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NOTES ON A PREIMAGE-RESISTANT

HASH FUNCTION

János Folláth

ABSTRACT. Bérczes, Folláth and Pethő constructed a preimage-resistant hash

function. In this paper to investigate the avalanche criterion of this function, we
will generalize the results of Coulter and Mathews regarding planar polynomi-
als. At the same time a necessary and sufficient condition for being planar is
given for Dembowski-Ostrom monomials. In the even characteristic case both
a weaker asymptotic statement and practical test results are presented regarding
the avalanche criterion.

1. Introduction

One of the most basic notions for cryptographic applications is the hash func-
tion. These functions are important building blocks for most of the protocols and
play a fundamental role in verifying passwords and creating digital signatures.
Their use is important for constructing cryptographically secure pseudo-random-
-number generators. There is an extensive literature on hash functions and their
applications. We refer here only to two fundamental books on cryptography [19]
and [22].

An important requirement against a cryptographic hash function is the pre-
image-resistance. A preimage-resistant or one-way function is a function which
is “easy” to compute but “hard” to invert. Complexity theoretical point of view
this means, that a preimage-resistant function can be computed in polynomial
time, but all of its inverses only in exponential time. If a function belongs to theP
(polynomial) class, then its inverses belong to the NP class and there can exist
a preimage-resistant function in the above sense only if P 6= NP (see, e.g., [20]).
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Despite the lack of the safe theoretical background, there appeared in the
literature several suggestions for the construction of one-way functions. The pa-
pers [6], [14] [18] and [23], show how to construct a one-way function. O. G o l d -
r e i c h, L. L e v i n and N. N i s a n [13] make a one-to-one one-way function
based on the hardness of inverting RSA and the discrete log problem.

J. B u c hm a n n and S. P a u l u s [5] use results from algebraic number
theory to construct a one-way function. It is based on the hardness of the discrete
logarithm problem with respect to the ideal class group of algebraic number
fields.

B é r c z e s, K ö d m ö n and P e t h ő [4] constructed a family of preimage-
-resistant functions based on norm functions, well studied in the theory of Dio-
phantine equations. B é r c z e s and J á r á s i [3] extended this result to a family
based on index forms. In both cases the functions were reduced modulo m,
where m is the product of two large primes. For security reason m should have
at least 1024 binary digits. The first construction was implemented by the com-
pany Crypto Ltd. under the name Codefish. J.- P. A um a s s o n [1] pointed out
some vulnerability of the implemented algorithm.

Later in [2] we defined a family of polynomials F that is large, and under
mild and easily decidable conditions the members of this family are nearly per-
mutation polynomials.

Theorem 1 ([2, Theorem 2.1.]). Let f(X) ∈ Fq[X1, . . . , Xm] be a polynomial

such that
f(X) := b(X1, . . . , Xm) + a(X1, . . . , Xm)

with homogeneous polynomials a(X), b(X)satisfying k=deg a(X)<deg b(X)=n,
degXi

b(X) = n for 1 ≤ i ≤ m. Further, suppose that there exist indices 1 ≤ j1
< j2 ≤ n such that the binary form

b0(Xj1 , Xj2) := b(0, . . . , 0, Xj1 , 0, . . . , 0, Xj2 , 0, . . . , 0) (1)

has no multiple zero.

Let N(f, γ, q) denote the number of solutions of the equation

f(X1, . . . , Xm) = γ

in X1, . . . , Xm∈ Fq. Then
∣

∣N(f, γ, q)− qm−1
∣

∣ ≤ (n− 1)(n− 2)qm−3/2+ 5n13/3qm−2. (2)

Moreover, if q > 15n13/3, then

|N(f, γ, q)− qm−1| ≤ (n− 1)(n− 2)qm−3/2 + (5n2 + n+ 1)qm−2. (3)

For f ∈ F the preimage-resistance means that for any γ ∈ Fq it is infeasible

to find X ∈ F
m
q such that f(X) = γ. Our result implies that if q is large enough,

then the solution of this equation by chance is computationally infeasible.
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(In [2] there are also some informal arguments, that the direct solving algorithms
in this magnitude are also computationally infeasible.)

In [2] we also defined a subfamily F1 such that their members are easy to
evaluate.

Proposition 1 ( [2, Proposition 5.1.]). Let f(X) = b(X) + a(X) such that

b(X) = β1X
r
1 + · · ·+ βmXr

m, a(X) = α1X
s
1 + · · ·+ αmXs

m and α1, . . . , αm 6= 0,
β1, . . . , βm 6= 0. If 0 < s < r < q and r is odd if q = 2f, then f(X) satisfies all

assumptions of Theorem 1.

The main subject of this paper is the avalanche criterion of the polynomi-
als of Proposition 1, which is in close connection with the planar polynomials.
In Section 2 we will overview the definitions of the avalanche criterion and planar
polynomials and present a result regarding their connection.

In Section 3, to investigate the avalanche criterion first we will generalize the
results of C o u l t e r and M a t h e w s [9, Theorems 3.3, 4.1 and 4.2] regarding
planar polynomials over a finite field (Theorems 6 and 8). An important part
of Theorem 8 is, that the type of polynomials presented in [9, Theorems 4.1
and 4.2] (and more generally in Theorem 8 itself) are planar only over fields
of characteristic 3. Thus one can reformulate the question first stated in [10]:
“Is there any planar polynomial over a field of characteristic greater than 3, that
is not Dembowski-Ostrom polynomial?”

With the help of these results large families of polynomials of the form pre-
scribed in Proposition 1 is given, which members all satisfy the strict avalanche
criterion of order less than m.

In Section 4 a construction satisfying Proposition 1 is given over fields of even
characteristic, for which a weaker, asymptotic form of the avalanche criterion
holds.

In Section 5 some practical test results are presented for polynomials over
fields of even characteristic also satisfying Proposition 1, but for which the result
of Section 4 does not hold.

2. Avalanche criterion

An important desirable property for hash functions is the avalanche effect.
Loosely speaking it means, if we change the input slightly the output changes
significantly. The notion of the strict avalanche criterion was introduced by
W e b s t e r and T a v a r e s [24] for Boolean functions. F o r r è [11] extended this
concept by defining multiple orders of the strict avalanche criterion.
Recently L i and C u s i c k [16] extended and studied these concepts for func-
tions over prime fields of odd characteristic.
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It is natural to formulate the strict avalanche criterion for an arbitrary finite
field Fq with q = pk and p prime

f(X) : Fn
q → Fq fulfills the strict avalanche criterion (SAC) if the probability

P
(

f(X +A)− f(X) = γ
)

= 1
q for any fixed γ ∈ Fq and A ∈ F

n
q with wt(A) = 1,

where wt(A) denotes the number of nonzero components of A (i.e., the Hamming
weight of A), and X is a random variable distributed uniformly over Fn

q .

f(X) : Fn
q → Fq is said to fulfill the strict avalanche criterion of order m

(SAC(m)) if any function obtained from f(X) by keeping m of its input compo-
nents constant fulfills the SAC as well (this must be true for any choice of the
position, and any values of the m constant components).

To study the avalanche effect of the hash function defined in Proposition 1
we will use the theory of planar polynomials.

A polynomial f ∈ Fq[X] is called a permutation polynomial of Fq if the asso-
ciated polynomial function f : c → f(c) from Fq into Fq is a permutation of Fq.

A polynomial f ∈ Fq[X] is called a planar polynomial over Fq if the difference

operator △f,a = f(X + a)− f(X) is a permutation polynomial over Fq for each
a ∈ F

∗
q.

Any polynomial f ∈ Fq[X] may be reduced mod Xq−X to yield a polynomial
of degree less than q which induces on Fq the same function as f. It is called the
reduced form of f.

We can also extend the notion of permutation polynomial to multivariate
polynomials.

A polynomial f ∈ Fq[X1, . . . , Xn] is called permutation polynomial in n inde-

terminate over Fq if the equation f(X1, . . . , Xn) = α has qn−1 solutions in F
n
q

for each α ∈ Fq.

Theorem 2 ([17, Theorem 7.42]). Suppose f ∈ Fq[X1, . . . , Xn] is of the form

f(X1, . . . , Xn) = g(X1, . . . , Xm) + h(Xm+1, . . . , Xn), 1 ≤ m < n.

If at least one of g and h is a permutation polynomial over Fq, then f is a per-

mutation polynomial over Fq. If q is prime, then the converse holds as well.

The following statement follows from the corresponding definitions and The-
orem 2 by induction.

Theorem 3. If f(X) = f1(X1) + · · ·+ fn(Xn), such that fi ∈ Fq[X] is planar

over Fq for every 0 < i ≤ n, then f(X) satisfies the strict avalanche criterion of

order m for every m < n.

It is natural to try to choose the exponents and the coefficients in Proposi-
tion 1 so, that the binomials

βiX
r
i + αiX

s
i (4)

are planar.
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In the following sections these binomials will be investigated and good pa-
rameter choices will be proposed.

Obviously if s = pl, then the binomial (4) will be a sum of a monomial and
a linearized polynomial. Since the constant terms disappear in the difference
operator and the linear members will appear as a constant, in this case it is
enough to choose the parameters of the βiX

r
i monomial such that it will be

planar. Only a few necessary conditions are known in the general case, even for
monomials (for a survey of the stronger results see [7]).

3. Odd characteristic case

In [12] [15] and [21] the authors independently showed, that any planar poly-
nomial over a prime field must reduce to a quadratic. Consequently if we work
over a prime field and set the parameters of the monomial βiX

r
i so that it is

planar, it will reduce to a quadratic. Unfortunately this will be weak in the sense,
that the direct inverting algorithms will become efficient in the case of such a low
degree polynomials.

In [10] D em b o w s k i and O s t r o m described a class of polynomials which
sometimes give rise to planar functions. As the authors in [9] I will refer to these
polynomials as Dembowski-Ostrom polynomials.

Suppose f ∈ Fq[X]. Then f is a Dembowski-Ostrom polynomial if the reduced
form of f has the following shape

f(X) =

k−1
∑

i,j=0

aijX
pi+pj

.

To give a necessary and sufficient condition for being planar in the case
of Dembowski-Ostrom monomials we will need the following results.

Proposition 2 ([9, Proposition 2.4]). The polynomial Xn is planar over Fq if

and only if (X + 1)n−Xn is a permutation polynomial over Fq. Further, if X
n

is a planar polynomial over Fq, then n ≡ 2 (mod p− 1) and gcd(n, q − 1) = 2.

Theorem 4 ([17, Theorem 7.8]).

(1) Every linear polynomial over Fq is a permutation polynomial of Fq.

(2) The monomial Xn is a permutation polynomial of Fq if and only if

gcd(n, q − 1) = 1.

Theorem 5 ([17, Theorem 7.9]). Let Fq be of characteristic p. Then the p-poly-

nomial

L(X) =

m
∑

i=0

aiX
pi

∈ Fq[X]
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is a permutation polynomial of Fq if and only if its only root in Fq is 0.

Now we can state the following

Theorem 6. Let f ∈ Fq[X], f(X) = Xpi+pj

with i < j and q = pk, p an odd

prime. Then f is planar over Fq if and only if k/gcd(i− j, k) is odd.

P r o o f. Due to Proposition 2 we only need to determine when the polynomial

(X +1)p
i+pj

−Xpi+pj

= (Xpi−j

+X +1)p
j

is a permutation polynomial over Fq.
Permutation polynomials form a group under the operation of composition and
subsequent reduction modulo Xq − X and since according to Theorem 4 both

Xpj

and X+ 1 is a permutation polynomial over Fq, (X
pi−j

+X+1)p
j

will be

a permutation polynomial over Fq if and only if Xpi−j

+X is one. Now according

to Theorem 5 Xpi−j

+X will be a permutation polynomial over Fq if and only if

it has no other roots in Fq than 0, that is Xpi−j−1 6= −1 for all x ∈ Fq. Let α be

a primitive element of Fq. Then αt(pi−j−1) 6= α
q−1

2 for any integer t. So Xpi+pj

is planar over Fq if and only if the congruence

t(pi−j − 1) ≡ (pk− 1)/2 (mod pk− 1)

has no integer solution t. Now iu ≡ v (mod n) has an integer solution t if and
only if (u, n)|v. So we have a solution t if and only if

gcd(pi−j − 1, pk − 1) 6 |(pk− 1)/2

or equivalently pgcd(i−j,k)− 1 6 |(pk− 1)/2. Let d = gcd(i − j, k). Then there is
no integer solution t if and only if the 2-adic order of pd− 1 is greater than the
2-adic order of pk− 1. But

pk− 1 = (pd− 1)
(

1 + pd + p2d + · · ·+ p((k/d)−1)d
)

.

Here the second factor on the right side has (k/d) members each of which are
odd, so this condition is equivalent to k/gcd(i− j, k) being odd. �

This result is a generalization in [9, Theorem 3.3] where the authors gave

a similar condition for monomials of the form f(X) = Xpi+1.

Proposition 3. Let f(X) = b(X)+a(X) such that b(X) = β1X
r
1+· · ·+βmXr

m,

a(X) = α1X
s
1 + · · · + αmXs

m and α1, . . . , αm 6= 0, β1, . . . , βm 6= 0, αi, βi ∈ Fq,

where q = pk, p an odd prime and 0 < i ≤ m.

If r = pi+pj such that k/gcd(i−j, k) is odd and s = pl, then f(X) will satisfy
the strict avalanche criterion of every order n < m.

P r o o f. It is an immediate consequence of Theorem 3 and Theorem 6. �
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In [21] it was conjectured, that up to addition of an additive polynomial,
every planar polynomial on Fq is a Dembowski-Ostrom polynomial. Later in [9]
two counterexamples to this conjecture were given. Both of these examples are
monomials over fields of characteristic 3. In the following we will generalize these
results regarding the characteristic 3 case, and prove that these type of mono-
mials are not planar in fields of higher characteristic. Thus one can restate the
conjecture: Up to addition of an additive polynomial, every planar polynomial
on Fpk , k > 3 is a Dembowski-Ostrom polynomial.

To prove the next result we will need the notion of the Dickson polynomials.
This is a well studied class of polynomials, and over the complex numbers they
are in correspondence with the Chebyshev polynomials of the first kind. Regard-
ing the following facts about the Dickson polynomials we refer to the book [17].
The explicit form of the Dickson polynomials over a field F is the following

gk(x, a) =

⌊k/2⌋
∑

j=0

k

k − j

(

k − j

j

)

(−a)jxk−2j .

In the field of the rational functions over F in the indeterminate y we have the
identity

gk

(

y +
a

y
, a

)

= yk+
ak

yk
.

Theorem 7 ([17, Theorem 7.16]). The Dickson polynomial gk(x, a), a ∈ Fq∗ ,

q = pe, p prime, is a permutation polynomial of Fq if and only if gcd(k, q2−1) = 1.

Theorem 8. Let q = pe and α, β ∈ N. The polynomial X(pα+pβ)/2 is planar

over Fq if and only if p = 3 and (α− β, 2e) = 1.

P r o o f. Firstly we will notice, that the polynomial Xn is planar over Fq if and
only if △f,4(X) = (X + 4)n −Xn is a permutation polynomial over Fq. Indeed

(X + a)n −Xn = ancn
(

(

X/(ac) + 4)n − (X/(ac)
)n
)

,

where 4c ≡ 1 (mod p) (there will always be such a c, because (4, p)|1).

Suppose f(X) = Xn and define h(X) to be △f,4(X−2) = (X+2)n−(X−2)n.
Since permutation polynomials form a group under the operation of composi-
tion and subsequent reduction modulo Xq−X, △f,4(X) will be a permutation
polynomial of Fq if and only if h(X) is one. Then f(X) is planar over Fq if and
only if h(X) is a permutation polynomial over Fq. Let η ∈ Fq2 the root of the
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polynomial Z2 − xZ + 1. Then x = η + η−1 and

h(x) =
(

η + η−1 + 2
)n

−
(

η + η−1 − 2
)n

=
(η2 + 1 + 2η)n − (η2 + 1− 2η)n

ηn

=
(η + 1)2n − (η − 1)2n

ηn
.

If n = (pα + pβ)/2, then

h(x) =
(η + 1)p

α+pβ

− (η − 1)p
α+pβ

η(pα+pβ)/2

=
2ηp

α

+ 2ηp
β

η(pα+pβ)/2

= 2(η(p
α−pβ)/2 + η−(pα−pβ)/2)

= 2g(pα−pβ)/2(x, 1).

Thus Xn is planar if and only if, the Dickson polynomial g(pα−pβ)/2(X, 1) is
a permutation polynomial over Fq. According to Theorem 7 it will occur if and
only if gcd

(

(pα−pβ)/2, q2−1
)

= 1. Since q2−1 ≡ −1 (mod p) this is equivalent

to gcd
(

(pα−β − 1)/2, q2 − 1
)

. Since q2 ≡ 1 (mod 4), this holds if and only if

gcd
(

(pα−β − 1), p2e − 1
)

= pgcd(α−β,2e) − 1 = 2, which holds if and only if p = 3
and (α− β, 2e) = 1. �

Proposition 4. Let f(X) = b(X)+a(X) such that b(X) = β1X
r
1+· · ·+βmXr

m,

a(X) = α1X
s
1 + · · · + αmXs

m and α1, . . . , αm 6= 0, β1, . . . , βm 6= 0, αi, βi ∈ Fq

where q = 3k and 0 < i ≤ m.

Let r = (3a+3b)/2, where a, b ∈ N, gcd(a− b, 2k) = 1 and s = pl. Then f(X)
will satisfy the strict avalanche criterion of every order n < m.

P r o o f. It is an immediate consequence of Theorem 3 and Theorem 8. �

4. Even characteristic case

From the implementation point of view the most advantageous options are
big prime fields and fields of characteristic two. As stated in the previous section
prime fields are not the best choice because of the small degree of the planar
polynomials.

It is easy to see that there are no planar polynomials over fields of even
characteristic. Consequently the binomial

βiX
r
i + αiX

s
i (5)
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also cannot be planar over fields of even characteristic. In this section a weaker
asymptotic statement will be proven.

We will need the following result.

Theorem 9 ( [8, Theorem 3]). Let q = pk, n be a non-negative integer and

f ∈ Fq[X] be the trinomial f(X) = Xpn

−aX− b where a ∈ F
∗
q. Set d = gcd(n, k)

and m = k/d. Let Trd be the trace function from Fq onto Fqd . For 0 ≤ i ≤ m− 1

define ti =
∑m−2

j=i pn(j + 1). Put α0 = a and β0 = b. If m > 1, then for 1 ≤ r ≤

m− 1, set αr = a1+pn+···+pnr

and

βr =

r
∑

i=0

asibp
ni

,

where si =
∑r−1

j=i p
n(j+1) for 0 ≤ i ≤ r − 1 and sr = 0. The trinomial f has

no roots in Fq if and only if αm−1 = 1 and βm−1 6= 0. When αm−1 6= 1 then f
has a unique root in x ∈ Fq, namely, x = βm−1/(1−αm−1). Otherwise f has pd

roots in Fq given by x + δτ where δ ∈ Fpd , τ is a fixed element of Fq satisfying

τp
n−1 = a and, for any c ∈ F

∗
q satisfying Trd(c) ∈ Fpd ,

x =
1

Trd(c)

m−1
∑

i=0





i
∑

j=0

cp
nj



atibp
ni

.

Theorem 10. Let us define f ∈ Fq[x1, . . . , xm] as

f(x1, . . . , xm) =

m
∑

i=1

αix
n
i +

m
∑

i=1

βixi,

where q = 2k and n = 2l+1 such that gcd(l, k) = 1. Let Tr be the absolute trace

function of Fq, and δ, γ ∈ Fq.

f(x1, . . . , xm)− f(x1, . . . , xj + δ, . . . , xm) = γ

holds if and only if Tr
(

(βjδ + γ)α−1
j δ−n + 1

)

= 0, and only for exactly two

distinct values of xj.

P r o o f. By the definition

f(x1, . . . , xm) =

m
∑

i=1

αix
n
i +

m
∑

i=1

βixi,

and since only the jth term changes

f(x1, . . . , xj + δ, . . . , xm) =

m
∑

i=1

i6=j

αix
n
i + (xj + δ)nαj +

m
∑

i=1

i6=j

βixi + (xj + δ)βj ,
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we conclude

f(x1, . . . , xm)− f(x1, . . . , xj + δ, . . . , xm) = αj

(

xn
j + (xj + δ)n

)

+ βjδ.

Consequently, f(x1, . . . , xm)− f(x1, . . . , xj + δ, . . . , xm) = γ holds exactly if
the value of xj is a zero of the following polynomial

p(x) = xn + (x+ δ)n + γ′,

where γ′ = (βjδ + γ)α−1
j . Since p(x) = δn

(

yn + (y + 1)n + γ′′
)

, where y = xα−1
j

and γ′′ = γ′δ−n the zeros of

p′(y) = yn + (y + 1)n + γ′′

has to be determined. Since n = 2l + 1,

p′(y) = yn + (y + 1)(yn−1 + 1) + γ′′ = y2
l

+ y + (γ′′ + 1).

According to Theorem 9 if gcd(l, k) = 1, then p′(y) either has 2 or 0 roots
depending on γ′′. Since gcd(l, k) = 1, a = 1 and b = γ′′ + 1,

βk−1 =

k−1
∑

i=0

(γ′′ + 1)2
li

.

The integers 1, . . . , k − 1 constitute a complete residue system modulo k.
gcd(l, k) = 1 consequently l, . . . , (k− 1)l is also a complete residue system mod-

ulo k. Since δ2
k

= δ holds for every δ ∈ Fq

βk−1 =

k−1
∑

i=0

(γ′′ + 1)2
i

= Tr
(

(βjδ + γ)α−1
j δ−n + 1

)

.

�

Although the hash function in question does not satisfy the strict avalanche
criterion, a weaker asymptotic statement holds.

Theorem 11. Let us define f ∈ Fq[x1, . . . , xm] as

f(x1, . . . , xm) =

m
∑

i=1

αix
n
i +

m
∑

i=1

βixi,

where q = 2k and n = 2l + 1 such that (l, k) = 1. Then

(1− qε)m−1

(

1

q
− ε

)

≤ P
(

f(x1, . . . , xm)− f(x1 + δ1, . . . , xm + δm) = γ
)

≤ (1 + qε)m−1

(

1

q
+ ε

)

,

where 0 ≤ ε ≤ nq−
3
2 .
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P r o o f. Let Dγi
be the event that

f(x1, . . . , xm)− f(x1, . . . , xi + δi, . . . , xm) = γi.

According to Theorem 10

P (Dγi
|δi ∈ Aγi

) = 0,

P (Dγi
|δi ∈ Bγi

) =
1

2k−1
,

where

Aγi
=

{

δ|Tr
(

(βiδ + γ)α−1
i δ−n + 1

)

= 1
}

,

Bγi
=

{

δ|Tr
(

(βiδ + γ)α−1
i δ−n + 1

)

= 0
}

.

Let g(x) = (βjx+γ)α−1
j x−n+1 and h(x) = α−

j 1βjx
n+1+γα−1

i xn+1. Let χ be

a nontrivial additive character of Fq. Since χ
(

g(x)
)

= χ
(

h(x−1)
)

for every x 6= 0

and χ
(

g(0)
)

= χ
(

h(0)
)

, using Weil’s theorem ([17, Theorem 5.38])

||Aγi
| − |Bγi

|| =

∣

∣

∣

∣

∣

∣

∑

δ∈Fq

χ
(

g(x)
)

∣

∣

∣

∣

∣

∣

≤ nq1/2

follows. P (δi ∈ Aγi
) + P (δi ∈ Bγi

) = 1, consequently

P (Aγi
) =

1

2
± ǫγi

, P (Bγi
) =

1

2
∓ ǫγi

,

where ǫγi
≤ n

2q1/2
. By the theorem of total probability

P (Dγi
) = P (Dγi

|Aγi
)P (Aγi

) + P (Dγi
|Bγi

)P (Bγi
) =

1

q
± εγi

,

where εγi
≤ nq−3/2. Notice, that due to the structure of f(x1, . . . , xm), the events

Dγi
are independent, moreover f(x1, . . . , xm) − f(x1 + α1, . . . , xm + αm) = γ

holds if and only if the events Dγi
(i = 1, . . . ,m) hold with γ1 + · · · + γm = γ.

Therefore

P
(

f(x1, . . . , xm)− f(x1 + α1, . . . , xm + αm) = γ
)

=
∑

i1,...,im
γi1

+...+γim
=γ

m
∏

j=1

P (Dγij
).

According to Theorem 2 h(x1, . . . , xm) = x1 + · · ·+ xm is a permutation poly-
nomial and as such, it has qm−1 solutions. Consequently

∑

i1,...,im
γi1

+...+γim
=γ

m
∏

j=1

P (Dγij
) ≤ qm−1

(

1

q
+ ε

)m

= (1 + qε)m−1

(

1

q
+ ε

)
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and
∑

i1,...,im
γi1

+...+γim
=γ

m
∏

j=1

P (Dγij
) ≥ qm−1

(

1

q
− ε

)m

= (1− qε)m−1

(

1

q
− ε

)

hold, where ε = maxγi
εγi

and the maximum is taken over all γi appearing in
the solution vectors of h(x1, . . . , xm). �

5. Test results

Unfortunately the conditions of Theorem 11 are quite strict, and therefore
there has been also some practical testing, to investigate the behavior of the
hash function with other exponents. The effect of changing an input bit to the
output bits were tested for multiple choice of exponents and coefficients of the
polynomial. There were 1500–1500 random input samples in each test.

On the figures the x-axis stands for the input bits, the y-axis represents the
output bits and the points on the z-axis mean the number of samples. An (x, y, z)
point on the figure means, that with changing the xth input bit, the yth output
bit changed in the case of z samples:

Figure 1. Base test results.

r = 286295073; s = 1.
The values of βi

3d1b58ba507ed7ab625558ec238e1f2974b0dc5119495cff327b23c6643c9869,
519b500d431bd7b76b68079a4e6afb667fdcc2331befd79f3352255a109cf92e,
3a95f874081386412ca886110836c40e189a769b54e49eb479838cb24353d0cd.
The values of αi

1190cde766ef438d4db127f80216231b515f007c5bd062c241b71efb79e2a9e3,
6763845e75a2a8d4721da3172443a858436c6125628c895d7c83e458257130a3,
440badfc05072367614fd4a1419ac24122221a704516dde97c3dbd3d737b8ddc.
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Figure 2. Test results with changed coefficients.

r = 286295073; s = 1.
The values of βi

680c1b62443d8e597a1c574377d02f4866613afa24a7c25e0eed54217fcf7bf2,
6d5e56326881ca2d1642e53a02208f331e81e2ee73333b123d5c5c2d37cd332f,
2df5b11c2fdc7fd51ad7b7c6115a9ce6651e5e3b53fe40b97e8820947c2e42da.
The values of αi

57cffdde091852a979ef5e9e462d4a4336cc7f001ad4086200c828696a5674f1,
1c1463c6023ee43c7e674f6b4b72653c27954eaa4aaa3cd33c9179df629e2171,
6453d5b017a483cb6a9868e9700f352168ad2b6a337dbb410b69b04a461f650f.

Figure 3. Test results with small exponent.

r = 127; s = 1.
The values of βi.

3d1b58ba507ed7ab625558ec238e1f2974b0dc5119495cff327b23c6643c9869,
519b500d431bd7b76b68079a4e6afb667fdcc2331befd79f3352255a109cf92e,
3a95f874081386412ca886110836c40e189a769b54e49eb479838cb24353d0cd.
The values of αi

1190cde766ef438d4db127f80216231b515f007c5bd062c241b71efb79e2a9e3,
6763845e75a2a8d4721da3172443a858436c6125628c895d7c83e458257130a3,
440badfc05072367614fd4a1419ac24122221a704516dde97c3dbd3d737b8ddc.
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Figure 4. Test results with low-weight exponent.

r = 268435459 (228 + 21 + 20); s = 1.
The values of βi.

3d1b58ba507ed7ab625558ec238e1f2974b0dc5119495cff327b23c6643c9869,
519b500d431bd7b76b68079a4e6afb667fdcc2331befd79f3352255a109cf92e,
3a95f874081386412ca886110836c40e189a769b54e49eb479838cb24353d0cd.
The values of αi

1190cde766ef438d4db127f80216231b515f007c5bd062c241b71efb79e2a9e3,
6763845e75a2a8d4721da3172443a858436c6125628c895d7c83e458257130a3,
440badfc05072367614fd4a1419ac24122221a704516dde97c3dbd3d737b8ddc.

It is clear, that on the figures the points are in the neighborhood of the
plane x = 750, that is, the empiric probability is near to the 1

2 required by the
avalanche effect.

Though these polynomials do not satisfy the strict avalanche criterion of any
order, these test results give a hope that they also possesses the avalanche prop-
erty in some weaker sense, like the special case in Theorem 11.
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