TATRA
 MOuNTaiNS

Mathematical Publications
DOI: 10.2478/v10127-012-0028-6

THE RIEMANN DERANGEMENT THEOREM AND DIVERGENT PERMUTATIONS

Roman Wituta

Abstract

In this paper, a strengthening of the Riemann Derangement Theorem, by selecting the appropriate permutation of \mathbb{N} from two families $\mathfrak{D C}$ and $\mathfrak{D} \mathfrak{D}$ of permutations of \mathbb{N}, is presented. The mentioned families are characterized in a natural way; their algebraic properties were investigated by the author in his previous works.

1. Introduction

Subjects referring to the Riemann Derangement Theorem are still popular because the theorem offers a great inspiration. The recent papers [8, [9] (see also [6]) can be set the good examples of this statement. Let us recall its content.

The Riemann Derangement Theorem. Let $\sum a_{n}$ be a conditionally convergent real series. Then, for every nonempty and closed interval $I \subset \mathbb{R}^{*}$ (two points compactification of \mathbb{R}), there exists a permutation p of \mathbb{N} such that the set of limit points of series $\sum a_{p(n)}$, denoted by $\sigma a_{p(n)}$, is equal to I.

In the current paper, we also will return to this classical result by selecting the appropriate permutation p of \mathbb{N} for this theorem from two subfamilies $\mathfrak{D C}$ and $\mathfrak{D D}$ of family \mathfrak{P} of all permutations of \mathbb{N}, as being discussed by author (see [1], [2], [7]) earlier.

However, we first need to introduce a few essential concepts. For short, we write $A<B$ for any two nonempty subsets A and B of \mathbb{N} when $a<b$ for each $a \in A$ and $b \in B$.

We call a sequence $\left\{A_{n}\right\}$ of nonempty subsets of \mathbb{N} to be increasing if

$$
A_{n}<A_{n+1} \quad \text { for every } n \in \mathbb{N}
$$

[^0]
ROMAN WITUŁA

We say that a nonempty subset A of \mathbb{N} is a union of k mutually separated intervals (abbreviated to MSI), if there exist k intervals I_{1}, \ldots, I_{k} of \mathbb{N} which form a partition of A and $\operatorname{dist}\left(I_{i}, I_{j}\right) \geqslant 2$ for any distinct indices $i, j \leqslant k$.

A permutation $p \in \mathfrak{P}$ is said to be divergent permutation if there is a conditionally convergent series $\sum a_{n}$ of real terms such that the p-rearranged series $\sum a_{p(n)}$ is divergent. The family of all divergent permutations will be denoted by \mathfrak{D}. Elements of family $\mathfrak{C}:=\mathfrak{P} \backslash \mathfrak{D}$ are called the convergent permutations. We note that if $p \in \mathfrak{C}$ then, for every conditionally convergent series $\sum a_{n}$, the p-rearranged series $\sum a_{p(n)}$ is also convergent.

Family \mathfrak{D} will be naturally partitioned onto two subfamilies $\mathfrak{D C}$ and $\mathfrak{D D}$, depending on the condition whether, for a given $p \in \mathfrak{D}$, we have $p^{-1} \in \mathfrak{C}$ or $p^{-1} \in \mathfrak{D}$, respectively. Some algebraic properties of those families were investigated by author [1]; among others, the following two relations

$$
\mathfrak{D C} \circ \mathfrak{D C}=\mathfrak{D C} \quad \text { and } \quad \mathfrak{D D} \circ \mathfrak{D C}=\mathfrak{D C} \circ \mathfrak{D D}=\mathfrak{D} \mathfrak{C} \cup \mathfrak{D} \mathfrak{D}
$$

were shown. The sign "०" denotes the composition of sets of permutations of \mathbb{N} here. In the current paper, we will add some other properties of $\mathfrak{D C}$ and $\mathfrak{D D}$, of analytical nature, connected with the Riemann Derangement Theorem.

2. Main result

The two following dual combinatoric characterizations of convergent and divergent permutations are known [3, 4], 5] and will be explored in the proof of our main result.

Theorem 2.1. A permutation $p \in \mathfrak{P}$ is a convergent permutation if and only if there exists a positive integer k such that the set $p(I)$ is a union of at most k MSI for every interval I of \mathbb{N}. The minimal positive integer k with this property will be denoted by $\mathbf{c}(\mathbf{p})$.

Theorem 2.2. A permutation $p \in \mathfrak{P}$ is a divergent permutation if and only if, for every positive integer n, there exists an interval I of \mathbb{N} such that $p(I)$ is a union of at least n MSI.

Now, we are ready to formulate and to prove the main result - a strengthened version of the Riemann Derangement Theorem (announced by author in [7]).

Theorem 2.3. Let $\sum a_{n}$ be a conditionally convergent series and let $I \subset \mathbb{R}^{*}$ be a nondegenerated closed interval in \mathbb{R}^{*}. Then there exists a permutation $p \in \mathfrak{D D}$ such that $\sigma a_{p(n)}=I$.

If we assume additionally that $\sum a_{n} \in I$ or that interval I is of the form $[\alpha,+\infty]$ or $[-\infty, \beta]$, for $\alpha, \beta \in \mathbb{R}^{*}, \alpha<+\infty$ and $\beta>-\infty$, then there exists

THE RIEMANN DERANGEMENT THEOREM AND DIVERGENT PERMUTATIONS

a permutation $q \in \mathfrak{D C}$ such that $\mathbf{c}\left(\mathbf{q}^{-\mathbf{1}}\right) \leqslant 5$ and $\sigma a_{q(n)}=I$. In the case $\sum a_{n} \in I$, the permutation $q \in \mathfrak{D C}$ can be selected in such a way that $\mathbf{c}\left(\mathbf{q}^{-\mathbf{1}}\right) \leqslant 3$.

Proof. Let $\alpha:=\sum a_{n}, A^{+}:=\left\{i \in \mathbb{N}: a_{i} \geqslant 0\right\}$ and $A^{-}:=\mathbb{N} \backslash A^{+}$. Furthermore, let us put $a_{n}^{+}:=\max \left\{0, a_{n}\right\}$ and $a_{n}^{-}:=a_{n}-a_{n}^{+}$for each $n \in \mathbb{N}$.

In the presented proof, we use the notations: $(a, b),(a, b],[a, b)$ and $[a, b]$ for the intervals of \mathbb{R}, as well as for the intervals of \mathbb{N}. Which notation is appropriate at a given moment, it will always clearly follow from the considerations.

Let $\beta, \gamma \in \mathbb{R}, \beta \leq \alpha \leq \gamma$. First, we define a permutation $q \in \mathfrak{D C}$ such that $\sigma a_{q(n)}:=[\beta, \gamma]$ but the initial part of the proof is applicable to the case $\beta<\alpha<\gamma$ only. For this purpose, let us determine $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|a_{n}\right|<\min \left\{\frac{1}{2}(\gamma-\alpha), \frac{1}{2}(\alpha-\beta)\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}(\beta-\alpha)<\alpha-\sum_{k=1}^{n} a_{k}<\frac{1}{2}(\gamma-\alpha) \tag{2}
\end{equation*}
$$

for each $n \in \mathbb{N}, n>m$.
Next, by induction, we find the increasing sequence $\left\{I_{n}: n \in \mathbb{N}_{0}\right\}$ of intervals of \mathbb{N} forming the partition of \mathbb{N} and satisfying, for every $n \in \mathbb{N}$, the following conditions:

$$
\begin{equation*}
\sum_{j \in J_{2 n-1}} a_{j}+\sum_{i \in I_{2 n-1}} a_{i}^{+} \geqslant \gamma, \quad \text { while } \sum_{j \in J_{2 n-1}} a_{j}+\sum_{\substack{i \in I_{2 n-1} \\ i \neq k_{2 n-1}}} a_{i}^{+} \leqslant \gamma \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j \in J_{2 n}} a_{j}+\sum_{i \in I_{2 n}} a_{i}^{-} \leqslant \beta, \quad \text { while } \quad \sum_{j \in J_{2 n}} a_{j}+\sum_{\substack{i \in I_{2 n} \\ i \neq k_{2 n}}} a_{i}^{-} \geqslant \beta \tag{4}
\end{equation*}
$$

where $I_{0}:=[1, m], J_{n}:=\bigcup_{i=0}^{n-1} I_{i}$ and

$$
k_{n}:=\left\{\begin{array}{lll}
\max \left\{k \in I_{n}: a_{k}>0\right\} & \text { for } & n \in(2 \mathbb{N}-1) \\
\max \left(I_{n} \cap A^{-}\right) & \text {for } & n \in 2 \mathbb{N}
\end{array}\right.
$$

Additionally, we set

$$
L_{2 n-1}:=I_{2 n-1} \cap A^{+}, \quad L_{2 n}:=I_{2 n} \cap A^{-} \quad \text { and } \quad l_{n}:=\operatorname{card} L_{n}
$$

for each $n \in \mathbb{N}$. We note that $\lim _{n \rightarrow \infty} l_{n}=\infty$. Moreover, if L_{n} is a union of λ_{n} MSI then, keeping in mind the conditional convergence of series $\sum a_{n}$ as well as conditions (3) and (4), we easily verify that also $\lim _{n \rightarrow \infty} \lambda_{n}=\infty$.

Permutation q is defined to be an increasing map of sets:

$$
I_{0} \cup \bigcup_{n \in \mathbb{N}}\left[\min I_{n}, l_{n}+\min I_{n}\right) \quad \text { and } \quad \bigcup_{n \in \mathbb{N}}\left[l_{n}+\min I_{n}, \max I_{n}\right]
$$

onto sets:

$$
I_{0} \cup \bigcup_{n \in \mathbb{N}} L_{n} \quad \text { and } \quad \bigcup_{n \in \mathbb{N}}\left(I_{n} \backslash L_{n}\right),
$$

respectively. One can easily verify that we then have

$$
q\left(\left[\min I_{n}, l_{n}+\min I_{n}\right)\right)=L_{n}, \quad \text { for every } \quad n \in \mathbb{N}
$$

and the set $q^{-1}(I)$ is a union of at most three MSI for every interval I, i.e., $q \in \mathfrak{D C}$ and $\mathbf{c}\left(\mathbf{q}^{-\mathbf{1}}\right) \leqslant 3$. In turn, from (3) and (4), it follows that $\sigma a_{q(n)}=[\beta, \gamma]$. However, it is not difficult to see that the above proof readily applies to the cases $\alpha=\beta$ or $\alpha=\gamma$ (for a nondegenerated interval $[\beta, \gamma]$).

Our next goal is to construct a permutation $q \in \mathfrak{D C}$ such that $\sum a_{q(n)}=+\infty$. Let $\left\{I_{n}\right\}$ be an increasing sequence of intervals of \mathbb{N} such that $\bigcup I_{n}=\mathbb{N}$ and

$$
\begin{equation*}
\sum_{i \in I_{n}} a_{i}^{+} \geqslant n \tag{5}
\end{equation*}
$$

for each $n \in \mathbb{N}$. Moreover, let

$$
\lambda_{i}:=\operatorname{card}\left(I_{i} \cap A^{+}\right) \quad \text { and } \quad \mu_{i}:=\operatorname{card}\left(I_{i} \cap A^{-}\right), \quad i \in \mathbb{N} ;
$$

and

$$
J_{n+1}:=\left(\sum_{i=1}^{n+2} \lambda_{i}+\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n+2} \lambda_{i}+\sum_{i=1}^{n+1} \mu_{i}\right] \quad \text { for each } n \in \mathbb{N} .
$$

We define the permutation q as an increasing map of sets:

$$
\left[1, \lambda_{1}+\lambda_{2}\right] \cup \bigcup_{n \in \mathbb{N}}\left(\sum_{i=1}^{n+1} \lambda_{i}+\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n+2} \lambda_{i}+\sum_{i=1}^{n} \mu_{i}\right]
$$

and

$$
\left(\lambda_{1}+\lambda_{2}, \lambda_{1}+\lambda_{2}+\mu_{1}\right] \cup \bigcup_{n=2}^{\infty} J_{n}
$$

onto sets A^{+}and A^{-}, respectively.
One can verify that the permutation q possesses the following properties. First, we note that set $q^{-1}(I)$ is a union of at most five MSI for each interval $I \subset \mathbb{N}$, that is $q^{-1} \in \mathfrak{C}$ and $\mathbf{c}\left(\mathbf{q}^{-\mathbf{1}}\right) \leqslant 5$. Next, from condition (5), we obtain the following estimation

$$
\sum_{i=1}^{\max J_{n}} a_{q(i)}=\sum_{i<\min J_{n}} a_{i}+\sum_{i \in J_{n}} a_{i}^{+} \geqslant n+\sum_{i<\min J_{n}} a_{i}, \quad \text { correct for every } \quad n \in \mathbb{N} .
$$

THE RIEMANN DERANGEMENT THEOREM AND DIVERGENT PERMUTATIONS

Furthermore, it follows from the definition of q that the sequence

$$
\left\{\sum_{i=1}^{j} a_{q(i)}: \min J_{n}<j \leqslant \max J_{n}\right\} \quad \text { is non-increasing for each } n \in \mathbb{N}
$$

whereas the sequence

$$
\left\{\sum_{i=1}^{j} a_{q(i)}: \max J_{n}<j<\min J_{n+1}\right\} \quad \text { is increasing for each } n \in \mathbb{N} \text {. }
$$

From the last three properties, we receive $\sum a_{q(n)}=+\infty$. In consequence, we have $q \in \mathfrak{D C}$.

Let $\beta \in \mathbb{R}$. We want to define a permutation $q \in \mathfrak{D} \mathfrak{C}$ such that $\sigma a_{q(n)}=[\beta, \infty]$. For this purpose, it is enough to choose by induction the increasing sequence $\left\{I_{n}\right\}$ of intervals of \mathbb{N} forming the partition of \mathbb{N} such that for each $n \in \mathbb{N}$ the following conditions are satisfied

$$
\begin{equation*}
\sum_{j \in J_{2 n-1}} a_{q(j)} \geqslant \beta+n \quad \text { and } \quad \sum_{j \in J_{2 n}} a_{q(j)} \leqslant \beta, \tag{6}
\end{equation*}
$$

while

$$
\sum_{\substack{j \in J_{2 n} \\ j<\max J_{2 n}}} a_{q(j)} \geqslant \beta
$$

where $J_{n}:=\bigcup_{i=0}^{n} I_{i}$, whereas q is defined to be the increasing map of sets $\bigcup_{n \in \mathbb{N}} I_{2 n-1}$ and $\bigcup_{n \in \mathbb{N}} I_{2 n}$ onto sets A^{+}and A^{-}, respectively. Then, it is easy to verify that $q^{-1} \in \mathfrak{C}$ and $\mathbf{c}\left(\mathbf{q}^{-\mathbf{1}}\right) \leqslant 5$, and, since from (6) it results that $\sigma a_{q(n)}=[\beta, \infty]$, we have $q \in \mathfrak{D C}$.

Definition of permutation $q \in \mathfrak{D C}$, such that $\sigma a_{q(n)}=\mathbb{R}^{*}$, is the same as in the previously discussed case of $\sigma a_{q(n)}=[\beta, \infty], \beta \in \mathbb{R}$, only condition (6) needs to be changed. More precisely, condition (6) must be replaced by the following conditions:

$$
\sum_{j \in J_{2 n-1}} a_{q(j)} \geqslant n \quad \text { and } \quad \sum_{j \in J_{2 n}} a_{q(j)} \leqslant-n,
$$

for each $n \in \mathbb{N}$.
Definition of permutation $p \in \mathfrak{D} \mathfrak{D}$, which we will also make dependent on the form of set $\sigma a_{p(n)}$, must be preceded by some essential preparations. The main charge of those preparations lies in the appropriate selection of increasing sequence $\left\{I_{n}: n \in \mathbb{N}_{0}\right\}$ of the intervals of \mathbb{N} forming the partition of \mathbb{N}. We denote as s and t the increasing bijections of \mathbb{N} onto sets

$$
\mathbf{D}:=\bigcup_{n \in \mathbb{N}} I_{2 n-1} \quad \text { and } \quad \mathbf{E}:=\bigcup_{n \in \mathbb{N}_{0}} I_{2 n},
$$

respectively. We request the intervals $I_{2 n}, n \in \mathbb{N}_{0}$, to be composed of the even number of elements and so that card $I_{2 n} \rightarrow \infty$ for $n \rightarrow \infty$. Moreover, we demand
the series $\sum a_{s(n)}=\sum_{n \in \mathbf{D}} a_{n}$ and $\sum a_{t(n)}=\sum_{n \in \mathbf{E}} a_{n}$ both to be convergent, in addition, the first one should be conditionally convergent and the second series $\sum a_{t(n)}$ should be absolutely convergent (and therefore insusceptible to permutations). Let $d:=\sum a_{t(n)}$.

Restriction of permutation p to set \mathbf{E} will be defined in the same way in all of the cases discussed below. So, we take that

$$
p\left(2 i-2+\min I_{2 n}\right)=i-1+\min I_{2 n}
$$

and

$$
p\left(2 i-1+\min I_{2 n}\right)=i-1+\frac{1}{2} \operatorname{card} I_{2 n}+\min I_{2 n}
$$

for $i=1,2, \ldots, \frac{1}{2} \operatorname{card} I_{2 n}$ and for each $n \in \mathbb{N}_{0}$. It implies that for each case we have $p^{-1} \in \mathfrak{D}$.

First, let us consider the case in which $\sigma a_{p(n)}$ is a nondegenerated closed interval. Let $a, b \in \mathbb{R}, a<b$ and $d<b$ (the last condition does not violate the generality of considerations because one can assume d to be any real number). Additionally, we assume that

$$
\begin{equation*}
\left|a_{j}\right|<\frac{1}{2}|b-a| \quad \text { for every } \quad j \in \mathbf{D} \tag{7}
\end{equation*}
$$

We define by induction an increasing sequence $\left\{J_{n}\right\}$ of intervals of \mathbb{N} forming the partition of \mathbb{N} such that

$$
\begin{gather*}
\mu\left(\bigcup_{n \in \mathbb{N}} J_{2 n-1}\right)=\mathbf{D} \cap A^{+}, \quad \mu\left(\bigcup_{n \in \mathbb{N}} J_{2 n}\right)=\mathbf{D} \cap A^{-}, \\
\left\{\begin{array}{l}
\sum_{j \in K_{2 n-1}} a_{\mu(j)} \geqslant b-d, \quad \text { while } \sum_{\substack{j \in K_{2 n-1} \\
j<\max K_{2 n-1}}} a_{\mu(j)} \leqslant b-d, \\
\text { and } \\
\sum_{j \in K_{2 n}} a_{\mu(j)} \leqslant a-d, \quad \text { while } \sum_{\substack{j \in K_{2 n} \\
j<\max K_{2 n}}} a_{\mu(j)} \geqslant a-d,
\end{array}\right. \tag{8}
\end{gather*}
$$

for each $n \in \mathbb{N}$, where $K_{n}:=\bigcup_{j=1}^{n} J_{j}$ and $\mu:=p s$. The restriction of p to set \mathbf{D} is defined to be the increasing map of sets

$$
s\left(\bigcup_{n \in \mathbb{N}} J_{2 n-1}\right) \quad \text { and } \quad s\left(\bigcup_{n \in \mathbb{N}} J_{2 n}\right)
$$

onto sets $\mathbf{D} \cap A^{+}$and $\mathbf{D} \cap A^{-}$, respectively. Then, what can be easily verified, we have $\sigma a_{p(n)}=[a, b]$ which implies, in particular, that $p \in \mathfrak{D}$.

THE RIEMANN DERANGEMENT THEOREM AND DIVERGENT PERMUTATIONS

Let $a \in \mathbb{R}$. For $\sigma a_{p(n)}=[a, \infty]$ or $\sigma a_{p(n)}=\{+\infty\}$, the construction of permutation p is almost analogous as shown before, only conditions (7) and (8) must be modified. So, for $\sigma a_{p(n)}=[a, \infty], a \in \mathbb{R}$, instead of condition (7), we assume that $\left|a_{j}\right|<\frac{1}{2}$, for every $j \in \mathbf{D}$, whereas (8) is replaced, for each $n \in \mathbb{N}$, with the following condition

$$
\left\{\begin{array}{lrl}
\sum_{j \in K_{2 n-1}} a_{\mu(j)} \geqslant \max \{n, 2 a\}, & \text { while } & \sum_{\substack{j \in K_{2 n-1} \\
j<\max K_{2 n-1}}} a_{\mu(j)} \leqslant \max \{n, 2 a\}, \tag{9}\\
\text { and } & \text { while } & \sum_{\substack{j \in K_{2 n} \\
j<\max K_{2 n}}} a_{\mu(j)} \geqslant a
\end{array}\right.
$$

For the case $\sigma a_{p(n)}=\{+\infty\}$, we request that $\left|a_{j}\right|<1$, for each $j \in \mathbf{D}$, whereas (8) is replaced, for each $n \in \mathbb{N}$, with the condition given below

$$
\left\{\begin{array}{lll}
\sum_{j \in K_{2 n-1}} a_{\mu(j)} \geqslant 2 n, & \text { while } & \sum_{\substack{j \in K_{2 n-1} \\
j<\max K_{2 n-1}}} a_{\mu(j)} \leqslant 2 n, \tag{10}\\
\text { and } & & \\
\sum_{j \in K_{2 n}} a_{\mu(j)} \leqslant n, & \text { while } & \sum_{\substack{j \in K_{2 n} \\
j<\max K_{2 n}}} a_{\mu(j)} \geqslant n .
\end{array}\right.
$$

Acknowledgements. The author is grateful to the reviewer's valuable comments that improved the manuscript.

REFERENCES

[1] WITUŁA, R.: The algebraic properties of the convergent and divergent permutations, Filomat (submitted).
[2] WITULA, R.: The family \mathfrak{F} of permutations of \mathbb{N}, Positivity (submitted).
[3] WITUŁA, R.-SLOTA, D.-SEWERYN, R.: On Erdös' theorem for monotonic subsequences, Demonstr. Math. 40 (2007), 239-259.
[4] WITUŁA, R.: On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl. 362 (2010), 542-552.
[5] LEVI, F. W.: Rearrangement of convergent series, Duke Math. J. 13 (1946), 579-585.
[6] WITUŁA, R.-HETMANIOK, E.-SLOTA, D.: Some variation on the Riemann Derangement Theorem, Tatra Mt. Math. Publ. (submitted).
[7] WITUŁA, R.: The Riemann theorem and divergent permutations, Colloq. Math. 69 (1995), 275-287.
[8] FILIPÓW, R.-SZUCA, P.: Rearrangement of conditionally convergent series on a small set, J. Math. Anal. Appl. 362 (2010), 64-71.
[9] PRUS-WIŚNIOWSKI, F.: Two refinements of the Riemann Derangement Theorem. In: Real Functions, Density Topology and Related Topics (M. Filipczak and E. Wagner--Bojakowska, eds.), Łódź University Press, Łódź, 2011, pp. 165-172.

Institute of Mathematics
Silesian University of Technology
Kaszubska 23
PL-Gliwice 44-100
POLAND
E-mail: roman.witula@polsl.pl

[^0]: © 2012 Mathematical Institute, Slovak Academy of Sciences. 2010 Mathematics Subject Classification: 40A05, 05A99.
 Keywords: Riemann Derangement Theorem, divergent permutation.

