
�

�
�����������	
��	�����
��

DOI: 10.2478/v10127-012-0045-5
Tatra Mt. Math. Publ. 53 (2012), 155–187

ON PSEUDO-RANDOM ORACLES

Michal Rjaško

ABSTRACT. Many cryptographic systems which involve hash functions have
proof of their security in a so called random oracle model. Behavior of hash
functions used in such cryptographic systems should be as close as possible to

the behavior of a random function. There are several properties of hash functions
dealing with a random behavior. A hash function is pseudo-random oracle if it
is indifferentiable from a random oracle. However, it is well known that hash
functions based on the popular Merkle-Damg̊ard domain extension transform
do not satisfy the pseudo-random oracle property. On the other hand no attack is
known for many concrete applications utilizing Merkle-Damg̊ard hash functions.

Hence, a weakened notion called public-use pseudo random oracle was introduced.
The property can be met by the Merkle-Damg̊ard construction and is sufficient
for several important applications. A hash function is public use pseudo-random
oracle if it is indifferentiable from a random oracle with public messages (i.e., all
messages hashed so far are available to all parties). This is the case of most hash
based signature schemes.

In this paper we analyze relationship between the property pseudo-random or-
acle and its variant public image pseudo-random oracle. Roughly, a hash function
is public image pseudo-random oracle if it is indifferentiable from a random oracle
with public images (i.e., all images of messages hashed so far are available to all
parties, messages are kept secret). We prove that the properties are equivalent.

1. Introduction

The primary security property of cryptographic hash functions has histori-
cally been collision resistance. A hash function is collision resistant, if it is hard
to find two different messages which hash to the same image. However, collision
resistance alone is insufficient for arguing security of many important applica-
tions. For some of the applications (e.g., Fiat-Shamir signatures, RSA-FDH)
a hash function must have “random behaviour”, which is hard (or even impossi-
ble) to define in the standard model.

c© 2012 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60.
Keywords: random oracle, cryptographic hash function, pseudo-random oracle.

This research was supported by the Comenius University Grant No. UK/426/2012.

155

MICHAL RJAŠKO

Hence, B e l l a r e and R o g a w a y [4] introduced a so called random oracle
model, which models a hash function as a publicly available random function
(random oracle). Using this framework, one can prove security of many impor-
tant schemes. A proof in the random oracle model does not guarantee security
when we replace the random oracle with a real hash function [6]. However, such
a proof is believed to ensure that there are no structural flaws in the scheme
and thus one can heuristically hope that the scheme remains flawless when the
random oracle is replaced with a “well designed” hash function.

Cryptographic hash functions are often built using some domain extension
transform (e.g., Merkle-Damg̊ard construction [8], [15]) from a smaller primitive
called compression function. On the other hand, in the random oracle model hash
functions are modeled as monolithic random function without any subcompo-
nents. Hence, C o r o n et al. [7] introduced a pseudo-random oracle property,
which models a hash function as a function constructed by a domain exten-
sion transform from a fixed input length random oracle. A domain extension
transform is pseudo-random oracle (pro) if it securely extends domain of an
ideal compression function (i.e., fixed-input length random oracle) to a vari-
able input length random oracle. The property is based on the indifferentiability
framework [14]. Similarly to the random oracle model, the pseudo-random oracle
property does not guarantee security when we replace ideal compression func-
tion with a real one. On the other hand, one can heuristically hope that if the
real compression function is well designed, then also the resulting hash function
is “good”.

As it is shown in [7], the (strengthened) Merkle-Damg̊ard construction [8], [15]
is not pseudo-random oracle. However, still many applications utilize hash func-
tions based on the Merkle-Damg̊ard construction, but no practical attacks
against these applications have been found. This leads to a disconnection be-
tween theory and practice. D o d i s, R i s t e n p a r t and S h r i m p t o n [9] pre-
sented a weaker security notion than the pseudo-random oracle called public use
pseudo-random oracle (pub-pro). The property pub-pro is sufficient for arguing
security of important applications (e.g., hash based digital signature schemes)
and yet is met by the Merkle-Damg̊ard transformation.

The property pub-pro guarantees security (in the random oracle model) of ap-
plications, which never evaluate hashes on secret inputs. That is, all messages
(and thus corresponding images) evaluated so far are public and accessible to all
adversaries. For example, this is the case of most of hash-based digital signature
schemes. On the contrary, the pro property keeps all evaluated messages secret.

It is clear that the pro property is stronger than pub-pro, i.e., if a domain
extension transform is pro, then it is pub-pro. The opposite direction does not
hold, for example the Merkle-Damg̊ard domain extension transform is pub-pro,
but not pro [9].

156

ON PSEUDO-RANDOM ORACLES

Our contributions. In this paper we analyze a property somewhere between
pub-pro and pro. In particular, we introduce a property called public image
pseudo-random oracle (img-pro), for which only images of messages hashed so
far are public. The messages are secret. Again, it is clear that pub-pro implies
img-pro and img-pro implies pro.

The main goal of this paper is to prove that pro is equivalent to img-pro.
Hence, it does not matter whether adversaries are able to see all images returned
by a pseudo-random oracle. This corresponds to an intuition arising from the
fact that output of the pseudo-random oracle should not reveal any information
about the evaluated message.

Organization. In Section 2 we introduce some useful notations and definitions.
In Section 3 we present formal definitions of the properties pro, pub-pro and img-
pro. In Section 4 we show that pro is equivalent to img-pro.

2. Preliminaries

We write M
$←S for the uniform random selection of M from the set S . Con-

catenation of finite strings M1 and M2 is denoted by M1||M2 or simply M1M2,
M denotes bitwise complement of the string M . The ith bit of a string M is

M [i], thus M = M [1]|| · · · ||M [|M |]. By M1, . . . ,Ml
d← M , where M is a string,

we denote the following semantics:

(1) Pad M with the suffix pad := 1||0d−((|M |+1) mod d).

(2) Parse the string M ||pad into M1,M2, . . .Ml, where |Mi| = d for 1 ≤ i ≤ l.

It must hold that M1||M2|| . . . ||Ml = M ||pad.
Let Func(D,R) represent the set of all function ρ : D → R and let RFD,R be

a function chosen randomly from the set Func(D,R) (i.e., RFD,R
$←Func(D,R)).

We sometimes write RFd,r or Func(d, r) when D = {0, 1}d and R = {0, 1}r.
Similarly, we write RF∗,r or Func(∗, r) when D = {0, 1}∗ and R = {0, 1}r. If i is
an integer, then 〈i〉r is the r-bit string representation of i. If r is omitted, then
〈i〉 is the shortest string representation of i (e.g., if i = 3, then 〈i〉 = 11).

Negligible function. A function f is negligible if for every polynomial p(·)
there exists N such that for every n > N it holds that f(n) < 1

p(n) . Negligible

functions are denoted as negl(·).
2.1. Interactive boolean circuits

A boolean circuit (definition is from [11]) is a directed acyclic graph without
isolated vertices. There are three types of vertices: sources, sinks and internal
vertices.

157

MICHAL RJAŠKO

• Internal vertices are vertices having incoming and outgoing edges (i.e., they
have in-degree and out-degree at least 1). Internal vertices are called gates.
Each gate is labeled by a Boolean operation, typically are considered op-
erations ∧,∨ and ¬.

• Sources are vertices with in-degree 0. In the context of boolean circuits,
sources are called input terminals. Each input terminal is labeled by a nat-
ural number, which represents index of the circuit’s input bit. If the circuit
hasm input terminals, then they are labeled as 1, 2, . . . ,m, i.e., we disallow
different input terminals to be labeled by the same number.

• Sinks have out-degree 0. Sinks are called output terminals. Each output
terminal is labeled with a natural number, which represents index of the
circuit’s output bit. If the circuit has y output terminals, then they are la-
beled as 1, 2, . . . , y, i.e., we disallow different output terminals to be labeled
by the same number.

An interactive boolean circuit (IBC) C is a boolean circuit with special oracle
gates. The IBC C can communicate with other IBCs C1, . . . , Cn via the oracle
gates. Each oracle gate is labeled by a name of an IBC (i.e., if C has access
to IBCs C1, . . . , Cn, then the gates’s label is one of C1, . . . , Cn). If an oracle
gate has label Ci, we say that the oracle gate is of type Ci. Each input edge to
an oracle gate is labeled with a natural number 1, . . . ,m, where m is in-degree of
the oracle gate. We disallow the same labels for different input edges. An input
edge to an oracle gate of type Ci with label j represents jth input bit to the
IBC Ci. Output edges of an oracle gate are also labeled with a natural number
1, 2, . . . , y. Same labels for different output edges are allowed. An output edge
from the gate of type Ci with label j represents jth output bit of the IBC Ci.

Whenever computation reaches an oracle gate G of type Ci, the IBC Ci is
invoked on the input of G and output of Ci is passed to the output of G. We
call such an operation a query to the oracle Ci. By CC1,...,Cn we denote that C
contains oracle gates of type C1, . . . , Cn.

Each IBC can implement various interfaces (t1, t2, . . .). An interface specifies
what needs to be given on the input to an oracle gate to invoke particular
functionality of the IBC. We write C = (t1, t2, . . .) meaning that C implements
interfaces t1, t2, . . . (For example, an interface can specify that if the first input
bit is 0, then a functionality t1 is invoked. If the first bit is 1 then a functionality
t2 is invoked.)

We sometimes distinguish between private and public interfaces of an IBC C.
In this case we write C =

(
(t1, t2, . . .), (t

′
1, t

′
2, . . .)

)
, where t1, t2, . . . are private

interfaces and t′1, t
′
2, . . . are public. We write PCpub to denote that an IBC P

has oracle access only to public interfaces of an IBC C. Similarly, by PCpriv

we denote the fact that P has access only to private interfaces of C.

158

ON PSEUDO-RANDOM ORACLES

Figure 1. Merkle-Damg̊ard domain extension transform.

Evaluation order. Note that since an IBC C can contain oracle gates,
the output of C can depend on the order of evaluation of some oracle gates
(which are not connected by a path). By CE we denote an evaluation of C with
the specified order E. In most cases we omit to specify the evaluation order of
some IBC C. It means that the corresponding discussion holds for any evaluation
order of the IBC C.

Domain extension transform. Let n ∈ N be a security parameter. A domain
extension transform (DET) H is an IBC, the size of which is polynomial in n
with oracle access to a function f : {0, 1}y+d → {0, 1}y, where d, y ∈ N are
polynomially related to the security parameter n (i.e., d = p1(n) and y = p2(n)
for some polynomials p1, p2). The function f is called compression function.

Distinguisher. A distinguisher D is an IBC with one output bit. Besides
standard input, D can contain several random input bits, which are initialized
with value uniformly chosen from {0, 1}.
2.2. Merkle-Damg̊ard construction

Let Y0 = IV be some constant initialization vector from the set {0, 1}y.
The strengthened Merkle-Damg̊ard (SMD) domain extension transform operates
in the following way (see Figure 1).

Algorithm SMDf (M)
the algorithm has oracle access to f : {0, 1}y × {0, 1}d → {0, 1}y.
(1) (M1, . . . ,Ml)

d←M ,
(2) Ml+1 ← 〈|M |〉d,
(3) Y0 ← IV ,
(4) for i = 1 to l + 1 do,
(5) Yi ← f(Yi−1,mi),
(6) return Yl′ .

By SMDf we denote the hash function family created by the SMD domain ex-
tension transform from the compression function f : {0, 1}d× {0, 1}y → {0, 1}y.

159

MICHAL RJAŠKO

The key security feature of the MD construction is that it preserves collision
resistance. If the compression function f is collision resistant, then so is the
resulting hash function SMDf [8], [15].

3. Pseudo-random oracles

3.1. Pseudo-random oracle

Pseudo-random oracle (pro) [2], [3], [7] is a property of domain extension
transforms for cryptographic hash functions based on the indifferentiability
framework [14]. A hash function Hf : {0, 1}∗ → {0, 1}y based on an ideal com-
pression function f (i.e., fixed input length (FIL) random oracle) is pseudo-
random oracle if it is indifferentiable from a variable input length (VIL) random
oracle.

Let H be a domain extension transform, D be a distinguisher and S a simu-
lator. We define the following pro advantage:

Advpro
H,S(D) :=

∣∣∣Pr [f ← RFy+d,y;D
Hf ,f→ 1

]
− Pr

[
F ← RF∗,y;DF,SF→ 1

]∣∣∣.
We say that the domain extension transform H is pro if there exists a polynomial
simulator S such that for any polynomial distinguisher D there is a negligible
function negl such that

Advpro
H,S(D) ≤ negl(n).

The pseudo-random oracle property is meaningful only in the random-oracle
model. Since H is based on an “uncertain” random compression function f,
the pro is rather a property of domain extension transforms. Thus H securely
extends the domain of the fixed-input length random oracle f to the variable-
input length pseudo-random oracle.

Strong vs. weak indifferentiability. Note that there are two different defini-
tions of pseudo-random oracle. M a u r e r et al. [14] used a different quantifier
ordering. Their definition said that for all efficient distinguishers D there exists
an efficient simulator S such that Advpro

H,S(D) is negligible. We adopt the label-

ing from [16] where they refer to the notion from [14] as weak indifferentiability
and from [7] (which is used in this paper) as strong. It is clear that strong indif-
ferentiability implies weak. In this paper, we restrict our discussion to the strong
version of the pseudo-random oracle.

3.2. Public use random oracle

Many applications compute hashes only from public messages, i.e., messages
that are available to any party and thus any party is able to compute hash of the
messages. The security of these applications is not affected when all messages

160

ON PSEUDO-RANDOM ORACLES

are revealed to adversaries. Important applications of such public use of hash
functions are digital signature schemes or even some encryption schemes.

Public use pseudo-random oracle security notion [9] captures such applica-
tions. The public use random oracle is an ideal primitive with two interfaces.
The first interface is available to all parties and performs the usual evaluation
of the random oracle—given a message M it outputs its image Y. The second
interface is available only to adversaries (and simulators) and when queried it
reveals all evaluated messages and their corresponding images made so far to
the first interface.

Let ρ = RF∗,y. Formally, the public use random oracle is an ideal cryptosys-
tem F =

(
(Feval), (Feval, Freveal)

)
, where Feval implements the random function ρ

and Freveal reveals all queries (messages with their corresponding images) asked
to the public interface Feval (see Figure 2). If ρ is a FIL random function, we say
F is a FIL public use random oracle. FIL public use ROs are denoted in lower
case, i.e., f :=

(
(feval), (feval, freveal)

)
. Let RF pub

m,y denote the public use random

oracle implementing a random function ρ : {0, 1}m → {0, 1}y.

Feval(M) Freveal()

Q ← Q ∪ (M,ρ(M)
)

Ret Q
Ret ρ(M)

Figure 2. Public use random oracle interfaces.

D o d i s et al. [9] defined a so called public use pseudo-random oracle property.
A hash function Hf : {0, 1}∗ → {0, 1}y based on a FIL public use RO f is public
use pseudo-random oracle (pub-pro) if it is indifferentiable from a VIL public
use random oracle.

Let H be a domain extension transform, D be an adversary and S a simulator
implementing two interfaces Seval and Sreveal. We define the following pub-pro
advantage

Advpub−pro
H,S (D) :=

∣∣∣Pr [f ← RFpub
y+d,y;DHf

eval,f→ 1
]

− Pr
[
F ← RFpub

∗,y ;DFeval,S
F→ 1

]∣∣∣.
We say that the domain extension transform H is pub-pro if there exists
a polynomial simulator S such that for any polynomial distinguisher D there
is a negligible function negl such that

Advpub−pro
H,S (D) ≤ negl(n).

161

MICHAL RJAŠKO

3.3. Public image pseudo-random oracle

The property pub-pro enables simulators to see complete queries (queries and
corresponding answers) asked by a distinguisher D to it’s first oracle. Due to
this fact, the property pub-pro is weaker than pro [9]. When proving indifferen-
tiability of two cryptosystems, to simplify the proof we would like to consider as
strongest simulators as possible. Thus, an interesting question is what happens
if we allow simulators to see only responses of the D’s first oracle.

A public image random oracle is a cryptosystem F =
(
(Feval), (Feval, Fireveal)

)
,

where Feval implements a random function ρ and Fireveal reveals answers to all
queries asked to the public interface Feval. Let RF img

m,y denote the public image
random oracle implementing a random function ρ : {0, 1}m → {0, 1}y.
���������� 1 (img-pro)� Let H be a domain extension transform, D be a dis-
tinguisher and S a simulator implementing only one interface. We define the
following img-pro advantage

Advimg−pro
H,S (D) :=

∣∣∣Pr [f ← RFy+d,y;D
Hf ,f→ 1

]
− Pr

[
F ← RFimg

∗,y ;D
Feval,S

F→ 1
]∣∣∣.

We say that the domain extension transform H is img-pro, if there exists a poly-
nomial simulator S such that for all polynomial distinguishers D there is a neg-
ligible function negl such that

Advimg−pro
H,S (D) ≤ negl(n).

Remark 1� Note that it has no meaning to define img-pro property with f
being a FIL public image random oracle, i.e., f =

(
(feval), (feval, fireveal)

)
. Since

a simulator (which would implement interfaces
(
(Seval), (Seval, Sireveal)

)
) cannot

see queries asked by D to it’s first oracle (only their responses), the simulator is
unable to implement Sireveal consistently.

In Section 4 we show that img-pro is equivalent to pro, i.e., ability to see the
list of images, which Feval responds, does not make simulators stronger.

3.4. Real vs. random world

The definitions of pro, pub-pro and img-pro are comparing two scenarios.
In the first scenario, “real world”, the distinguisher has access to a “real” hash
function constructed via a domain extension transform from an ideal compres-
sion function and to the compression function. In the second scenario, “random
world”, the distinguisher has access to a (public use/image) random oracle and
to a simulator. To shorten our presentation we often write

Pr
H,f,D

[
DHf ,f→ 1

]
,

162

ON PSEUDO-RANDOM ORACLES

what means that the probability goes over random selection of the FIL random
oracle f and random coins of D. Similarly, we write

Pr
F,S,D

[
DF,SF→ 1

]
,

what means that the probability goes over random selection of the VIL random
oracle F and random coins of D and S.

The pro, pub-pro and img-pro distinguisher D can contain two types of oracle
gates. We refer to the gates corresponding to the D’s first oracle (Hf in the real
world, F in the random world) as to F -gates. Similarly, by f -gates we denote
gates corresponding to the D’s second oracle (f in the real world and SF in the
random world).

To denote a particular F -gate we use upper case letters, i.e., G. When con-
sidering an f -gate we use lower case, i.e., g.

To differentiate between different types of simulators we use the following no-
tation. A pro simulator is a simulator with access to an oracle, which implements
a VIL random oracle. Similarly, a pub-pro simulator has oracle access to VIL
public use random oracle and img-pro simulator’s oracle is VIL public image
random oracle.

4. Pro is equivalent to img-pro

It is easy to see that if a domain extension transform H is pro, then it
is img-pro. If there exists a pro simulator Spro such that for all pro distin-
guishers D is

Advpro
H,Spro

(D) ≥ ε(n),

then there exists an img-pro simulator Sipro such that for all img-pro distin-
guishers D′ is

Advimg−pro
H,Sipro

(D′) ≥ ε(n).

The simulator Sipro does the same as Spro (it’s possible, since Sipro has access to
all oracles to which Spro has access). Hence, we can state the following theorem.

	
����� 1� Let H be a domain extension transform which is pro. Then H is
img-pro.

The opposite direction is more involved, because of the following problem.
Let Sipro be an img-pro simulator and D be a distinguisher for Sipro. Since
Sipro can see answers of queries asked by D to it’s first oracle, D can pass
some information to Sipro, which no pro simulator Spro can see. For example,
consider the extension attack, which proves that the Merkle-Damg̊ard domain
extension transform [8], [15] is not pro. Let D be the following distinguisher
(see Figure 3(a))

163

MICHAL RJAŠKO

Figure 3. Pro distinguishers for the Merkle-Damg̊ard domain extension
transform. The first distinguisher (left) reveals input to the other F -gates
for some img-pro simulator via the dashed F -gate. On the other hand,
the second distinguisher (right) has non-negligible advantage against the
Merkle-Damg̊ard domain extension transform in the img-pro sense.

Distinguisher DF,f

(1) Choose M
$←{0, 1}y.

(2) Compute Y1 ← F (M).

(3) Compute Y2 → F (Y1).

(4) Choose m
$←{0, 1}d, compute Y3 ← f(Y2,m).

(5) Compute Y ′
3 ← F (Y1||m).

(6) Output 1 if Y3 = Y ′
3 and 0 otherwise.

Let H be the Merkle-Damg̊ard domain extension transform. For all pro simula-

tors Spro, the probability PrF,S,D[DF,SF→ 1] is negligible, since Spro is unable to

guess Y1. On the other hand PrH,f,D[DHf ,f→ 1] = 1. However, an img-pro simu-
lator can see Y1, hence, it can query Y1||m. Note that a distinguisher D with step
(2) replaced by Y1 := M would fool also img-pro simulators (see Figure 3(b)),
since no img-pro simulator is able to guess the message M .

In the rest of this section we prove that if a domain extension transform is
img-pro, then it is also pro.

164

ON PSEUDO-RANDOM ORACLES

To simplify our proof, we restrict the set of domain extension transforms.
We focus only on those transforms, whose output is equal to the output of one
of the containing oracle gates. This restriction avoids problems with “partially
instantiated” transforms [10], which instantiate several oracle gates with some
real compression function.

���������� 2 (Standard DET)� Let H be a domain extension transform.
We say H is standard if value of Hf (M) is equal to the output of one of the
containing f -gates g. We call such a gate g final.

Note that most of the popular domain extension transforms (e.g., MD [8], [15],
HMAC [1], EMD [2], [3]) are standard.

���������� 3 (Oracle-oracle output bit)� Let D be a distinguisher in pro sense.
Let G be an oracle gate in D. We say that ith output bit of the gate G is oracle-
oracle output bit if there exists a path in D starting at the ith output bit of the
gate G and ending at some oracle gate G′.

In the following definition we formally define the term “minimal” distinguisher
(in the pro sense). The minimal distinguisher represents the minimal algorithm
(i.e., an algorithm without any “unnecessary” computation), which is able to dis-
tinguish between real and random worlds. The minimal distinguisher is defined
for a domain extension transform H and a pro simulator S.

���������� 4 (Minimal distinguisher)� Let H be a domain extension transform
and let S be a pro simulator forH. Let D1 denote the set of all polynomial distin-
guishers with non-negligible advantage in pro sense against S
(i.e., for all D ∈ D1 holds that Advpro

H,S(D) is non-negligible). Let D2 ⊆ D1 be
the set which contains distinguishers with minimal number of F -gates. Let D3 ⊆
D2 be the set containing only distinguishers with minimal number of f -gates.
Let D4 ⊆ D3 be the set containing only distinguishers with minimal number
of oracle-oracle output bits. Finally, let D5 ⊆ D4 be the set containing dis-
tinguishers of minimal average depth (average over length of all input-output
paths).
We say that a distinguisher D is minimal against S and H, if D ∈ D5.

Note that a minimal distinguisher against some simulator S and a domain
extension transform H has non-negligible advantage in pro sense.

In the following two simple lemmas we show that a minimal distinguisher D
cannot contain gates which have the same input only in the real world. We show
that if two gates have the same input in the real world then almost certainly
they have the same input in the random world also. Moreover, in the Lemma 2
we show that a minimal distinguisher gains non-negligible advantage only when
all gates have different input.

165

MICHAL RJAŠKO

Figure 4. Construction of the distinguisher D1 (right) from the distin-

guisher D (left). The distinguisher D1 compares inputs to the gates G1

and G2 and outputs 1 if and only if they are equal. The gates G1 and G2

are removed.

Let G1 and G2 be two oracle gates in a distinguisher D. By EqI(G1, G2)
we denote the event that during evaluation of the distinguisher D the gates
G1 and G2 have the same input. Similarly, by EqO(G1, G2) we denote the event
that the gates G1 and G2 have the same output.

���� 1� Let H be a domain extension transform, S be a pro simulator for
H and D be a minimal distinguisher against S. Let G1 and G2 be two different
oracle gates in D of the same type. Then there exist negligible functions negl1
and negl2 such that∣∣∣ Pr

H,f,D

[
EqI(G1, G2)

]− Pr
F,S,D

[
EqI(G1, G2)

]∣∣∣ ≤ negl1(n),∣∣∣ Pr
H,f,D

[
EqO(G1, G2)

]− Pr
F,S,D

[
EqO(G1, G2)

]∣∣∣ ≤ negl2(n).

P r o o f. Consider a distinguisher D1 (Figure 4) which does the same as D until
its computation reaches the gates G1 and G2. Then it compares inputs to G1

and G2 and outputs 1 if and only if they are equal. Clearly, D1 is smaller than D.
Since D is minimal, the advantage of D1 must be negligible. Hence, there exists

166

ON PSEUDO-RANDOM ORACLES

a negligible function negl1 such that∣∣∣ Pr
H,f,D1

[
D1

Hf,f→ 1
]
− Pr
F,S,D1

[
D1

F,SF→ 1
]∣∣∣ ≤ negl1(n).

However, EqI(G1, G2) is true if and only if D1 returns 1. Hence,∣∣∣ Pr
H,f,D

[
EqI(G1, G2)

]− Pr
F,S,D

[
EqI(G1, G2)

]∣∣∣ ≤ negl1(n). (1)

This completes the first part of the proof.

If the gates G1 and G2 are F -gates, then in the random world the gates
represent an uniform VIL random function F. Thus there exists a negligible
function negl2 such that∣∣∣ Pr

F,S,D

[
EqI(G1, G2)

]− Pr
F,S,D

[
EqO(G1, G2)

]∣∣∣ ≤ negl2(n). (2)

Hence, by equations (1) and (2) we have∣∣∣ Pr
H,f,D

[
EqO(G1, G2)

]− Pr
F,S,D

[
EqO(G1, G2)

]∣∣∣ ≤ negl2(n) + negl1(n).

If the gates G1 and G2 are f -gates, then in the real world they represent FIL

random function f. Hence, there exits a negligible function negl3 such that∣∣∣ Pr
H,f,D

[
EqI(G1, G2)

]− Pr
H,f,D

[
EqO(G1, G2)

]∣∣∣ ≤ negl3(n). (3)

By combining equations (1) and (3) we have∣∣∣ Pr
H,f,D

[
EqO(G1, G2)

]− Pr
F,S,D

[
EqO(G1, G2)

]∣∣∣ ≤ negl3(n) + negl1(n).

This completes the second part of the proof. �

���� 2� Let H be a domain extension transform, S be a pro simulator for
H and D be a minimal distinguisher against S. Then for all oracle gates G1

and G2 of the same type in the distinguisher D there exists a negligible function
negl1 such that

∣∣∣ Pr
H,f,D

[
DHf,f → 1 ∧ EqI(G1, G2)

]
− Pr

F,S,D

[
DF,SF→ 1 ∧ EqI(G1, G2)

]∣∣∣ ≤ negl1(n).

Moreover, there exists a negligible function negl2 such that
∣∣∣ Pr
H,f,D

[
DHf,f → 1 ∧ EqO(G1, G2)

]
− Pr

F,S,D

[
DF,SF→ 1 ∧ EqO(G1, G2)

]∣∣∣ ≤ negl2(n).

P r o o f. Let G1 and G2 be two oracle gates in D. Without loss of generality
we can assume that there does not exist a path from G1 to G2 (since a path
between G1 and G2 can exist only in one direction). Consider a distinguisher D2

(Figure 5) which is the same as D but all edges starting at the gate G1 are
redirected such that they start at the gate G2 and the gate G1 is removed.
Moreover, the distinguisher D2 compares input to the removed gate G1 with

167

MICHAL RJAŠKO

Figure 5. Construction of the distinguisher D2 (right) from the distin-
guisher D (left). All edges starting at the gate G1 are redirected such that

they start at the gate G2. Inputs to the gates G1 and G2 are compared
and D2 outputs 1 only if they are equal. The gate G1 is removed.

the input to the gate G2 and outputs 1 only if the inputs are equal. It is clear
that D2 outputs the same as D if the gates G1 and G2 have the same output.
On the other hand, if the gates G1 and G2 have different input, then D2 always
outputs 0. Hence,

Pr
H,f,D2

[
D2

Hf ,f → 1
]
= Pr

H,f,D

[
DHf ,f → 1 ∧ EqI(G1, G2)

]
,

Pr
F,S,D2

[
D2

F,SF → 1
]
= Pr

F,S,D

[
DF,SF → 1 ∧ EqI(G1, G2)

]
.

Since D2 is smaller than D, from the assumption that D is minimal there exists
a negligible function negl1 such that

negl1(n) ≥ Advpro
S,H(D2)

=
∣∣∣ Pr
H,f,D2

[
D2

Hf ,f→ 1
]
− Pr

F,S,D2

[
D2

F,SF→ 1
]∣∣∣

=
∣∣∣ Pr
H,f,D

[
DHf ,f→ 1 ∧ EqI(G1, G2)

]
− Pr
F,S,D

[
DF,SF→ 1 ∧ EqI(G1, G2)

]∣∣∣.
This completes the first part of the proof. The second part of the proof comes
from the fact that if the gates G1 and G2 are of the same type and they have the
same output, then except the negligible probability they have the same input

168

ON PSEUDO-RANDOM ORACLES

also (see also discussion in the previous lemma). Hence, there exists a negligible
function negl2 such that∣∣∣ Pr

H,f,D

[
DHf,f→ 1 ∧ EqI(G1, G2)

]
− Pr

H,f,D

[
DHf ,f→ 1 ∧ EqO(G1, G2)

]∣∣∣ ≤ negl2(n)

and ∣∣∣ Pr
F,S,D

[
DF,SF→ 1 ∧ EqI(G1, G2)

]
− Pr

F,S,D

[
DF,SF→ 1 ∧ EqO(G1, G2)

]∣∣∣ ≤ negl2(n).

Thus, ∣∣∣ Pr
H,f,D

[
DHf ,f→ 1 ∧ EqO(G1, G2)

]
− Pr

F,S,D

[
DF,SF→ 1 ∧ EqO(G1, G2)

]∣∣∣ ≤ negl1(n) + negl2(n).

�

A gate G in a distinguisher D is end gate if all paths from G to the output bit
do not contain oracle gates. Let L(D) = {G1, . . . , Gl} denote the set of all end
gates in D. In the following lemmas we prove an intuitive fact, that if a domain
extension transform H is pub-pro then the only chance how a distinguisher D
can distinguish between real and random worlds is to compute the hash of some
messageM in two different ways. Moreover, a simulator must be unable to obtain
the message M .

We start by two lemmas, which state that there is at least one f -gate and
one F -gate in the set of end gates in a minimal distinguisher D.

���� 3� Let H be a standard domain extension transform which is not pro
and S be a simulator which output is indistinguishable from a random function.
Let D be a minimal distinguisher against S and H. Then there exists an F-gate
G ∈ L(D).

P r o o f. Assume the contrary that all gates in L(D) are f -gates. Let DI denote
the event that during evaluation of D all gates in L(D) have distinct input.

If DI does not hold for some evaluation ofD, then there exist at least two gates
with the same input—we can apply the construction of a smaller distinguisher
D2 from Lemma 2. Hence, there exists a negligible function negl1 such that∣∣∣ Pr

H,f,D

[
DHf,f→ 1 ∧ ¬DI

]
− Pr
F,S,D

[
DF,SF→ 1 ∧ ¬DI

]∣∣∣ ≤ negl1(n).

169

MICHAL RJAŠKO

Similarly, we can apply the construction D1 from Lemma 1. Thus there exists
a negligible function negl2 such that∣∣∣ Pr

H,f,D
[DI]− Pr

F,S,D
[DI]

∣∣∣ = ∣∣∣ Pr
H,f,D

[¬DI]− Pr
F,S,D

[¬DI]
∣∣∣ ≤ negl2(n).

Let α := PrH,f,D[¬DI], then

α− negl2(n) ≤ Pr
F,S,D

[¬DI] ≤ α+ negl2(n).

Now considerD’s advantage against the simulator S and the domain extension
transform H

Advpro
S,H(D)

=
∣∣∣ Pr
H,f,D

[DHf,f→ 1|DI] · Pr
H,f,D

[DI]− Pr
F,S,D

[
DF,SF→ 1|DI

]
· Pr
F,S,D

[DI]

+ Pr
H,f,D

[DHf,f→ 1 ∧ ¬DI]− Pr
F,S,D

[
DF,SF→ 1 ∧ ¬DI

]∣∣∣
≤
∣∣∣(1− α) Pr

H,f,D

[
DHf,f→ 1|DI

]
− (1− α) · Pr

F,S,D

[
DF,SF→ 1|DI

]∣∣∣
+ negl1(n) + negl2(n)

≤ (1− α) ·
∣∣∣ Pr
H,f,D

[
DHf,f→ 1|DI

]
− Pr
F,S,D

[
DF,SF→ 1|DI

]∣∣∣
+ negl1(n) + negl2(n).

If all gates in L(D) have different input, the distribution of output of gates
in L(D) is the same in both worlds. In the real world, all gates in L(D) cor-
respond to the FIL random function f. In the random world, gates from L(D)
corresponds to the simulator, which output is indistinguishable from a random
function. Hence, there exists a negligible function negl3 such that∣∣∣ Pr

H,f,D

[
DHf,f→ 1|DI

]
− Pr
F,S,D

[
DF,SF→ 1|DI

]∣∣∣ ≤ negl3(n).

Thus,
Advpro

S,H(D) ≤ negl1(n) + negl2(n) + negl3(n).

This contradicts the minimality of D. �

���� 4� Let H be a standard domain extension transform which is pub-pro,
S be a pro simulator for H and D be a minimal distinguisher against S. Then
there exists an f -gate g ∈ L(D).

P r o o f. Assume the contrary that all gates in L(D) are F -gates. Let DI denote
the event that during some evaluation ofD all gates in L(D) have different input.

170

ON PSEUDO-RANDOM ORACLES

By Lemmas 1 and 2 there exist negligible functions negl1 and negl2 such that
(see also proof of the previous lemma for more detailed discussion)∣∣∣ Pr

H,f,D
[DI]− Pr

F,S,D
[DI]

∣∣∣ = ∣∣∣ Pr
H,f,D

[¬DI]− Pr
F,S,D

[¬DI]
∣∣∣ ≤ negl1(n), (4)∣∣∣ Pr

H,f,D

[
DHf,f→ 1 ∧ ¬DI

]
− Pr
F,S,D

[
DF,SF→ 1 ∧ ¬DI

]∣∣∣ ≤ negl2(n). (5)

Let α := PrH,f,D[¬DI], then

α− negl1(n) ≤ Pr
F,S,D

[¬DI] ≤ α+ negl1(n).
Hence,

Advpro
S,H(D)

=
∣∣∣ Pr
H,f,D

[
DHf,f→ 1|DI

]
· Pr
H,f,D

[DI]− Pr
F,S,D

[
DF,SF→ 1|DI

]
· Pr
F,S,D

[DI]

+ Pr
H,f,D

[
DHf,f→ 1 ∧ ¬DI

]
− Pr
F,S,D

[
DF,SF→ 1 ∧ ¬DI

]∣∣∣
≤
∣∣∣(1− α) Pr

H,f,D

[
DHf,f→ 1|DI

]
− (1− α) · Pr

F,S,D

[
DF,SF→ 1|DI

]∣∣∣
+ negl2(n) + negl1(n)

≤
∣∣∣ Pr
H,f,D

[
DHf,f→ 1|DI

]
− Pr
F,S,D

[
DF,SF→ 1|DI

]∣∣∣
+ negl2(n) + negl1(n). (6)

Note that for the domain extension transform H, the simulator S, and
the minimal distinguisher D, the probabilities

Pr
F,S,D

[
DF,SF→ 1|DI

]
and Pr

H,f,D

[
DHf,f→ 1|DI

]
are fixed. Hence, there exists the following distinguisher D′ in pub-pro sense:

Distinguisher D′O1,o2

(1) Simulate DO1,o2 → b.
(2) Output b if all gates in L(D) have different input during the

simulation of D in the first step. Otherwise

• if PrF,S,D

[
DF,SF → 1|DI

]
> PrH,f,D

[
DHf,f → 1|DI

]
output 0,

• otherwise output 1.

Let S′ be some pub-pro simulator and consider the advantage of D′ against the
simulator S′. To shorten our presentation, let

β := Pr
H,f,D′

[¬DI
]

and γ := Pr
F,S′,D′

[¬DI
]
.

171

MICHAL RJAŠKO

We have

Advpub−pro
S′,H (D′)

=
∣∣∣ Pr
H,f,D′

[
D′Hf,f→ 1

]
− Pr
F,S′,D′

[
D′Feval,S

′F→ 1
]∣∣∣

=
∣∣∣(1− β) · Pr

H,f,D′

[
D′Hf,f→ 1|DI

]
− (1− γ) · Pr

F,S′,D′

[
D′Feval,S

′F→ 1|DI
]

+ β · Pr
H,f,D′

[
D′Hf,f→ 1|¬DI

]
− γ · Pr

F,S′,D′

[
D′Feval,S

′F→ 1|¬DI
]∣∣∣

=

∣∣∣∣ Pr
H,f,D′

[
D′Hf,f→ 1|DI

]
− Pr
F,S′,D′

[
D′Feval,S

′F→ 1|DI
]

+ β ·
(

Pr
H,f,D′

[
D′Hf,f→ 1|¬DI

]
− Pr
H,f,D′

[
D′Hf,f→ 1|DI

])

+ γ ·
(

Pr
F,S′,D′

[
D′F,S′F→ 1|¬DI

]
− Pr
F,S′,D′

[
D′Feval,S

′F→ 1|DI
])∣∣∣∣

From the definition of the distinguisher D′ we have that D and D′ outputs
the same if gates in L(D) have different input. Moreover, if all gates in L(D)

in evaluation of D′Feval,S
′F

have different input, then the distribution of their

output is the same as in evaluation of DF,SF

. Hence,

Advpub−pro
S′,H (D′)

≤
∣∣∣∣ Pr
H,f,D

[
DHf,f→ 1|DI

]
− Pr
F,S,D

[
DF,SF→ 1|DI

]

+ β ·
(

Pr
H,f,D′

[
D′Hf,f→ 1|¬DI

]
− Pr
H,f,D

[
DHf,f→ 1|DI

])

+ γ ·
(

Pr
F,S′,D′

[
D′Feval,S

′F→ 1|¬DI
]
− Pr
F,S,D

[
DF,SF→ 1|DI

])∣∣∣∣
Note that from the definition of the distinguisher D′ we have that the proba-

bilities PrH,f,D′
[
D′Hf,f→ 1|¬DI

]
and PrF,S′,D′

[
D′Feval,S

′F→ 1|¬DI
]
are either

1 or 0.

• If PrF,S,D

[
DF,SF→ 1|DI

]
> PrH,f,D

[
DHf,f→ 1|DI

]
, their value is 0. Thus

we have

Advpub−pro
S′,H (D′)

=

∣∣∣∣
(

Pr
H,f,D

[
DHf,f→ 1|DI

]
− Pr
F,S,D

[DF,SF→ 1|DI]

)

+ β ·
(
0− Pr

H,f,D
[DHf,f→ 1|DI]

)
+ γ ·

(
0− Pr

F,S,D

[
DF,SF→ 1|DI

])∣∣∣∣.
172

ON PSEUDO-RANDOM ORACLES

All three expressions in brackets in the equation above are negative. Hence,

Advpub−pro
S′,H (D′) ≥

∣∣∣ Pr
H,f,D

[
DHf ,f→ 1|DI

]
− Pr
F,S,D

[
DF,SF→ 1|DI

]∣∣∣. (7)

• If PrF,S,D

[
DF,SF→ 1

] ≤ PrH,f,D

[
DHf,f→ 1

]
, we have

Advpub-pro
S′,H (D′)

=

∣∣∣∣
(

Pr
H,f,D

[DHf,f→ 1|DI]− Pr
F,S,D

[DF,SF→ 1|DI]

)

+ β ·
(
1− Pr

H,f,D

[
DHf,f → 1|DI

])
+ γ ·

(
1− Pr

F,S,D

[
DF,SF → 1|DI

])∣∣∣∣.
In this case, all three expressions in brackets are non-negative, thus

Advpub-pro
S′,H (D′) ≥

∣∣∣ Pr
H,f,D

[
DHf,f→ 1|DI

]
− Pr
F,S,D

[
DF,SF→ 1|DI

]∣∣∣. (8)

By combining inequalities (6), (7) and (8) we have

Advpub−pro
S′,H (D′) + negl2(n) + negl1(n) ≥ Advpro

S,H(D).

This contradicts the assumption that H is pub-pro. �

The following key lemma states that the set L(D) of end gates of any minimal
distinguisher for some “reasonable” simulator must contain exactly one f -gate
and one F -gate. Moreover, the simulator is unable to query a message on input
to the F -gate.

Let S be some pro simulator, D be a distinguisher and let G1 and G2 be
two oracle gates (of arbitrary type) in the distinguisher D. By EqO(G1, G2)
we denote an event that the gates G1 and G2 have the same output in some
computation of D.

Fix some evaluation order of D. Let G be an F -gate in D and g be an f -gate.
Let g1, . . . , gl be f -gates evaluated before the gate g. By QueG(g) we denote the
event that during some computation of D in the random world, the simulator S
during evaluation of gates g1, . . . , gl, g asks it is oracle the same query as is the
input to the gate G.

���� 5� Let H be a standard domain extension transform which is pub-pro,
S be a pro simulator for H given by lemma 3 and D be a minimal distinguisher
against S. Then there exists an F -gate G ∈ L(D), an f -gate g ∈ L(D) and
a negligible function negl such that

Advpro
H,S(D) ≤

∣∣∣ Pr
H,f,D

[
EqO(G, g)

]− Pr
F,S,D

[
QueG(g)

]∣∣∣+ negl(n).

Moreover, L(D) = {G, g}.

173

MICHAL RJAŠKO

P r o o f. By Lemmas 3 and 4 there exist at least one F -gate G ∈ L(D) and
at least one f -gate g ∈ L(D). Consider the gate g.

Since D is minimal, there must exist a negligible function negl1 such that for
all D’s F -gates G′ different from G holds∣∣∣ Pr

H,f,D

[
EqO(G′, g)

]− Pr
F,S,D

[
EqO(G′, g)

]∣∣∣ ≤ negl1(n). (9)

Otherwise we could construct a smaller distinguisher D3 (see Figure 6) which
would check the equality of outputs of G′ and g (D3 would be without the
gate G).

Figure 6. Construction of the distinguisher D3 (right) from the distin-
guisher D (left). The distinguisher D3 compares outputs of the gates G′
and g and outputs 1 if and only if they are equal. The gate G is removed.

Moreover, there must exist a negligible function negl2 such that for all oracle
gates G′ holds ∣∣∣ Pr

H,f,D

[
DHf,f→ 1|EqO(G′, g)

]
− Pr

F,S,D

[
DF,SF → 1|EqO(G′, g)

]∣∣∣ ≤ negl2(n). (10)

Otherwise we could construct a smaller distinguisher D4 (see Figure 7) which
would replace output of g with output of G′. The gate g is then removed from
the distinguisher D4. Note that since g ∈ L(D) there cannot be a path from the
gate g to the gate G′.

174

ON PSEUDO-RANDOM ORACLES

Figure 7. Construction of the distinguisher D4 (right) from the distin-
guisher D (left): the output of the gate g is replaced by the output of the
gate G′. The gate g is then removed.

Let G1, . . . , Gk be all oracle gates in D except the gate g, where Gk denotes
the gate G. We have

Advpro
S,H(D)

=
∣∣∣ Pr
H,f,D

[
DHf,f→ 1

]
− Pr

F,S,D

[
DF,SF→ 1

]∣∣∣
≤
∣∣∣∣∣ Pr
H,f,D

[
DHf,f→ 1 ∧ EqO(Gk, g)

]

− Pr
F,S,D

[
DF,SF→ 1 ∧ EqO(Gk, g)

]

+ Pr
H,f,D

[
DHf ,f→ 1 ∧

k∧
i=1

¬EqO(Gi, g)

]

− Pr
F,S,D

[
DF,SF→ 1 ∧

k∧
i=1

¬EqO(Gi, g)

]∣∣∣∣∣
+

∣∣∣∣∣ Pr
H,f,D

[
DHf,f→ 1 ∧ ¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]

− Pr
F,S,D

[
DF,SF→ 1 ∧ ¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]∣∣∣∣∣. (11)

175

MICHAL RJAŠKO

Now we prove the following three statements.

• By inequalities (9) and (10), the last absolute value in inequality (11) must
be negligible. That is, there exists a negligible function negl3 such that∣∣∣∣∣ Pr

H,f,D

[
DHf,f→ 1 ∧ ¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]
(12)

− Pr
F,S,D

[
DF,SF→ 1 ∧ ¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]∣∣∣∣∣ ≤ negl3(n).

• By equation (10) we have∣∣∣ Pr
H,f,D

[
DHf,f→ 1|EqO(Gk, g)

]
− Pr
F,S,D

[
DF,SF→ 1|EqO(Gk, g)

]∣∣∣ ≤ negl2(n).

Let α denote the probability α := PrH,f,D

[
DHf ,f → 1|EqO(Gk, g)

]
. Hence,

α− negl2(n) ≤ Pr
F,S,D

[
DF,SF→ 1|EqO(Gk, g)

]
≤ α+ negl2(n). (13)

• Since D is minimal, there must exist a negligible function negl4 such that∣∣∣∣∣ Pr
H,f,D

[
DHf ,f → 1|

k∧
i=1

¬EqO(Gi, g)

]

− Pr
F,S,D

[
DF,SF→ 1|

k∧
i=1

¬EqO(Gi, g)

]∣∣∣∣∣ ≤ negl4(n).

Otherwise we could construct a smaller distinguisher D′ such that g would
be replaced by a random string. Since g ∈ L(D) and H is standard, if
output of the gate g is different from all of the other gates, then it is dis-
tribution cannot be distinguished from a distribution of a random string.
This holds in both real and random worlds (otherwise we could construct
another smaller distinguisher D′′ which would check the distribution of g
and would be without the gate Gk). Let β temporarily denote the prob-

ability β := PrH,f,D

[
DHf,f → 1|∧k

i=1 ¬EqO(Gi, g)
]
. We can rewrite the

above inequality as

β − negl4(n) ≤ Pr
F,S,D

[
DF,SF→ 1|

k∧
i=1

¬EqO(Gi, g)

]
≤ β + negl4(n). (14)

Using inequalities (12), (13) and (14), the inequality (11) can be rewritten as
follows

176

ON PSEUDO-RANDOM ORACLES

Advpro
S,H(D) ≤

∣∣∣∣∣α · Pr
H,f,D

[EqO(Gk, g)]− α · Pr
F,S,D

[
EqO(Gk, g)

]

+ β · Pr
H,f,D

[
k∧

i=1

¬EqO(Gi, g)

]
− β Pr

F,S,D

[
k∧

i=1

¬EqO(Gi, g)

]∣∣∣∣∣
+ negl2(n) + negl4(n) + negl3(n). (15)

Consider the probability

Pr
H,f,D

[
k∧

i=1

¬EqO(Gi, g)

]

= 1− Pr
H,f,D

[
¬
(

k∧
i=1

¬EqO(Gi, g)

)]

= 1− Pr
H,f,D

[
EqO(Gk, g)

]

− Pr
H,f,D

[
¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]
.

Similar equality holds for the random world, i.e.,

Pr
F,S,D

[
k∧

i=1

¬EqO(Gi, g)

]
= 1− Pr

H,f,D
[EqO(Gk, g)]

− Pr
H,f,D

[
¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]

By similar construction as the construction D3 in the equation (9) we have:

∣∣∣∣∣ Pr
H,f,D

[
¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]

− Pr
F,S,D

[
¬EqO(Gk, g) ∧ ¬

(
k−1∧
i=1

¬EqO(Gi, g)

)]∣∣∣∣∣ ≤ negl1(n).

177

MICHAL RJAŠKO

Thus we can rewrite the inequality (15)

Advpro
S,H(D) ≤

∣∣∣∣α ·
(

Pr
H,f,D

[
EqO(Gk, g)

]− Pr
F,S,D

[
EqO(Gk, g)

])

+ β ·
(

Pr
F,S,D

[
EqO(Gk, g)

]− Pr
H,f,D

[
EqO(Gk, g)

])∣∣∣∣
+ negl2(n) + negl4(n) + negl3(n) + negl1(n)

≤
∣∣∣ Pr
H,f,D

[
EqO(Gk, g)

]− Pr
F,S,D

[
EqO(Gk, g)

]∣∣∣
+ negl2(n) + negl4(n) + negl3(n) + negl1(n).

Now consider the random-world scenario. The simulator S can guess output
of the gate Gk with non-negligible probability only if it asks its oracle the same
query as input to Gk. Hence, there exists a negligible function negl such that

Advpro
S,H(D) ≤

∣∣∣ Pr
H,f,D

[
EqO(Gk, g)

]− Pr
F,S,D

[
QueGk

(g)
]∣∣∣+ negl(n).

Since D is minimal, then G and g are the only gates in L(D). Otherwise we could
construct a smaller distinguisher D5 which would check the equality of outputs
of the gates G and g (D5 would be without the other gates in L(D)). �

	
����� 2� Let H be a standard domain extension transform which is img-pro,
then H is pro.

P r o o f. Since the pub-pro simulators have all the information as img-pro sim-
ulators (and possibly more), it is clear that if H is not pub-pro, then it is not
img-pro. Hence, in the rest of this proof we assume that H is pub-pro.

Assume the contrary that H is img-pro and not pro. Thus, there exists an
img-pro simulator Sipro and a negligible function negl1 such that for all distin-
guishers D holds

Advimg−pro
H,Sipro

(D) ≤ negl1(n).

From the assumption that H is not pro, we have that for all pro simulators Spro

there exists a distinguisher D and a non-negligible function ε1(n) such that

Advpro
H,Spro

(D) ≥ ε1(n).

Assume without loss of generality that Sipro does not ask the same query
twice. Moreover, assume that Sipro makes queries to Feval as soon as possible.
That is, let S be some img-pro simulator, D be a distinguisher and E some eval-
uation order of D. Let g1, . . . , gl be all f -gates in D such that gi+1 is evaluated

after gi. Consider that during some computation C of DFeval,S
F

, the simulator S
in evaluation of the gate gi asks it’s oracle Feval queries Qi := (Mi,1, . . . ,Mi,qi),
which are the same as input to some F -gate in D. Queries made by S which

178

ON PSEUDO-RANDOM ORACLES

does not correspond to some F -gate in D are not in the list Qi. Let rD, rS , rF
be lists of random coins used by D, S and F in the computation C and consider

that
∑l

i=1 qi > 0. Let

δD,rD,rS ,rF (S) :=

∑l
i=1(i · qi)

l ·∑l
i=1 qi

.

If
∑l

i=1 qi = 0, then

δD,rD,rS ,rF (S) := 0.

Let δ(S) be an average of δD,rD,rS ,rF (S) over all possible distinguishers D and

random coins used during computation of DFeval,S
F

. Assume that Sipro is an
img-pro simulator with minimal δ(Sipro). That is, all other img-pro simulators
S with negligible advantage against all distinguishers have δ(S) greater or equal
to δ(Sipro).

Let S1 and S2 be some simulators. Note that the number δ(S1) is smaller
than δ(S2) if S1 asks queries corresponding to a distinguisher’s F -gates sooner
than S2.

Let Spro be the following simulator, which simulates Sipro:

Simulator SF
pro(w)

The simulator maintains the list L, which contains all answers of the
oracle F to queries asked by Spro.
• Simulate Sipro(w)→ y.

– When Sipro asks an Feval query M , then Spro queries
Y := F (M), stores Y to the list L and returns Y to Sipro.

– When Sipro asks an Fireveal query, then Spro returns the
list L to the simulator Sipro.

• Output y.

Let D be a minimal distinguisher against the simulator Spro and H. Let G, g ∈
L(D) be two oracle gates given by Lemma 5, where

ε1(n) ≤
∣∣∣ Pr
H,f,D

[
EqO(G, g)

]− Pr
F,Spro,D

[
QueG(g)

]∣∣∣.
Note that the output of the simulator Sipro must be indistinguishable from a ran-
dom function (otherwise there exists a distinguisher with non-negligible advan-
tage against Sipro). Hence, also Spro has output indistinguishable from a random
function. Thus it’s possible to apply Lemma 5.

Consider an evaluation order E of the distinguisher D such that the F -gate G
is evaluated after the f -gate g.

If the gate G is the only F -gate in D, then Spro and Sipro have the same
advantage against the distinguisher D, i.e.,

Advpro
H,Spro

(D) = Advimg−pro
H,Sipro

(D).

179

MICHAL RJAŠKO

In the img-pro simulation Advimg−pro
H,Sipro

(D) all Fireveal queries, which Sipro asks,

return an empty list. The same holds for the pro simulation Advpro
H,Spro

(D).

Hence, in this case Spro correctly simulates Sipro. However, this contradicts the
assumption that H is img-pro.

Hence, besides the gate G there must exist another F -gate in the distin-
guisher D. Let G1, . . . , Gk be all F -gates in D such that for all i = 1, . . . , k the
gate Gi+1 is evaluated after the gate Gi in the evaluation order E (note that the
gates G and Gk are the same). From the assumption that H is img-pro we have

ε1(n) ≤
∣∣∣ Pr
H,f,D

[
EqO(G, g)

]− Pr
F,Spro,D

[
QueG(g)

]∣∣∣
=
∣∣∣ Pr
H,f,D

[
EqO(G, g)

]− Pr
F,Sipro,D

[
QueG(g)

]
+ Pr

F,Sipro,D

[
QueG(g)

]− Pr
F,Spro,D

[
QueG(g)

]∣∣∣
≤
∣∣∣ Pr
F,Sipro,D

[
QueG(g)

]− Pr
F,Spro,D

[
QueG(g)

]∣∣∣
+ negl1(n).

Let DO denote the event that all gates G1, . . . , Gk have distinct output. Let AQ
denote the event that all gates G1, . . . , Gk−1 were queried by a simulator, i.e.,

AQ⇔ ∧k−1
i=1 QueGi

(g). We have

ε1(n) ≤
∣∣∣ Pr
F,Sipro,D

[
QueG(g) ∧ ¬DO

]− Pr
F,Spro,D

[
QueG(g) ∧ ¬DO

]∣∣∣
+
∣∣∣ Pr
F,Sipro,D

[
QueG(g) ∧DO ∧ AQ

]− Pr
F,Spro,D

[
QueG(g) ∧DO ∧ AQ

]∣∣∣
+
∣∣∣ Pr
F,Sipro,D

[
QueG(g) ∧DO ∧ ¬AQ]− Pr

F,Spro,D

[
QueG(g) ∧DO ∧ ¬AQ]∣∣∣

+ negl1(n). (16)

We now show that all three absolute values in the inequality above are negligible.

1. If DO is not true then there exist gates Gi, Gj, where i < j with the same
output. Consider a similar construction to one in Lemma 2. Let D1 (Figure 8)
be a distinguisher which is the same as D but all edges starting at the gate Gj

are redirected such that they start at the gate Gi. The gate Gj is removed. The
distinguisher D1 outputs 1 if and only if EqO(G, g) and EqI(Gi, Gj). From the
definition of the distinguisher D1 we have

Pr
H,f,D1

[
D1

Hf ,f → 1
]
= Pr

H,f,D

[
EqO(G, g) ∧ EqI(G1, G2)

]
,

Pr
F,S,D1

[
D1

F,SF → 1
]
= Pr

F,S,D

[
EqO(G, g) ∧ EqI(G1, G2)

]
.

180

ON PSEUDO-RANDOM ORACLES

Figure 8. Construction of the distinguisher D1 used in the proof of Theo-

rem 2. The distinguisher D1 (right) is the same as D but all edges starting
at the gate Gj are redirected such that they start at the gate Gi. The gate
Gj is removed. The distinguisher D1 outputs 1 if and only if EqO(G, g)

and EqI(Gi, Gj).

Since D1 is smaller than D, from the assumption that D is minimal there exists
a negligible function negl3 such that∣∣∣ Pr

H,f,D

[
D1

Hf,f→ 1
]
− Pr
F,S,D1

[
D1

F,SF→ 1
]∣∣∣≤ negl3(n).

Hence,∣∣∣ Pr
H,f,D

[
EqO(G, g)∧EqI(Gi, Gj)

]− Pr
F,Spro,D

[
EqO(G, g)∧EqI(Gi, Gj)

]∣∣∣≤ negl3(n).

If the gates Gi and Gj have the same output in the random world, then they
have the same input also (except some negligible probability). Thus,∣∣∣ Pr
H,f,D

[
EqO(G, g)∧EqO(Gi, Gj)

]− Pr
F,Spro,D

[
EqO(G, g)∧EqO(Gi, Gj)

]∣∣∣≤ negl3(n).

The simulator Spro is unable to output the same string as the output from the
gate G unless it asks it’s oracle the same query as the input to the gate G. Thus,∣∣∣ Pr
H,f,D

[
EqO(G, g)∧EqO(Gi, Gj)

]− Pr
F,Spro,D

[
QueG(g)∧EqO(Gi, Gj)

]∣∣∣≤ negl3(n).

From the assumption that H is img-pro we have∣∣∣ Pr
H,f,D

[
EqO(G, g) ∧ EqO(Gi, Gj)

]
− Pr
F,Sipro,D

[
QueG(g) ∧ EqO(Gi, Gj)

]∣∣∣≤ negl1(n).

181

MICHAL RJAŠKO

Hence, ∣∣∣ Pr
F,Sipro,D

[
QueG(g) ∧ EqO(Gi, Gj)

]
− Pr
F,Spro,D

[
QueG(g) ∧ EqO(Gi, Gj)

]∣∣∣≤ negl1(n) + negl3(n).

However, DO is not true if and only if there exist gates Gi, Gj such that
EqO(Gi, Gj) is true. Thus∣∣∣ Pr

F,Sipro,D
[QueG(g) ∧ ¬DO]

− Pr
F,Spro,D

[QueG(g) ∧ ¬DO]
∣∣∣≤ negl1(n) + negl3(n). (17)

2. Consider the gate G1 in the distinguisher D. Evaluation of the gate G1

does not depend on any other F -gate (since it is the first evaluated F -gate in D).
Thus, since the δ(Sipro) is minimal, if in the gate g′ the simulator Sipro asks the
same query as the input to the gate G1, then so does Spro (except a negligible
probability negl2). Otherwise we could construct a simulator S′

ipro with smaller

δ(S′
ipro). Thus, for all f -gates g

′ in D holds∣∣∣ Pr
F,Sipro,D

[
QueG1

(g′)
]− Pr

F,Spro,D

[
QueG1

(g′)
]∣∣∣≤ negl2(n).

Similarly, consider that the simulator Sipro have already asked queries Mi, where
Mi = Input(Gi), i < j < k. Then the query Mj , which is the same as input to
the gate Gj, can be computed without using the Fireveal oracle. Hence, from the
definition of the Spro we have that for all f -gates g′ and all j = 1, . . . , k holds∣∣∣∣∣ Pr

F,Sipro,D

[
QueGj

(g′)|
j−1∧
i=1

QueGi
(g′)

]

− Pr
F,Spro,D

[
QueGj

(g′)|
j−1∧
i=1

QueGi
(g′)

]∣∣∣∣∣ ≤ negl2(n).

Thus, if AQ is true then the simulator Spro has the same view as the simulator
Sipro, except the negligible probability negl2(n). Therefore,∣∣∣ Pr

F,Sipro,D

[
QueG(g) ∧DO ∧ AQ

]
− Pr
F,Spro,D

[
QueG(g) ∧DO ∧ AQ

]∣∣∣≤ negl2(n). (18)

3. If ¬AQ ∧ DO is true, then there exist a gate Gi of which input was not
queried by both: the simulator Sipro (Spro) and the distinguisher D. Note that in
the random world scenario of the D’s advantage against Spro, the output of such
a gate Gi cannot be distinguished from a random string. Let D2 (Figure 9)

182

ON PSEUDO-RANDOM ORACLES

Figure 9. Construction of the distinguisher D2 used in the proof of The-
orem 2. The distinguisher D2 (right) does the same as the distinguisher D
(left) but the output of the gate Gj is replaced by a fresh random string.

be the same distinguisher as D, but the output of the gate Gi is replaced by
a random string. Hence,

Pr
F,Spro,D

[
QueG(g)|DO ∧ ¬QueGi

(g)
]
= Pr
F,Spro,D2

[
QueG(g)|DO ∧ ¬QueGi

(g)
]
.

(19)

Let D3 (Figure 10) be a distinguisher, which is the same as D but the input to
the gate Gi is replaced by a random string. In the random world scenario of the
D3’s advantage against Spro, the output of such a gate cannot be distinguisher
from a random string too, hence,

Pr
F,Spro,D3

[
QueG(g)|DO ∧ ¬QueGi

(g)
]
= Pr
F,Spro,D2

[
QueG(g)|DO ∧ ¬QueGi

(g)
]
.

(20)
Consider the img-pro case. If the gate Gi was not queried by the simulator Sipro

and there is no gate in the distinguisher D with same output, then the view
of Sipro is the same in the case of D3 as in the case of D. Hence,

Pr
F,Sipro,D3

[
QueG(g)|DO ∧¬QueGi

(g)
]
= Pr

F,Sipro,D

[
QueG(g)|DO ∧¬QueGi

(g)
]
.

(21)

183

MICHAL RJAŠKO

Figure 10. Construction of the distinguisher D3 used in the proof of The-
orem 2. The distinguisher D3 (right) does the same as the distinguisher D
(left) but the input to the gate Gj is replaced by a fresh random string.

From the equations (19), (20) and (21) we have

Pr
F,Sipro,D

[
QueG(g)|DO ∧¬QueGi

(g)
]

= Pr
F,Spro,D

[
QueG(g)|DO ∧¬QueGi

(g)
]
.

If ¬DO is true, then there exist two gates with the same output. By Lemma 1
there exists a negligible function negl4 such that∣∣∣ Pr

H,f,D

[¬DO
]− Pr

F,Spro,D

[¬DO
]∣∣∣≤ negl4(n).

From the assumption that H is img-pro we have:∣∣∣ Pr
H,f,D

[¬DO
]− Pr

F,Sipro,D

[¬DO
]∣∣∣≤ negl1(n).

Hence,

negl1(n) + negl4(n) ≥
∣∣∣ Pr
F,Sipro,D

[¬DO
]− Pr

F,Spro,D

[¬DO
]∣∣∣

=
∣∣∣ Pr
F,Sipro,D

[
DO
]− Pr

F,Spro,D

[
DO
]∣∣∣. (22)

184

ON PSEUDO-RANDOM ORACLES

Let α := PrF,Spro,D[DO], we have∣∣∣ Pr
F,Sipro,D

[
DO
]− Pr

F,Spro,D

[
DO
]∣∣∣

=
∣∣∣ Pr
F,Sipro,D

[
DO ∧ ¬QueGi

(g)
]− Pr

F,Spro,D

[
DO ∧ ¬QueGi

(g)
]

+ Pr
F,Sipro,D

[
QueGi

(g)|DO
] · Pr

F,Sipro,D
[DO]

− Pr
F,Spro,D

[
QueGi

(g)|DO
] · Pr

F,Spro,D
[DO]

∣∣∣
≥
∣∣∣∣ Pr
F,Sipro,D

[
DO ∧ ¬QueGi

(g)
]− Pr

F,Spro,D

[
DO ∧ ¬QueGi

(g)
]

+ α ·
(

Pr
F,Sipro,D

[
QueGi

(g)|DO
]− Pr

F,Spro,D

[
QueGi

(g)|DO
])∣∣∣∣

− negl4(n)− negl1(n).

The probability that Spro asks the same query as the input to the gate Gi is
always smaller or equal to the probability that the same does Sipro, i.e.,

Pr
F,Sipro,D

[
QueGi

(g)|DO
] ≥ Pr

F,Spro,D

[
QueGi

(g)|DO
]
.

Hence, ∣∣∣ Pr
F,Sipro,D

[
DO
]− Pr

F,Spro,D

[
DO
]∣∣∣

≥
∣∣∣ Pr
F,Sipro,D

[
DO ∧ ¬QueGi

(g)
]− Pr

F,Spro,D

[
DO ∧ ¬QueGi

(g)
]∣∣∣

− negl4(n)− negl1(n). (23)

Thus, by combining the inequalities (22) and (23) we have∣∣∣ Pr
F,Sipro,D

[
QueG(g) ∧DO ∧ ¬AQ]− Pr

F,Spro,D

[
QueG(g) ∧DO ∧ ¬AQ]∣∣∣

≤ 2 · (negl1(n) + negl4(n)
)
. (24)

By using inequalities (16), (17), (18) and (24) we have

ε1(n) ≤ 3 · negl1(n) + negl2(n) + negl3(n) + 2 · negl4(n).
This contradicts the assumption that H is not pro. �

In view of Theorems 1 and 2, we can state the following corollary.

��������� 1� Let H be a standard domain extension transform. Then H is
pro if and only if H is img-pro.

185

MICHAL RJAŠKO

4.1. Remarks to the proof

Note that we proved the equivalence between the properties pro and img-pro
under the following two restrictions:

• We considered only standard domain extension transforms. This restriction
avoids problems with partially instantiated domain extension transforms,
which for example replace their final f -gates with some one-way function
based on a standard-model assumption. We note that most of constructions
of domain extension transforms designed so far are standard [2], [3], [5],
[8], [9], [12], [13], [15].

• We used the strong indifferentiability instead of the weak. In the weak indif-
ferentiability, any successful distinguisher must be universal, i.e., it has to
distinguish real world and random world for all simulators. This fact makes
analysis of the distinguisher harder.

Thus, it remains an open problem to analyze relationship between the properties
pro and img-pro in the weak indifferentiability settings.

REFERENCES

[1] BELLARE, M.—CANNETI, R.—KRAWCZYK, H.: Keying hash functions for message

authentication, in: Advances in Cryptology—Crypto ’96 (N. Koblitz, ed.), Santa Barbara,
California, USA, 1996, Lecture Notes in Comput. Sci., Vol. 1109, Springer-Verlag, Berlin,
1996, pp. 1–15.

[2] BELLARE, M.—RISTENPART, T.: Hash functions in the dedicated-key setting: de-
sign choices and MPP transforms, in: Internat. Colloq. on Automata, Languages, and
Progamming, Lecture Notes in Comput. Sci., Vol. 4596, Springer-Verlag, Berlin, 2006,

pp. 399–410.
[3] BELLARE, M.—RISTENPART, T.: Multi-property-preserving hash domain extension

and the EMD transform, in: Advances in Cryptology—ASIACRYPT ’06 (X. Lai et al.,
eds.), Shanghai, China, 2006, Lecture Notes in Comput. Sci., Vol. 4284, Springer-Verlag,
Berlin, 2006, pp. 299–314.

[4] BELLARE, M.—ROGAWAY, P.: Random oracles are practical: a paradigm for designing

efficient protocols, in: 1st ACM Conf. on Comput. and Commun. Security—CCCS ’93
(D. Denning et al., eds.), Fairfax, VA, USA, 1993, ACM, New York, 1993, pp. 62–73.

[5] BIHAM, E.—DUNKELMAN, O.: A framework for iterative hash functions: Haifa, in:
Proc. of 2nd NIST Cryptographic Hash Workshop, Santa Barbara, CA, USA, 2006.

[6] CANETTI, R.—GOLDREICH, O.—HALEVI, S.: The random oracle methodology,

revisited, J. ACM 51 (2004), 557–594.
[7] CORON, J. S.—DODIS, Y.—MALINAUD, C.—PUNIYA, P.: Merkle-Damg̊ard revisited:

How to construct a hash function, in: Advances in Cryptology—CRYPTO ’05, Lecture
Notes in Comput. Sci., Vol. 3621, Springer-Verlag, 2005, pp. 430–448.

[8] DAMGÅRD, I.: A design principle for hash functions, in: Advances in Cryptology–
–CRYPTO ’89 (G. Brassard, ed.), Santa Barbara, CA, USA, 1989, Lecture Notes in

Comput. Sci., Vol. 435, Springer-Verlag, Berlin, 1989, pp. 416–427.

186

ON PSEUDO-RANDOM ORACLES

[9] DODIS, Y.—RISTENPART,T.—SHRIMPTON,T.: Salvaging Merkle-Damg̊ard for prac-

tical applications, in: Advances in Cryptology—EUROCRYPT ’09 (J.-J. Quisquater,
J. Vandewalle, eds.), Houthalen, Belgium, Lecture Notes in Comput. Sci., Vol. 5479,
Springer-Verlag, Berlin, 2009, pp. 371–388.

[10] FLEISCHMANN, E.—GORSKI, M.—LUCKS, S.: Some observations on indifferentiabil-
ity, in: Proc. of the 15th Austral. Conf. on Inform. Security and Privacy—ACISP ’10
(R. Steinfeld, P. Hawkes, eds.), Sydney, Australia, Lecture Notes in Comput. Sci.,

Vol. 6168, Springer-Verlag, Berlin, 2010, pp. 117–134.
[11] GOLDREICH, O.: Computational Complexity—a Conceptual Perspective. Cambridge

University Press, 2008.
[12] LISKOV, M.: Constructing an ideal hash function from weak ideal compression func-

tions, in: Proc. of the 13th Internat. Conf. on Selected Areas in Cryptography—SAC ’06
(E. Biham et al., eds.), Montreal, Canada, 2006, Lecture Notes in Comput. Sci., Vol. 4356,

Springer-Verlag, Berlin, 2007, pp. 358–375.
[13] LUCKS, S.: A failure-friendly design principle for hash functions, in: Proc. of the 11th In-

ternat. Conf. on Theory and Appl. of Cryptology and Inform. Security—ASIACRYPT ’05
(R. Bimal, ed.), Chennai, India,, 2005, Lecture Notes in Comput. Sci., Vol. 3788, Springer-
-Verlag, Berlin, 2005, pp. 474–494.

[14] MAURER, U.—RENNER, R.—HOLENSTEIN, C.: Indifferentiability, impossibility re-
sults on reductions, and applications to the random oracle methodology, in: Theory of
Cryptography, 1st Theory of Cryptography Conf.—TCC ’04 (M. Naor, ed.), Cambridge,
MA, USA, Lecture Notes in Comput. Sci., Vol. 2951, Springer-Verlag, Berlin, 2004,
pp. 21–39.

[15] MERKLE, R.: One way hash functions and DES, in: Advances in Cryptology–

–CRYPTO ’89 (G. Brassard, ed.), Santa Barbara, CA, USA, 1989, Lecture Notes in
Comput. Sci., Vol. 435, Springer-Verlag, Berlin, 1989, pp. 428–446.

[16] RISTENPART, T.—SHACHAM, H.—SHRIMPTON, T.: Careful with composition:
Limitations of the indifferentiability framework, in: Advances in Cryptology—EURO-
CRYPT ’11 (K. G. Paterson, ed.) Tallinn, Estonia, 2011, Lecture Notes in Comput. Sci.,
Vol. 6632, Springer-Verlag, Berlin, 2011, pp. 487–506.

Received October 18, 2012 Department of Computer Science
Faculty of Mathematics, Physics and Informatics
Comenius University
Mlynská dolina
SK–842-48 Bratislava

SLOVAKIA

E-mail : rjasko@dcs.fmph.uniba.sk

187

