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EXPERIMENTS WITH THE PLAINTEXT SPACE

IN GENTRY’S SOMEWHAT HOMOMORPHIC

SCHEME

Michal Mikuš

ABSTRACT. In this paper we propose an improvement of the implementa-
tion of the original Gentry-Halevi somewhat homomorphic scheme. We suggest

to choose a bigger plaintext space, by changing the underlying ideal from I = (2)
to I = (p) for some bigger prime p.

Our analysis shows that bigger plaintext space will improve the homomor-
phic computation of the somewhat homomorphic scheme while it only slightly
increases the complexity of the key generation procedure. The encryption and
decryption functions have the same complexity. We provide also some experi-

mental computations that support the analysis.

1. Introduction

The area of homomorphic cryptosystems has been extensively studied in the
recent years. The beginnings are due to [16] in 1978, followed by [2]. Other
important papers include [3], [4], [5], [15], but the main reason behind the in-
creased interest is the work of C r a i g G e n t r y from 2009 [8], [9] that showed
a promising direction of research.

Further publications mostly follow the Gentry’s framework, firstly somewhat
homomorphic scheme (SHS) by [17], then a simplified (integer) version of cryp-
tosystem by [7]. Both schemes were not effective enough to permit bootstrap-
ping and thus could not be turned into a fully homomorphic scheme (FHS).
The latest results [6], [11] and [12] are fully homomorphic schemes that can
potentially perform unlimited number of homomorphic operations, but their
complexities are still too big for practical purposes.
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Our contribution. The main idea of this paper is to adjust the Gentry-Halevi
scheme [11] so that it has a bigger plaintext space and show a simple way how
to use it for practical computations. The adjustment is done, however, only
on the somewhat homomorphic scheme, and there is probably no way how to ex-
tend this scheme to a fully homomorphic one.

2. Gentry-Halevi somewhat homomorphic scheme

The SHS that was proposed by Gentry is based on lattices, it was inspired
by works of G o l d r e i c h et al. [10], A j t a i, D w o r k [1], M i c c i a n c i o and
L y u b a s h e v s k y [13], [14].

The basic somewhat homomorphic scheme ξ is defined by four polynomial
time algorithms Keygen(), Encrypt(), Decrypt() and Eval(). It is based on the
ring of integer polynomials R = Z[x]/

(
f(x)

)
and two ideals I, J ⊆ R, that can

be also viewed as lattices. The ideal I defines the plaintext space and was chosen
I = (2) in [11], while two different (“bad” and “good”) bases of the J ideal form
public and private key of the scheme.

The idea of the SHS is to encode the plaintext as a small error vector and
add it to some random point of the lattice. The decryption algorithm needs
to solve the closest vector problem and that is possible only with some “good”
basis, that has nearly orthogonal vectors. Solving the closest vector problem for
an arbitrary basis is NP-hard problem.

The paper [11] contains a very detailed algorithms for effective key generation,
encryption and decryption procedures.

2.1. Adjustment to the scheme

Our proposal is to enlarge the plaintext space of the scheme. As it was stated
in [11] the ideal I only has to be relatively prime to J . As the source codes
used to generate public challenges to this cryptosystem were optimized to bit-
operations (i.e., the setting I = (2)), we changed the cryptosystem so that it
would work with arbitrary I = (p) for some prime p, so that the plaintext space
is Zp at the cost of decreased performance.

This change can be easily implemented into the original scheme, as the oper-
ations with the plaintext space affect only a few steps in the original algorithms.
The modular divisions are simply extended to p and the only non-trivial step
is the fourth step in the key generation algorithm. Here, the original condi-
tion was to find an odd coefficient wi0 of some secret-key polynomial w(x).
Further examination of the decryption algorithm leads to a more precise formu-
lation wi0 ≡ 1 mod 2, so the condition in key generation algorithm was extended
to wi0 ≡ 1 mod p.
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In the following we describe the modified algorithms of the scheme. The pa-
rameters (p,N, t) are inputs to the scheme and represent plaintext space, lattice
dimension and the bitsize of the coefficients of vectors/polynomials. The real
number q controls the amount of “noise” added to ciphertexts during the en-
cryption and is usually chosen as q = 1 − 20/N . Variables m and c represent
some plaintext and ciphertext, respectively.

For any two integers a, d by [a]d we denote modular reduction into interval
〈−d/2, d/2).

Keygen(p,N, t):

(1) set f(x) = xN + 1,

(2) choose a random polynomial v(x) of degree (N−1), with a t-bit coefficients,
s.t. v(x) and f(x) have a single root r in common,

(3) compute w(x) s.t. w(x)v(x)≡dmod f(x), where d=resultant
(
f(x), v(x)

)
,

(4) output PK = (p,N, t, d, r) and SK = (wi0), where wi0 ≡ 1 mod p is some
coefficient of w(x).

Encrypt(PK, p,m, q):

(1) choose random u(x) ∈ Z[x] of degree (N − 1), where ui = ±1 with proba-
bility (1− q) and ui = 0 with probability q,

(2) set c(x) = m+ p · u(x),
(3) output c =

[
c(r)

]
d
.

Decrypt(SK, p, c):

(1) m = [c · wi0 ]d,

(2) output m mod p.

The Eval(PK, ◦, c1, c2) algorithm simply computes [c1 ◦ c2]d, where “◦” is
either addition or multiplication. We use it without modification.

2.2. Efficiency

The key generation. It can be seen from the codes above that only the last
step—computation of wi0—is affected. Since we now search for coefficient of w(x)
that is equal to 1 modulo p, the average number of tries has grown from 2 to p.
As the complexity of the procedure wasO(N) multiplications, under the assump-
tion that p = O(N) the asymptotic complexity will remain the same. Indeed the
assumption p = O(N) is necessary, because the average number of coefficients
of w(x) with a specific remainder modulo p is N/p, so we need p ≤ N in fact.

Encryption. Only the third step of the Encrypt procedure is changed. In the
original scheme the multiply-by-2 operation was implemented by the right shift
of bits, in the suggested modification it is transformed into a regular multipli-
cation. The costly operation in the procedure, however, is the evaluation of the
polynomial u(r), hence, the overall complexity remains the same.
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Figure 1. The supported number of multiplications of SHS for N = 128,
p = 2, 3, . . . , 13, 47, 101, 103 and various parameters t.

Decryption. The complexity impact is similar to encryption. The modulo-2
operation in the original scheme has been implemented with logical AND, now
it becomes a regular division. Since the scheme comprises also another division
and multiplication, the asymptotic complexity of decryption remains the same1.

2.3. Experimental results

We performed several experiments that show the homomorphic properties
of the scheme with some small primes p = 2, 3, . . . , 13 and 47, 101, 103. These
experiments are just for illustration of the properties of the SHS, so the param-
eter settings were rather small. All experiments were performed in dimension
N = 128 and N = 256. As both results were nearly the same, we display the re-
sults for N = 128 only.

The first group of experiments focused on multiplications alone. Sufficient
number of PT-CT pairs were created and ciphertext monomials of increasing
degree were computed. The result was decrypted and compared with the cor-
responding product on plaintexts. The process was interrupted on the first de-
cryption error and the previous degree of monomial was denoted as the largest
supported number of multiplications. The whole experiment was repeated 30
times and the minimum of the returned values is shown on Fig. 1.

1This change will have greater impact on the decryption function of the FHS. We see no

straightforward way how to construct the squashed decryption function yet.

150



EXPERIMENTS WITH THE PLAINTEXT SPACE IN GENTRY’S SHS

Figure 2. The largest supported degree of symmetric polynomials for
N = 128, p = 2, 3, . . . , 13, 47, 101, 103, m = 80 and various parameters t.

The second group of experiments computed the largest supported degree
of symmetric polynomials of 80 variables. The symmetric polynomials of 80 ci-
phertexts were computed for every degree up to 80 and the results were decrypted
and compared to corresponding symmetric polynomials evaluated on plaintexts.
Denote derr the minimal degree that produced decryption error. The largest
supported degree is then lsd = derr − 1. This experiment was repeated 10 times
for every parameter setting (p,N, t) and the minimal value of lsd was returned.
Results are shown on Fig. 2.

Conclusions. The obtained results indicate that the scheme behaves similarly
with p higher than 2. The dependency of lsd is still linear in t, so the supported
degree is only x (x ≈ 2) times lower with p = 13 than with the original setting
of p = 2.

Specifically the results imply that if we need to compute homomorphically
with numbers up to 8, it is better to set p = 11 and use the modified scheme
than to set p = 2 and compute with 3-bit numbers encrypted as binary vectors.
The reason behind this fact is that ω(m2) bit-multiplications are needed for
a single multiplication of two m-bit binary numbers and a polynomial of degree
2m needs to be evaluated during the computation.

2.4. Somewhat practical, somewhat homomorphic scheme

The results of previous section show that even the modified somewhat ho-
momorphic scheme can correctly evaluate a reasonable number of operations.
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Furthermore, the homomorphic properties are easily scalable by the param-
eter t. In this section we show how to construct a more practical somewhat
homomorphic scheme by enlarging its plaintext space.

We use the Chinese remainder theorem (CRT) to further enlarge the plaintext
space of the scheme. The idea is to set a bound b for the plaintexts and create
k independent schemes ξ1(p1), . . . , ξk(pk) such that the product of the primes
p1, . . . , pk is larger than b. Then we “split” every message m ∈ Zb into the
corresponding moduli m mod pi and encrypt each separately. After decryption
we use CRT to compute the original message back. It is clear that the scheme is
correct if each of the underlying schemes ξi is correct, so the supported number
of homomorphic operations is the minimum of the ξi’s.

The detailed description of our proposed scheme:

Input parameters:

• b – plaintext bound,

• N, t, q – parameters of the SHS.

Algorithms:

• KeyGen(λ):

(1) choose integers k and p1, . . . , pk such that
∏i=k

i=1 pi ≥ b,

(2) generate k somewhat homomorphic schemes ξ1(p1), . . . , ξk(pk),

(3) public key (resp. private key) is k-tuple of public (resp. private) keys
of schemes ξi,

(4) plaintext space P = Zb and ciphertext space C = (Zd)
k.

• Encrypt(pk,m, q):

(1) for all i = 1, . . . , k compute first mi = m mod pi and then
ci = Encryptξi(pk,mi, q),

(2) output the vector of ciphertexts c = (c1, . . . , ck).

• Decrypt(sk, c):

(1) for all i = 1, . . . , k compute mi = Decryptξi(sk,ci),

(2) from mi compute via Chinese remainder theorem unique m such that
m ≡ mi mod pi for every i.

• Eval(pk, ◦, c1, c2): output vector c3 is computed componentwise for every
i = 1, . . . , k as Evalξi(c1,i, c2,i).

It should be noted that when we need to compute with numbers up to a fixed b,
we obtain the best homomorphic properties if we choose successive primes from
2, 3, . . . , pk, because in this case the pk is minimal.
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3. Conclusions

In this paper we followed the Gentry-Halevi implementation of the somewhat
homomorphic scheme and examined the homomorphic properties of modified
scheme with plaintext space Zp for some prime p.

As expected, for increasing prime p the supported number of operations de-
creases. The graphs 1 and 2 show that the number of operations is still reason-
able high, so we proposed a somewhat homomorphic scheme that can perform
homomorphic operations for arbitrary large plaintext space.

It is easy to see that the proposed scheme is more efficient than existing fully
homomorphic schemes, but its application scope is restricted by the limitations
on the supported number of operations.

REFERENCES

[1] AJTAI, M.—DWORK, C.: A public key cryptosystems with worst-case/average-case equi-
valence, in: Proc. of the 29th Annual ACM Symp. on Theory of Comput.—STOC ’97
(F. T. Leighton and P. Shor, eds.), El Paso, TX, USA, 1997, ACM, New York, NY,
pp. 284–293.

[2] AHITUV, N.—LAPID, Y.—NEUMANN, S.: Processing encrypted data, Commun. ACM
30 (1987), 770–780.

[3] ARMKNECHT, F.—SADEGHI, A.: A new approach for algebraically homomorphic

encryption, Cryptology ePrint Archive, Report 2008/422, 2008,
http://eprint.iacr.org/2008/422.

[4] BAO, F.: Cryptanalysis of a provable secure additive and multiplicative privacy homo-

morphism, in: Internat. Workshop on Coding and Cryptography—WCC ’03, Versailles,
France, 2003, pp. 43–49.

[5] BONEH, D.—GOH, J.—NISSIM, K.: Evaluating 2-DNF formulas on ciphertexts, in: The-

ory of Cryptography, The 2nd Theory of Cryptography Conf.—TCC ’05 (J. Kilian, ed.),
Cambridge, MA, USA, 2005, Lecture Notes in Comput. Sci., Vol. 3378, Springer, Berlin,
2005, pp. 325–342.

[6] CHUNSHENG, G.: New fully homomorphic encryption over the integers, Cryptology
ePrint Archive, Report 2011/118, 2011, http://eprint.iacr.org/2011/118.

[7] VAN DIJK, M.—GENTRY, C.—HALEVI, S.—VAIKUNTANATHAN, V.: Fully homo-
morphic encryption over the integers, in: Advances in Cryptology—EUROCRYPT ’10

(H. Gilbert, ed.), Lecture Notes in Comput. Sci., Vol. 6110, Springer, Berlin, 2010,
pp. 24–43.

[8] GENTRY, C.: Fully homomorphic encryption using ideal lattices, in: Proc. of the 41st

Annual ACM Symposium on Theory of Computing—STOC ’09, Bethesda, USA, 2009,
ACM, New York, 2009, pp. 169–178.

[9] GENTRY, C.: A Fully Homomorphic Encryption Scheme. Dissertation Thesis, Standford

University, Standford, 2009, http://crypto.stanford.edu/craig/.

153



MICHAL MIKUŠ
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