies that we allow the adversary to play the role of a cheating verifier prior to
impersonation, possibly interacting with many different prover clones concur-
rently. Such clones share the same secret key, but have independent coins and
keep their own state. As stated in [5], security against this kind of attack implies
security against impersonation under active attack.

In the security proofs along this text we use the concept of zero-knowledge
interactive proof of knowledge system. In such context, an entity called prover
P has as goal to convince a probabilistic polynomial-time (PPT) verifier V that
a given string x belongs to a language L, without revealing any other information.

This kind of proof satisfies three properties:

• Completeness: any true theorem can be proven.
That is, ∀x ∈ L Prob

[
(P, V ) [x] = YES

] ≥ 1−negligible(k). Where, (P, V )
denotes the protocol describing the interaction between prover and verifier,
and negligible(k) is a negligible function on some security parameter κ.

• Soundness: no false theorem can be proven.
That is, ∀x /∈ L ∀P ′ Prob

[
(P ′, V ) [x] = YES

] ≤ 1/2, where P ′ denotes any
entity playing the role of prover.

• Zero-Knowledge: anything one could learn by listening to P, one could also
have simulated by oneself.
That is, ∀V ′

PPT ∃SPPT ∀x ∈ L VIEWP,V ′(x) close to S(x). Where, VIEW
represents the distribution of the transcript of the communication between
prover and verifier, and S(x) represents the distribution of the simulation
of such interaction. Depending on the proximity of VIEWP,V ′(x) and S(x),
as defined in [17], one can have:

– Perfect Zero-knowledge: if the distributions produced by the simulator
and the proof protocol are exactly the same.
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– Statistical Zero-knowledge: if the statistical difference between the
distributions produced by the simulator and the proof protocol is
a negligible function.

– Computational Zero-knowledge: if the distributions produced by the
simulator and the proof protocol are indistinguishable to any efficient
algorithm.

String Commitment Scheme. A string commitment scheme is a protocol
between two parties: a sender and a receiver. Both parties agree on a determin-
istic commitment function Com from a suitable family. This can be be realized,
for instance, with a trusted third party. The scheme runs in two phases named
committing and revealing.

In the commitment phase, the sender commits to a string s by choosing
a string ρ uniformly at random and computing c← Com(s, ρ) which he sends to
the receiver. In the corresponding revealing phase, the sender reveals both the
string s and his chosen randomness ρ to the receiver. Then the receiver checks
if the equality c = Com(s; ρ) holds.

For our main protocol, we will use a commitment scheme which is secure in
the sense that it is both hiding and binding. Informally, we say the scheme is
statistically hiding, if a computationally unbounded attacking receiver has no
noticeable advantage when correctly assigning two commitments c, c′ to their
respective strings s, s′. We say the scheme is computationally binding, if an at-
tacking sender running in polynomial-time cannot change the commitment c to
another value which passes the check in the revealing phase. Refer to, e.g., [18]
for a formal definition.

Fiat-Shamir Transform. This heuristic converts an identification into a sig-
nature scheme by eliminating the verifier from the protocol. The challenges are
computed in such a way that the use of pre-determined values that could be used
in forgery is ruled-out. This is accomplished by making the challenge be the out-
come of a cryptographic hash function that takes as input the commitments
computed by the prover (who now plays the role of signer) and the message
itself. The random aspect of the challenge is assured by the expected behavior
of the hash function. This implies that the security model used is the random
oracle model.

Threshold Ring Signature Scheme (TRSS). Given an input security pa-
rameter λ, an integer n representing the number of users, and an integer t rep-
resenting the minimum number of users required to jointly generate a valid
signature, threshold ring signature scheme is a set of four algorithms described
as below:

• Setup: generates the public parameters corresponding to the security pa-
rameter.
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• Key Generation: creates pairs of keys (s, p) (one for each user that com-
poses the ring), secret and public respectively, related by a hard problem.

• Signature Generation: on input a message m, a set of public keys
{p1, . . . , pn} and a sub-set of t secret keys, it issues a ring signature σ.

• Signature Verification: on input a message m, its ring signature σ and a set
of public keys {p1, . . . , pn}, it outputs 1 in case the signature is valid, and 0
otherwise.

Lattices. Lattices are regular pointsets in a finite real vector space. They are
formally defined as discrete additive subgroups of Rm. They are typically rep-
resented by a basis B comprised of n ≤ m linear independent vectors in R

m.
In this case the lattice is the set of all combinations of vectors in B with inte-
gral coefficients, i.e., L = BZ

n. In cryptography, we usually consider exclusively
integral lattices, i.e., subgroups of Zm.

There are some lattice-based computational problems whose hardness can be
used as security assumption when building cryptographic applications. We will
give definitions of all the problems relevant for this article now. We will use an
unspecified norm in these definition, but for the scope of our article this will
always be the max-norm.

���������� 2.1 (SVP)� Given a lattice basis B ∈ Z
m×n, the shortest vec-

tor problem (SVP) consists in finding a non-zero lattice vector Bx such that
‖Bx‖ ≤ ‖By‖ for any other y ∈ Z

n \ {0}.
���������� 2.2 (CVP)� Given a lattice basis B ∈ Z

m×n and a target vector
t ∈ Z

m, the closest vector problem (CVP) is finding x ∈ Z
n such that ‖Bx− t‖

is minimal.

SVP and CVP admit formulations as approximation, as well as promise
(GapSVP, GapCVP) problems. For these versions the hardness can be proved
under suitable approximation factors such as constants as seen, for example,
in [27].

���������� 2.3 (SIS)� Given a matrix A ∈ Z
n×m
q and a positive real number b,

the short integer solution (SIS) problem consists in finding a non-zero vector
x ∈ Z

m that satisfies the equationAx = 0 (mod q) and that has length ‖x‖ ≤ b.

There are lattice-based cryptographic hash function families for which it can
be shown that breaking a randomly chosen instance is at least as hard as finding
solutions for worst-case instances of lattice problems. In [3] and [4], A j t a i first
showed how to use computationally intractable worst-case lattice problems as
building blocks for cryptosystems. The parameter sizes involved, however, are
not small enough to enable practical implementations.

Using cyclic lattices, M i c c i a n c i o showed that it is possible to represent
a basis, and thus public keys, with space that grows quasilinearly in the lattice
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dimension [26]. Together with L y u b a s h e v s k y, he improved this initial re-
sult, achieving compression functions that are both efficient and provably secure
assuming the hardness of worst-case lattice problems for a special type of lat-
tices, namely ideal lattices [23]. We will talk in more detail about ideal lattices
later on.

A variety of hard problems associated with lattices has been used as security
basis in a number of cryptographic schemes. For example, Lyubashevsky’s identi-
fication scheme is secure under active attacks, assuming the hardness
of approximating SVP in all lattices of dimension n to within a factor of Õ(n2).
By weakening the security assumption, on the other hand, one can achieve
parameters small enough to make a practical implementation feasible, as seen in
the identification scheme proposed by K a w a c h i et al. in [19]. In this later
work, the authors suggest to use approximate GapSVP or SVP within fac-
tors Õ(n).

Ideal lattices

Lattices are additive groups. However, there is a particular class of lattices that
are also closed under (properly defined) ring multiplications. They correspond
to the ideals of some polynomial quotient ring and are defined below. In the
definition, we implicitly identify polynomials with their vector of coefficients.

���������� 2.4 (Ideal lattices)� Let f be some monic polynomial of degree n.
Then, L is an ideal lattice if it corresponds to an ideal I in the ring Z[x] /〈f〉.

The concept of ideal lattices is very general. So, often lattice classes resulting
from specific choices of f have their own names. For example, f(x) = xn − 1
corresponds to cyclic lattices, and f(x) = xn + 1 to anticyclic lattices. We also
have the class of cyclotomic lattices resulting from all cyclotomic polynomials f.
The later class is the only one relevant for practical applications at the moment.

Whereas, for general lattices of full rank n and entries of bitsize q, one needs
n2 log(q) bits to represent a basis, for ideal lattices only n log(q) bits suffice. This
property addresses one of the major drawbacks usually associated with lattice-
-based cryptosystems: the large key sizes. Another good characteristic of the
subclass of cyclotomic lattices is that associated matrix/vector multiplications
can be performed in time O(n log(n)) using discrete FFTs.

Lyubashevsky and Micciancio found that it is possible to restrict both SIS
and SVP to the class of ideal lattices and keep the worst-case to average-case
connection (for a fixed polynomial f that is irreducible over the integers) discov-
ered by Ajtai. The corresponding problems are denoted with the prefix “Ideal-”.
As is customary, we again identify polynomials with their vectors of coefficients.

���������� 2.5 (Ideal-SIS)� Let f be some monic polynomial of degree n, and
Rf be the ring Z[x]/〈f〉. Given m elements a1, . . . , am ∈ Rf/qRf , the Ideal-SIS
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problem consists in finding x1, . . . , xm ∈ Rf such that
∑m

i=1 aixi = 0 (mod q)
and ‖(x1, . . . , xm)‖ ≤ b.

Switching between the ideal and general lattice setting for schemes based
on SIS happens by replacing the randomly chosen matrix A for the general SIS
setting with

A1 = [a1, a1x, . . . , a1x
n−1],

A2 = [a2, a2x, . . . , a2x
n−1],

...

Am = [am, amx, . . . , amxn−1],

A′ = [A1|A2| · · · |Am],

where a1, . . . , am ∈ Rf/qRf is chosen uniformly at random.

Identification scheme

An identification scheme is a collection of algorithms (Setup, Key Generation,
Prover, Verifier) meant to provide a proof of identity for a given part. The Setup
algorithm takes as input a security parameter and generates structures (such as
lattice or code basis) to be used by the other algorithms. The Key Generation
algorithm takes as input the parameters generated by the Setup algorithm and
derives key pairs (private, public) to be associated with a set of users. The Prover
and Verifier algorithms correspond to a protocol that is executed by entities P
and V, respectively, such that the first convinces the latter about its identity
authenticity, by proving to have knowledge of a solution to a hard problem,
which establishes the relation between the components of P ’s key pair (private,
public).

Schnorr’s identification scheme

This is a number-theoretic identification scheme which relies on the hardness of
the discrete logarithm problem. The protocol realizing this scheme corresponds
to a zero-knowledge proof of knowledge that the entity prover knows the solution
to x to the equation X = αx mod p, where x ∈ {1, . . . , q − 1}, with p and q
primes such that q divides p − 1. It makes use of the keys and parameters
generated as below.

The Key Generation algorithms is defined as follows:

• Input: security parameter k.

• Choose parameter t as a function of k.

• Choose uniformly at random the primes q and p, such that q divides p− 1.
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• Choose α ∈ Zp with order q.

• Choose the private key x uniformly at random from {1, . . . , q − 1}.
• Make the public key X = αx mod p.

The Identification Scheme protocol is comprised of the following steps:

• The prover chooses y uniformly at random from Zq, computes Y = αy and
sends it to the verifier.

• The verifier chooses c uniformly at random from Z2t and sends it to the
prover.

• The prover responds with y + cx mod q.

• The verifier accepts the prover if αz ≡ Y Xc, and Y belongs to the group
generated by α and z ∈ Zq. Otherwise, the prover is rejected.

The security of the identification scheme above is based on the hardness
of computing discrete logarithms [32]. The protocol has a soundness error of 2−t.

Stern’s identification scheme

The first practical code-based identification scheme was proposed by S t e r n [34].
Its basic algorithm uses a hash function h, a pair of keys (i, s) related by i = HT s,
where H is a public parity check matrix of a given code, s is a private binary
vector of Hamming weight p, and i is its public syndrome. In a given round,
y is chosen uniformly at random from the same space as s, a permutation σ
of the integers

{
1, . . . , dim(y)

}
is similarly chosen, and the commitments are

calculated by the prover as follows:

c1 = h
(
σ‖HTy

)
,

c2 = h
(
σ(y)

)
,

c3 = h
(
σ(y⊕ s)

)
.

Upon receipt of a challenge b chosen uniformly at random from {0, 1, 2}, the
prover reveals the information that enables the verifier to check the correctness
of the commitments as below:

b = 0: Reveal y and σ. Check c1 and c2.

b = 1: Reveal y ⊕ s and σ. Check c1 and c3.

b = 2: Reveal σ(y) and σ(s). Check c2, c3,

and wt
(
σ(s)

)
= p.

This scheme has a soundness error of 2/3. In order to reach a confidence level L
on the authenticity of the prover, it has to be repeated a number r of times, so
that 1− (2/3)r ≥ L.
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In the same work Stern also proposed a few variants of the basic scheme
focusing on specific goals, such as: minimize computing load, minimize number
of rounds, apply identity-based construction, and employ an analogy of modular
knapsacks. For the minimization of number of rounds, he suggested the following
solution:

(1) The private key s is replaced by the generators {s1, . . . , sm} of a simplex
code.

(2) Only two commitments c1 = h
(
σ‖HTy

)
and

c2 = h
(
σ(y)‖σ(s1)‖ . . . ‖σ(sn)

)
are used.

(3) The prover computes z = σ
(
y⊕⊕m

j=1 bjsj
)
using a binary vector

{b1, . . . , bm} received from the verifier.

(4) Upon challenge 0, the prover reveals σ, and the verifier checks c1.

(5) Upon challenge 1, the prover discloses
{
σ(s1), . . . , σ(sm)

}
, and the verifier

checks that c2 is correct and that the code generated by {s1, . . . , sm} is
simplex with the required weight.

This solution replaces the 3-pass approach by a 5-pass one, but it is not
effective as far as communication costs are regarded. A more efficient solution is
shown in the following paragraph. It also corresponds to the underlying approach
for our lattice-based solution.

Cayrel and Véron’s identification scheme

The identification scheme proposed by S t e r n [34] was based on the hardness
of the syndrome decoding problem. An improvement over this scheme, using the
dual construction, was proposed by V é r o n [35], achieving lower communication
costs and better efficiency. Like the basic Stern construct, however, a dishonest
prover can have success with probability up to 2/3 in any given round.

By modifying the way the commitments are calculated, incorporating a value
chosen at random by the verifier, C a y r e l and V é r o n [11] were able to bound
the cheating probability within a given round close to 1/2, with similar commu-
nication costs. The approach followed will be outlined later for the case of our
scheme in Algorithm 2, where the syndrome decoding problem is replaced by
the shortest vector problem as hardness assumption. It involves a 5-pass solu-
tion, similar to Stern’s construction. It avoids the heavy payload associated with
transmitting the whole basis of a simplex code (or of a lattice), though.

Another scheme suggested by G a b o r i t requires smaller storage for public
data [15]. Given that the schemes we have seen are dealing with codes, this
usually implies that a generator matrix or a parity check matrix is needed to
fully characterize them. The idea applied by Gaborit was to use double-circulant
matrices for a compact representation.
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In our work, we point out that a combination of these two approaches can
be used in the lattice context, namely ideal lattices (which allow a very com-
pact representation, as efficient as double-circulant matrices) for an identification
scheme structure with soundness error of 1/2. With this, we manage to have the
lowest communication costs and lowest public data storage needs.

3. Our identification scheme

Taking C a y r e l and V é r o n’ s scheme [11] as basis and changing the main
security assumption from the syndrome decoding problem (code-based) to the
short integer solution problem (lattice-based), we obtain a new identification
scheme. The transformation is non-trivial since low-weight codewords that are
required in one setting are not necessarily short vectors as required in the other
and vice versa.

We begin by describing the new identification scheme and then give argu-
ments regarding all major properties such as completeness, soundness, and zero-
-knowledge as well as performance.

3.1. Description

The scheme consists of two main parts: a key generation algorithm (Figure 1)
and an interactive identification protocol (Figure 2).

KeyGen:

x
$←− {0, 1}m, s.t. wt(x) = m/2

A
$←− Z

n×m
q

y ←− Ax mod q

Com
$←− F , suitable family of commitment functions

Output (sk, pk) =
(
x, (y,A,Com)

)

Figure 1. Key generation algorithm, parameters n,m, q are public.

The key generation algorithm receives as input a set of parameters (n,m, q),
e.g., (64, 2048, 257) (see Section 4.1 for a discussion on why this is a sensible
choice). It chooses a matrix A ∈ Z

n×m
q uniformly at random and selects as

private key a binary vector x ∈ {0, 1}m of Hamming weight m/2. The public
key consists of an n-dimensional vector y = Ax mod q, the random matrix A,
and a commitment function Com. To instantiate the algorithm, we need to
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select a family of statistically hiding and computationally binding commitment
functions F.

For the time being we recommend the commitment functions used by Kawachi
et al. since they merely require a lattice-based collision resistant, regular hash
function, in our case SWIFFT, which allows us to have a single security assump-
tion. The commitment functions Com that we use are deterministic algorithms,
which get as second input a nonce r that is assumed to be chosen uniformly
at random from a set big enough to guarantee the hiding property of the com-
mitment.

Prover P(sk, pk) Verifier V(pk)
(sk, pk) = (x, (y,A,Com))←− KeyGen

u
$←− Z

m
q , σ

$←− Sm, z←− Pσx

r0
$←− {0, 1}n, r1 $←− {0, 1}n

c0 ←− Com(σ ‖ Au; r0)

c1 ←− Com(z ‖ Pσu; r1)
c0, c1−−−−−−−→
α←−−−−−−− α

$←− Zq

β ←− Pσ(u + αx)
β−−−−−−−→
b←−−−−−−− b

$←− {0, 1}
If b = 0:

σ, r0−−−−−−−→ Check

c0
?
= Com(σ ‖AP−1

σ β − αy; r0)

σ
?∈ Sm

Else:
z, r1−−−−−−−→ Check

c1
?
= Com(z ‖ β − αz; r1)

z
?∈ {0, 1}m,

wt(z)
?
= m/2

Figure 2. Identification protocol.

The identification protocol in Figure 2 describes the interaction between
prover and verifier in order to convince the second party about the identity
of the first. All computation in the protocol is performed modulo q, and we
use the following notations. The set of all permutations on m elements is Sm.
Any permutation σ ∈ Sm is a linear operation and the associated m×m binary
matrix is Pσ.
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The protocol is an adaption of the code-based identification scheme [11] which
represents a major improvement to V é r o n’ s [35] and S t e r n’ s [34] schemes.
In the same way our protocol represents an improvement over the lattice adap-
tions of Stern’s scheme by K a w a c h i et al. [19]. Like Kawachi’s, our adaptation
to the lattice setting is non-trivial, since we need to ensure that a binary secret
key is used (regardless of the Hamming weight). This needs to be guaranteed
throughout the protocol which entails some change in the β that is used. Sim-
ilarly to the coding-based scheme, a cheating prover, not knowing the secret
key, can lead a verifier to believe that he actually knows that secret value with
a probability up to 1/2 in an individual round of execution. Therefore, in order
to diminish the success rate of such an impersonation, the protocol has to be
repeated a number of times, which is a function of the degree of confidence
requested by the application that is using the scheme. This will be discussed
further in Section 3.2, where we argue the soundness.

In the commitment phase, the prover commits to two values c0, c1, where
c0 is comprised of the random choices he made and c1 contains information
about his secret key. An adversary that can also correctly compute them with
overwhelming probability either is able to break the commitment or to solve
the hard problem that makes it possible to obtain a private key from its public
counterpart. Those commitments are sent to the verifier, who responds in the
second phase with value α taken uniformly at random from Zq. Upon receipt
of this value, the prover is supposed to multiply it by the private key, add to
a permuted masking value u (uniformly chosen at random from Z

m
q ) and make

a permutation over the sum. Since u was random, β can be seen as a random
variable with uniform distribution over Z

m
q , leaking no information about the

private key x.

Upon receipt of this value, the verifier makes a challenge to the prover, picking
a value uniformly at random from the set {0, 1}. The prover responds to it by
revealing some piece of information that allows the verifier to compute and
check the commitments. An honest prover will always be able to respond either
challenges. Besides checking the correctness of the commitments, the verifier
must also check that the values disclosed by the prover are well-formed, although
in practice this would be solved by defining a suitable encoding for the data.

We will see in Section 3.3 how an impersonator can always cheat with a success
probability of 1/2, and that no better strategy is possible under our hardness
assumptions. So in order to reach a prescribed level of security the interaction
proposed here must be repeated an appropriate number of times.

Construction with ideal lattices. The present construction makes no as-
sumptions about the structure of the SIS matrix A. Therefore, the space nec-
essary for storing this matrix is Õ(n2), which is too big for practical purposes.
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Using ideal lattices, one can reduce such space requirements to Õ(n) and si-
multaneously increase computation speed of matrix vector products in the form
Ax mod q to Õ(n) operations. This has been proposed and performed many
times, perhaps most elegantly in the case of the SWIFFT compression func-
tion [25].

3.2. Security

In this section we show that the protocol in Figure 2 corresponds to a zero-
-knowledge interactive proof of knowledge of the predicate defined below. Let
I = {A,y,m, q} be public data shared by the parties P and V. Consider the
predicate P(I,x) as “x is a binary vector of Hamming weight m/2 satisfying the
equation Ax = y mod q”.

We provide below proofs for the completeness, soundness and zero-knowledge
properties of the identification scheme described in Figure 2. In particular,
soundness holds even against concurrent attacks, i.e., an adversary may try to
impersonate a given identity after having access to polynomially many verifier
instances in parallel. Each of the verifier instances has the same secret key but is
run with a different random tape. The challenge is to simulate the environment
of the attacker during these interactions and still being able to extract “useful”
information from the adversary during the impersonation phase. The required
assumptions are that Com is a statistically hiding and computationally binding
commitment scheme, e.g., based on SIS (cf. [19]), and the hardness of the SIS
problem.

3.2.1. Completeness

Given that an honest prover has knowledge of the private key x, the blending
mask u and the permutations Pσσσ, he will always be able to derive the commit-
ments c0 and c1, and reveal to the verifier the information necessary to verify
that they are correct. He can also show that the private key in his possession has
the appropriate Hamming weight. So, the verifier will always accept the honest
prover’s identity in any given round. This implies perfect completeness.

3.2.2. Zero-knowledge

We give a demonstration of the zero-knowledge property for the identification
protocol shown in Figure 2. Here, we require the commitment function Com

to be statistically hiding, i.e., Com(x; r) is indistinguishable from the uniform
distribution for an r chosen uniformly at random fro {0, 1}n. The argument x is
a string of bits of arbitrary length.
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����� 1� Let q be prime. The described protocol is a statistically zero-
knowledge proof of knowledge if the employed commitment scheme is statistically
hiding.

P r o o f. To prove the zero-knowledge property of our protocol, we construct
a simulator S that outputs a protocol view V =

(
c0, c1, α, β, b, (σ, r0), (z, r1)

)
without knowing the secret x, such that V is indistinguishable from an the
interaction of an honest prover with an honest verifier. It has access to a cheating
verifier V ∗, which contributes α and b. Therefore, S generates r0, r1 according to
protocol and it gets (A,y,Com) as input. The simulator has to guess b before
talking to V ∗. For the moment, let us assume the guess is correct.

If b = 0, the simulator selects u and σ as per protocol and solves the equation
Ax ≡ y (mod q) for x, which does not need to be short. With this pseudo secret
key, the simulator computes c0 and c1 according to the protocol. The deviation
in c1 is not recognized because Com is statistically hiding. Then, S computes
β ←− Pσ(u + αx) after obtaining α from V ∗(c0, c1). The result is uniform
because u is chosen uniformly at random. As a result, S can reveal (σ, r0),
which passes the verification for b = 0.

If b = 1, the simulator needs to play against the second verification branch.
It selects a binary x with Hamming weight m/2 and selects σ as per proto-
col. It computes c0, c1 and obtains α ←− V ∗(c0, c1). Then, it computes β ←−
Pσ(u+ αx). As a result, S can reveal Pσx that passes verification.

In consequence, the simulator outputs a correct view with probability 1/2.
Since the simulator has access to V ∗, it can restart the verifier whenever the
guess b was incorrect. The result is a statistically close simulation if Com is
statistically hiding. �

3.2.3. Soundness

We now show that a dishonest prover is able to cheat a verifier to accept his
identity with a probability limited by (q+1)/2q ≈ 1/2. The number of possible
queries sent by the verifier to a prover is given by all combinations of challenge
bits b ∈ {0, 1} and α ∈ {0, . . . , q − 1}. Hence, there are 2q possible queries.
Say, the dishonest prover wants to answer all challenges where b = 0, then he
computes an alternate secret key x′ with large entries such that Ax′ = y. This
is can be done with Gaussian elimination, for example. At the same time, when
α = 0 he can also answer in the case b = 1 by sending a random z. Since α = 0
this is not checked in the commitment.

Note that the α = 0 query issue cannot be resolved by removing 0 from the
set that α is drawn from, because the dishonest verifier can effectively shift the
values of α by changing his protocol. Say he wants some fix α0 to take the place
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of 0 in the unmodified scheme, then he changes both the computations of the
commitments and β to:

c0 ←− Com(σ ‖Au− α0y; r0),

β ←− Pσ(u+ (α− α0)x),

c1 ←− Com(z ‖Pσu− α0z; r1).

In effect, he can answer both challenges bits b = 0, 1 for α = α0 now.

Thus, in total, the adversary can answer correctly for q+1 out of 2q queries.
In the proof, we show that if an adversary is able to answer more queries, it is
also able to break one of the underlying assumptions, i.e., solve SIS or break the
commitment.

	
����� 2� If an honest verifier accepts a dishonest prover with probability
Pr ≥ (q + 1)/2q + ε(n), with ε(n) non-negligible, then there exists a polynomial
time probabilistic machine M which breaks the binding property of the commit-
ment Com or solves the SIS problem with non-negligible probability.

P r o o f. On input (n,m, q,A) (the SIS problem instance) and a challenge com-
mitment function Com, we need to simulate the adversary’s environment in two
phases: a verification phase and an impersonation phase. In order to correctly
prove knowledge of a valid secret key x during the verification phase, we choose
x and y as in the key generation protocol and run the adversary A on public
parameters (as per protocol).

Therefore, in the verification phase, we can perfectly simulate the prover.
Since the protocol is statistically zero-knowledge, the adversary does not learn
any information about x and the output distribution is the same as for all
alternative secret keys x′ �= x.

After the first phase, we let A play the role of the cheating prover. First, we
receive the commitments c0, c1. Then, because q is polynomial in n, we challenge
the adversary with all 2q challenge pairs (α, b) and record successes as “1” and
failures as “0” in a table with column labels “b = 0”, “b = 1” and row labels
“α = 0”, . . ., “α = q−1”. This is done by rewinding the adversary appropriately.

For the moment, let us assume that there exist two rows, for α and α′, such
that both columns contain “1”. Let (β, σ, r0) and (β′, σ′, r′0) be the outcomes for
challenge (α, 0) and (α′, 0), respectively. Furthermore, let (β, z, r1) and (β′, z′, r′1)
be the outcomes for challenges (α, 1) respectively (α′, 1).

Since the commitment Com is binding, we infer that r0 = r′0, r1 = r′1, and

σ ‖AP−1
σ β − αy = σ′ ‖AP−1

σ′ β′ − α′y , (1)

z ‖ β − αz = z′ ‖ β′ − α′z′ . (2)

Equation (1) implies σ = σ′. Similarly, (2) shows that the binary vectors z, z′

of weightm/2 are equal. Now, we turn to extractingA’s secret key by rearranging
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parts of (1) and (2), we get

AP−1
σ (β − β′)(α− α′)−1 ≡ y (mod q) , (3)

(β − β′)(α− α′)−1 ≡ z (mod q) . (4)

This proves that x′ := P−1
σ z is a valid secret key and the reduction outputs

the short lattice vector v = x − x′. Notice that β �= β′ because we have (1),
α �= α′, and σ = σ′. The extracted secret key is also different from the one
of the simulator because the function Ax mod q compresses the set of valid
secret keys and statistically hides them in the sense that the protocol is also
witness indistinguishable. Hence, the adversary cannot learn the simulator’s key
but with probability ≤ 1/2 + n−ω(1).

What is left to show is that such a pair (α, α′) exists. To see this, we apply
a simple counting argument [30]. We know thatA can answer correctly for> q+1
challenges. W.l.o.g., assume that it succeeds ≥ c times for b = 0 and > q+1− c
times for b = 1. Thus, there are ≥ c “1” entries in column “b = 0” and > q+1−c
“1” entries in column “b = 1”.

Towards contradiction, assume that there is no such pair (α, α′) for which
A succeeds for the challenges (α, 0), (α, 1), (α′, 0), and (α′, 1). In other words,
assume that the above extraction procedure breaks down. Then, there must be
at least c−1 zeros in column “b = 0”. In consequence, the total number of entries
in the second column is > c − 1 + q + 1 − c. Since this is > q, we arrive at the
desired contradiction and conclude that the knowledge extractor succeeds with
non-negligible probability if ε(n) is non-negligible. �

Given that the scheme is a zero-knowledge proof of knowledge, it is also
witness indistinguishable with respect to the secret x. Fortunately, witness-
-indistinguishability is preserved under parallel composition. Thus, our scheme
can be run many, i.e., ω

(
log(n)

)
, times in parallel to achieve a negligible sound-

ness error but without increasing the number of rounds.

3.3. Security considerations

The code-based identification scheme proposed by Cayrel and Véron and that
serves as starting point for this work has very good performance characteristics.
Its security is based on the assumption that selecting a a random generator or
parity check matrix will result in hard instances of the q-ary syndrome decoding
problem, though. When adapting this scheme to use lattices, on the other hand,
one achieves a construct based on the hardness of the SIS problem, and that has
an worst-case/average-case reduction.

As pointed out in the description of the algorithms, ideal lattices can also be
used in the scheme to improve performance and reduce the amount of public
data. The precautions regarding the (a) irreducibility of the polynomial that
characterizes the ring upon which the lattice is defined and (b) its expansion
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factor must be observed, as recommended in [23]. This ensures that finding
short vectors in such lattice is still hard to perform.

The present scheme is also secure against active attacks. Thus, an attacker
is allowed to interact with a prover prior to attempting to impersonate him to
a verifier. As consequence of the zero-knowledge property, however, no adversary
that interacts with a real prover is able to obtain any knowledge that can be
used later on to impersonate the prover.

We now prove that our scheme is secure against concurrent attacks, by show-
ing that a public key corresponds to multiple secret keys and that the protocol
is witness indistinguishable. It is a standard procedure, as seen in [13].

First, the existence of multiple secret keys associated with a given public key
is assured by the parameter choice (see inequation 5). Second, given that our
protocol is a zero-knowledge interactive proof, it is also witness indistinguish-
able [20].

4. Attacks

The most efficient way to attack this scheme, but probably the most difficult
one, consists in solving the inhomogeneous short integer solution (ISIS) prob-
lem that is defined by the public key y and the public matrix A, expressed as
Ax = y mod q, where x is expected to be binary, with dimension m and Ham-
ming weight m/2. This equation can be re-written as A′x′ = 0 mod q, with
A′= [A|y] and x′= [x| − 1]T, where T denotes the transpose of a matrix, and
‘|’ just separates sub-matrices. Lattice basis calculation and reduction can then
be applied in this second lattice to try to find a solution. The approximation
factor, however, is Õ(n), making the task hard.

4.1. Parameters

In order to guarantee with overwhelming probability that there are other
solutions to Ax = y mod q, besides the private key possessed by the prover
(which is pivotal in the demonstration of security against concurrent attacks),
one can make q and m satisfy the relation below

qn � card
{
x ∈ Z

m
2 : wt(x) = m/2

}
. (5)

Besides, q is bounded by the following theorem, which M i c c i a n c i o and
R e g e v proved in [28].

	
����� 3� For any polynomially bounded functions β(n),m(n), q(n) = nO(1),

with q(n) ≥ 4
√
m(n)n1.5β(n) and γ(n) = 14π

√
nβ(n), there is a probabilistic

polynomial time reduction from solving GapCV Pγ in the worst-case to solving
SISq,m,γ on the average with non-negligible probability. In particular, for any
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m = Θ(n logn), there exists q(n) = O(n2.5 logn) and γ = O(n
√
logn), such that

solving SISq,m on the average is at least as hard as solving GapSV Pγ in the
worst case.

Taking as reference the state-of-the-art lattice reduction algorithms studied
in [16], the length of the shortest vector that can currently be found by the
reduction algorithms is given by (δ ≈ 1.011):

length = min
{
q, qn/mδm

}
. (6)

We propose the set of parameters below, in Table 2, which are comparable
to those used by the SWIFFT hash function. The best combinatorial attack
for finding short lattice vectors [36] has a computational complexity above 2100

(generalized birthday attack, dividing in 16 groups at each turn). This means
that our security level is 100 bits. In addition to that, the best lattice reduction
algorithms return vectors with euclidean norm above 42, taking into account our
set of parameters. Given that the private keys resulting from our parameters
have euclidean norm 32, the choice made is safe. Besides, we can also see that
the selected parameters satisfy both Theorem 3 and the restriction given by
inequation 5.

Table 2. Concrete parameter.

Bit-security n m q Commitment Length (bits)

100 64 2048 257 224

5. Application of Fiat-Shamir transform

We have described and defined the lattice problems and concepts that work
as basis for our scheme in the previous section. Now, we detail the algorithms
that comprise this scheme.

Taking SIS as security assumption, we modify TRSS-C [2] and obtain a con-
struction that is more efficient than other similar lattice-based solutions, to the
best of our knowledge. In order to do so, instead of using Stern’s identification
scheme as basis, we employ the CLRS scheme [9], which has a lower soundness
error (1/2, instead of 2/3) and enables the resulting construct to reach a security
goal in fewer rounds of execution.

Some lattice-based identification scheme (see [19], [21] and [29]) have time
complexity and public key sizes efficiently given by O(n). However, they share
an inefficiency: for each bit of challenge sent by the verifier, a response with size
O(n) has to be provided by the prover. This implies in huge signature sizes when
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directly applying the Fiat-Shamir heuristic. The same drawback can be found
in TRSS-C. This means that the number of rounds executed by such scheme is
given at least by the number of bits of the hash function value (applied to com-
mitments concatenated to the message). Our scheme addresses the first factor
by splitting the challenge in two pieces: the messages α ∈ Zq and b ∈ F2 repre-
sented in Figure 2. This bears similarity with the identification scheme described
in [22], where the challenge-like bits are assigned to an element of a polynomial
ring. Dividing the hash bits over structures that are several bits wide (given by
the number of bits to represent α and b, in our case) has as positive effect a fewer
number of rounds to generate a signature.

The other factor that impacts the number of rounds of execution is the sound-
ness level required. The higher of the two such values will have to be executed
in order to achieve both security goals.

5.1. Adaptations made to the CLRS scheme

In the code-based threshold ring signature scheme proposed by A g u i l a r
et al. [2], they replaced the syndrome decoding problem in the underlying Stern’s
identification scheme by the minimum distance problem in order to preserve
anonymity. Instead of having HxT = y (T stands for the operation of transpo-
sition), with check matrix H and syndrome y public, and word x private with

a known Hamming weight p, they used HxT = 0, what means that the secret
keys now correspond to codewords x with Hamming weight specified by an input
parameter. A leader computes a signature on behalf of t out of N users. In order
to do so, the leader is calculates the master commitments, where the equation
relating public and private keys is trivially satisfied by picking x = 0 for the
users that are not signing the message.

For the same reasons, we make an adaptation of the original CLRS construc-
tion, so that it can be used in our threshold ring signature scheme. Initially,
each user had a key-pair represented by a secret key x ∈ F

m
2 and a private

key y ∈ Z
n related by the ISIS (Inhomogeneous SIS) problem Ax = y mod q,

with A ∈ Z
n×m. The secret key can be chosen at random, from a set of binary

words of known Hamming weight m/2. This can be rewritten as [A;−y][x; 1]T =
0 mod q. Making A′= [A;−y] and x′= [x; 1], we have A′x′= 0 mod q. This is
analogous to the code-based construction. It works as if every user had the same
public key value: the null vector.

In Algorithm 1, the individual matrices Ai are calculated as described in the
paragraph above, so that Aixi = 0 mod q. In Subsection 5.4, where the security
proofs are given, we show that in order to break our system, one must obtain xi

given Ai, which on its turn implies in being able to solve the SIS problem in the
worst case. Given that this latter problem is known to be hard, our system is
consequently difficult to break.
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The memory size involved in storing the matrices Ai can be highly optimized
by using ideal lattices. As discussed in Section 2, the space required by this kind
of lattice grows linearly with the dimension, up to a logarithmic factor.

5.2. Applying Fiat-Shamir heuristic

From the generalized identification scheme described in Algorithm 1, we ob-
tain a signature scheme by putting a random oracle in the place of the verifier.
The source of the random values to be used with α and b is the hash value of the
message to be signed concatenated with the commitments of the current round,
in order to make difficult to obtain successful forgery.

Using the honest-verifier zero-knowledge nature of our underlying identifi-
cation scheme and the security results stated by P o i n t c h e v a l and S t e r n
at [31] and A b d a l l a et al. [1] regarding the Fiat-Shamir heuristic, we can es-
tablish the security of our signature scheme in the random oracle model. In or-
der to do so, we are making the assumption that the security results associated
with signature schemes obtained from canonical identification schemes (three
passes) via Fiat-Shamir are also valid for our scheme, even though its underly-
ing identification scheme is not canonical (five passes). Their similarity resides
in a commitment-challenge-answer structure.

5.3. Description of our threshold ring signature scheme

Our TRSS-L is composed of four algorithms: Setup, Key Generation, Signing,
Verification. Though its structure is similar to that of the code-based scheme
described in [2], the underlying identification scheme and hardness assumptions
are considerably different, as emphasized in the discussions regarding security
and performance, developed in Subsections 5.4 and 5.6, respectively.

The Setup algorithm, on input a security parameter κ, issues the parameters
n, m, q that are used by the other three algorithms, and are necessary for the
definition of the lattices and their operations.

The Key Generation algorithm, on input parameters κ, n,m, q,N , gener-
ates the N pairs of public and private keys (xi,Ai), with i ∈ {0, . . . , N − 1}.
All the private keys are binary vectors with Hamming weight m/2+ 1 and con-
stitute solutions for the SIS problem Aixi = 0 mod q. The public keys are the

matrices Ai ∈ Z
n×(m+1)
q . In order to generate a valid signature, t out of N users

must be coordinated in this protocol. They are the active signers.

The Signing algorithm takes as input a message to be signed, the set of N
public keys, t private keys (corresponding to the users willing to sign
the message), and a hash function that computes the digest of the message
concatenated with the commitments in a given round. This algorithm corre-
sponds to the application of the Fiat-Shamir heuristics to the GCLRS scheme
detailed by Algorithm 1. A group of t users, one of which is the leader L, interact
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in order to generate a signature. The generalized scheme works as follows: each
pair (signeri, leader) executes the CLRS identification scheme, where signeri
plays as prover and leader L acts as verifier, sharing the same challenges α
and b. On its turn, the pair (Leader, Verifier) runs an identification scheme as
well, where the commitments and answers are compositions involving the val-
ues received by the leader from the other signers. As for the non-signing users,
the leader generates surrogate private keys comprised of null vectors (which are
trivial solutions of the SIS problem). The leader applies block permutations over
theses individual values in order to achieve the goal of anonymity. The signature
consists of the transcript of the interaction between the leader and the verifier.

Let us call H the hash value of the message being signed. In the application
of the Fiat-Shamir heuristic, in the round i, we take the value of b as the ith
bit of H. As α we take the first �logα� bits of the hash value obtained from
h(C0 ‖ C1 ‖HL+i), where L = length(H)/2.

The Verification algorithm takes as input the public keys of the N users and
the signature. Such signature constitutes a communication transcript of a se-
quence of rounds of the GCLRS scheme. The verification consists in check, de-
pending on the value of the challenges, that the corresponding commitment is
correct for every round. The signature is accepted if the check was successful in
every round, and rejected otherwise.

The security aspects of the construction corresponding to the algorithms that
comprise our scheme will be discussed next. We also give demonstrations that
our design is safe, and relate it to the CLRS signature scheme upon which it
relies.

5.4. Security

The previous section described the algorithms that comprise our system.
In the sequence, we show them to be secure, with worst-case to average-case
reductions that are typical in lattice-based systems.

5.5. Honest-Verifier Zero-Knowledge Proof of Knowledge

We now prove that the Algorithm 1 constitutes a zero-knowledge proof
of knowledge of that a group of t-out-of-N users knows t different pairs
(secret key, public key). The first element of the pair is a binary vector xi

of length m + 1 and Hamming weight m/2 + 1 and the second is a matrix
Ai ∈ Z

n×(m+1), such that Aixi = 0 mod q, with i ∈ {0, . . . , N − 1}. This algo-
rithm can be seen as a composition of t simultaneous executions of the CLRS
identification schemes described in Figure 2, which has already been demon-
strated to be secure by C a y r e l et al. in [9] in the active attack model. We will
use this fact and discuss only the security of the composition described in Algo-
rithm 1.
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Algorithm 1 Generalized CLRS Identification Scheme (GCLRS)

procedure Identification Scheme

� U ′= {users} and S′= {signers}, with S′ ⊂ U ′, |S′| = t and |U ′| = N
� Prover (pass 1): computes commitments
� Commitment: performed by signers S′, which include the leader L

for Each signer i ∈ S′ do � Compute commitments

σi
$←Sm+1, ui

$←Z
m+1
q , r0,i

$←{0, 1}n and r1,i
$←{0, 1}n

c0,i ←− Com(σi ‖Aiui, r0,i) and c1,i ←− Com(σi(ui) ‖ σi(xi), r1,i)
Send c0,i and c1,i to L

end for
For the non-signers j ∈ U ′ \ S′, L performs the same, but with xj ← 0
L chooses a random constant n-block permutation on N blocks Σ.
L computes the master commitments C0 = Com(Σ ‖ c0,1 ‖ . . . ‖ c0,N , r0) and

C1 = Com

(
Σ(c1,1, . . . , c0,N ), r1

)
and sends them to V

� Verifier (pass 2): imposes a value to be used to verify previous commitments

V sends α
$←Z

∗
q to L, which passes it to S′.

� Prover (pass 3):
for Each signer i ∈ S′ do

βi ← σi(ui + αxi)
end for
For the non-signers j ∈ U ′ \ S′, L performs the same, but with xj ← 0
L sends β = Σ(β0, . . . ,βN−1) to V.

� Challenge:
� Verifier (pass 4): makes a challenge to leader L

V sends b
$←{0, 1} to L, which propagates it to S′.

� Answer:
� Prover (pass 5): reveals private information for the current round

for Each signer i ∈ S′ do
Reveal to L either σi or σi(xi), when b = 0 or b = 1, respectively.

end for � For non-signing users, L has chosen default values at the
commitment phase.

if b is 0 then
Set σ = (σ0, . . . , σN−1)
L reveals Π = Σ ◦ σ and Π(r0,0, . . . , r0,N−1) to V

else
Set Π(x) = Σ

(
σ1(x1), . . . , σN−1(xN−1)

)

L reveals Π(x) and Π(r1,0, . . . , r1,N−1) to V
end if

� Verification: correctness of master commitments, permutations and Hamming
weight.

if b is 0 then � A is matrix whose diagonal corresponds to the public keys Ai

V checks that C0
?
= Com(Σ ‖AΠ−1(β) ‖ r0) and that Π is well formed.

else
V checks that C1

?
= Com

(
β − αΠ(x) ‖ Π−1(β) ‖ r1

)
and that Π(x) has

Hamming weight t(m/2 + 1).
end if

end procedure 55
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By interacting as verifier with each of the t−1 other signers and following the
GCLRS protocol, the leader learns nothing about their secret keys, except that
they are valid. When playing the role of prover, the leader L, in his interaction
with the verifier V, does not leak any private information, either. All that V
learns is that t of the users belonging to U (the universe of all N users) have
participated to generate a binary vectorX of dimension N(m+1) and Hamming
weight t(m/2 + 1) such that AX = 0 mod q, where A is defined as below:

A =

⎡
⎢⎢⎢⎣

A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · AN−1

⎤
⎥⎥⎥⎦ .


���� 5.1� Under the assumption of the hardness of the SIS problem, finding
a vector v with length N(m + 1) and Hamming weight t(m/2 + 1) satisfying
(Av = 0 mod q), with A defined as above, such that the N blocks of length
m + 1 that comprise v have either 0 or m/2 + 1 as Hamming weight, is also
hard.

P r o o f. By construction of A and v, finding a solution of Av = 0 mod q is at
least as hard as finding a local solution vi to Aivi = 0 mod q with wt(vi) =
m/2+1, and this latter problem is hard under the SIS hardness assumption. �

	
����� 4� The GCLRS scheme is an honest verifier zero-knowledge proof of
knowledge, with soundness error no greater than 1/2, that a group of t signers
knows a vector v of length N(m+1) and Hamming weight t(m/2+1), such that
each of the N blocks of size m either weights m/2 + 1 or zero. The scheme is
secure in the random oracle model under the SIS problem hardness assumption.

P r o o f. Completeness : An honest set of signers is always able to reveal to the
leader the information necessary to compute the individual commitments c0,i
or c1,i, by revealing σi or σi(xi) respectively, depending on the challenge sent
by the verifier V. For each component i ∈ {0, . . . , N − 1} of the group, we have
either wt(xi) = m/2 + 1, when the user is signing the message, or wt(xi) = 0
otherwise. The length of each of those vectors is m + 1. The leader L, on his
turn, is always able to disclose either Π or Πx under the same challenge values.
The vector x is comprised of N components x′

i that are permutations of xi, and
hence have the same weight. Therefore, x has overal length N(m+1) and weight
t(m/2 + 1).

Soundness : The soundness error is bounded away from 1, and it cannot be
higher than 1/2. The GCLRS scheme is composed of t − 1 CLRS instances
involving t− 1 distinct pairs (prover, verifier). If GCLRS has a soundness error
strictly above 1/2, then a cheating prover can devise a strategy to beat the
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system with a success probability also above 1/2. Given that CLRS can be
reduced to GCLRS (it suffices to make all singing instances equal, and follow
the procedure described in Subsection 5.1), we can use the cheating strategy to
beat the CLRS scheme also with probability above 1/2. However, this is absurd
under the assumption of SIS hardness and the commitment function collision
resistance, as seen in [9].

Zero-Knowledge (ZK): Let us build a simulator as described below:

1. Coin
$←{0, 1}.

2. Prepare to answer a challenge that is equal to Coin as follows:
– For Coin = 0, pick xi satisfying yi = Aixi, but with high weight,

for the t elements of the signing set. According to the way that the
parameters were chosen, such solution exists with high probability
and is not hard to find. Regarding the other N − t components, just
set xi = 0.

– For Coin = 1, pick xi with weight exactly m/2+1 for the t elements,
but without satisfying yi = Aixi. The remaining components will be
set as null vector.

3. b
$←{0, 1}.

4. If Coin and b have the same value, register the current round as part
of the signature. Otherwise, go back to step 1.

5. Repeat loop until the signature is complete.

The signature generated as above does not involve the actual values of the
individual private keys. Besides, the uniformly random choices that are made
and registered as signature follow the same distribution of a real one. Hence,
looking at the real signature we learn nothing more than what we could have
learnt from a simulated one. Therefore, with the simulator constructed as above,
we conclude that the zero-knowledge property is observed. �

Theorem 4 implies that the TRSS is existentially unforgeable under chosen
message attack in the random oracle model, assuming the hardness of the SIS
problem and the existence of a collision resistant commitment function. Given
the zero-knowledge property of the scheme, no information is learnt about the
private keys, given access to previous signatures of different messages. Besides,
even if an adversary is given t − 1 private keys, he will not be able to generate
a valid signature, unless he is able solve SIS in order to obtain an extra private
key, different from those that he already possesses.

	
����� 5� Our lattice-based threshold ring signature scheme is uncondition-
ally source hiding.

57



P.-L. CAYREL — R. LINDNER — M. RÜCKERT — R. SILVA

P r o o f. Our algorithm is structurally similar to TRSS-C [2]. In both, the entity
playing the role of leader creates a secret vector which blockwise corresponds
to either permutations of individual private keys or null vectors. Besides, all
the individual private keys are binary vectors with exactly the same Hamming
weight, and the commitments correspond to one-time pad of the secrets. Hence,
the distribution of the commitments associated with a given signer are indistigu-
ishable from a random one, and also from the distribution related to a different
user. Therefore, any subset of t users can produce a given signature with equal
probability. �

After having discussed security aspects of our threshold ring signature scheme
and related it with the hardness of average instances of the SIS problem (to which
are proven to exist reductions from worst-case instances of the GapSVP
problem), we next show that the design decisions taken allow gains in efficiency
as well.

5.6. Performance

The previous section gave evidences and proofs that our system is safe.
We now show that our design choices result in a construction that is also ef-
ficient.

Our scheme can outperform TRSS-C both in terms of signature size and
speed of signature generation. These two variables are linked and their reduc-
tion represents the combined effect of three different factors discussed below:
smaller soundness error, wider challenge values, and use of FFT for performing
multiplications.

Let us suppose that TRSS-C has a round communication payload of PL1,
whereas the corresponding value for our scheme is PL2. The soundness error for
the two schemes are SE1 = 2/3 and SE2 = 1/2, respectively. In order to reach
a given security level L (representing the probability of successful impersonation
or forgery, as specified in ISO/IEC 9798–5, for instance), the two schemes have
to be repeated several times, as follows N1 = �log2/3 L� and N2 = �log1/2 L�.

Therefore, considering the fist factor (soundness error), the ratio between the
two total payloads for reaching the security goal is given by

TPL1

TPL2
=

N1 × PL1

N2 × PL2
= log 3

2
2× PL1

PL2
.

As for the second factor represented by wider challenge values, we can have
the combined effect of α ∈ Zq and b ∈ F2 to play the role of challenges. Provided
that the overall soundness requirement is also satisfied (by having a minimum
number of rounds executed), this avoids the necessity of executing one round
per hash bit. Table 4 shows a numeric comparison between the two schemes.
In order to construct this table, the following choices were made. We considered
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Table 3. Concrete parameters for TRSS.

Bit-security n m q Commitment length (bits)

100 64 2048 257 224

Table 4. Comparing TRSS schemes for N=100, and security=100 bits.

Scheme Signature size (Mbytes) Number of rounds Hash length (bits)

TRSS-C 47 190 224

TRSS-L 45 111 224

a security level close to 100 bits as constraint. For the hash function, we use
the parameters from Table 2, page 90 of [6], which lists the state-of-art values.
According to it, a hash length with length 224 bits will provide a level of security
of 111, which is close to the value we chose. Regarding the choice of parameters
for TRSS-C, we used the results listed in Section 7 of [7], and picked the code
length as 2480, with which one can reach a security level of 107 bits.

The third point to consider is the application of ideal lattices in our scheme.
This can speed up the most costly operations associated with multiplications
between matrices and vectors, and have them executed in timeO(n log n) instead
of O(n2).

5.7. Parameters

Similarly as shown in [19], in order to guarantee with overwhelming proba-
bility that there are other solutions to Ax = 0 mod q, besides the private key
possessed by each user (which is pivotal in the demonstration of security against
concurrent attack), one can make q and m satisfy the relation below

qn � card
{
x ∈ Z

m+1
2 : weight(x) = m/2 + 1

}
. (7)

Besides, q has its value bounded from Theorem 3.

The parameters that we chose to use with our TRSS, shown in Table 3 are
derived from those applied by the SWIFFT lattice-based hash proposed in [25].
The comparison exhibited in Table 4 is based in such choice. The soundness
requirement alone makes TRSS-C run 190 rounds. Our scheme, on the other
hand, which has lower soundness error, reaches the same goal with 111 rounds.

This section discussed about the efficiency gains that resulted from our design
choices, such as the underlying identification scheme with smaller soundness
error and the possibility of using ideal lattices. It is important to notice that
such choices do not compromise security. In the next section we make an overall
appreciation of our construction and present further lines of research associated
with it.

59



P.-L. CAYREL — R. LINDNER — M. RÜCKERT — R. SILVA

6. Conclusion and further work

In this work we derived a lattice-based identification scheme from a code-
based one. By shifting from one domain area to the other, we were able to pro-
vide stronger security evidences, given that the security arguments are now
based on worst-case hardness instead of average-case. By using ideal lattices
and suitable approximation factors, we were also able to obtain parameters that
allow practical implementations for reasonable levels of security. We have also
shown that it has better performance than all other lattice-based identification
schemes. We have also presented a threshold ring signature scheme by generaliz-
ing a lattice-based identification scheme and applying the Fiat-Shamir transform
to it.

A natural extension of the approach followed in the present work consists
in adapting the structure of other cryptographic schemes and changing the hard
problem upon which their security relies. By shifting between code and lattice
domains and assessing which kind of gains such change provides, stronger secu-
rity properties or more efficient implementations can be obtained.

Another extension consists in deriving other kinds of signature schemes from
the current work. As we pointed out in Section 5, the present identification
scheme has some characteristics that can result in efficient signature constructs,
when its parameters are conveniently selected. In this context, it may be worth-
while to construct a “dual” ID scheme in the sense that it has a completeness
error of 1/2 and no soundness error as using the Fiat-Shamir transform on this
“dual” scheme would result in very short signatures.

Acknowledgements. We are grateful to an anonymous referee for helpful com-
ments.
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