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OPTIMALITY CRITERIA FOR DESIGN

IN NONLINEAR MODELS WITH CONSTRAINTS

Andrej Pázman

ABSTRACT. We shall present different expressions for optimality criteria in
nonlinear regression models, and compare them with corresponding expressions
in models without constraints. We also present how to formulate the equivalence

theorem in models with constraints.

1. Introduction

For the estimation of parameters and testing of hypotheses in models with
parameter constraints we have the classical results of R a o (1965) for linear
models and of S i l v e y (1959, 1975) for nonlinear models, but it seems that
even Silvey did not put attention to design in such models. Probably because he
used the method of Lagrange multipliers, which is difficult. We prefer here to use
some geometry (projectors) and the implicit function theorem instead of that.
By that we complete and correct the presentation in P á z m a n (2002), using
modified proofs.

The considered model is the nonlinear regression model

yx = η (x, θ) + εx; x ∈ X , Var (εx) = σ2, (1)

θ ∈ Θ ⊂ R
p, C (θ) =

(

C1 (θ) , . . . , Cq (θ)
)T

= 0.

The equations C1 (θ) = 0, . . . , Cq (θ) = 0 are the constraints. Here X is a (com-
pact) design space. The functions η (x, θ) and C (θ) are twice continuously dif-
ferentiable with respect to θ, and η (x, θ) is continuous on X for every θ.
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We shall also use the following notations, assumptions and matrix identities :

[θ̄] is a fixed point of int (Θ),
[

ξ (x)
]

is the frequency of replications of observations at a point x ∈ X ,

L ≡

[

∂C (θ)

∂θT

]

θ̄

,

and we shall suppose that the constraints Ci (θ) are locally linearly independent
on θ̄, that is, L has a full rank q < p,

f (x) ≡

[

∂η (x, θ)

∂θ

]

θ̄

,

M ≡ M (ξ) ≡
∑

x∈X

f (x) fT (x) ξ (x) ,

H ≡ H (ξ) ≡ M (ξ) + LTL ,

PA
L ≡ LT

[

LA−1LT
]−

LA−1,

PL ≡ P I
L = LT

[

LLT
]−

L

with A some positive definite p× p matrix, and with arbitrary g-inverses,

Ṽ (A) ≡ A−1
[

I − PA
L

]

= A−1 −A−1LT
[

LA−1LT
]−

LA−1, (2)

β ∈ B ⊂ R
p−q, is an auxiliary parametrization of the model (1) (For a justifica-

tion of this parametrization see Proposition A2),

φ (β) is a mapping of B onto a subset of int (Θ),

β̄ ∈ B is a point such that φ
(

β̄
)

= θ̄ (see Proposition A2),

D ≡

[

∂φ (β)

∂βT

]

β̄

.

Notice that we did not denote the dependence on θ̄ in f (x) and M (ξ), and
the same will be done in other expressions, since θ̄ is fixed in advance. So, the
notation is similar to that in linear models.

An evident matrix identity is
[

I − PA
L

]

H =
[

I − PA
L

]

M (3)

since PA
L is a projector onto the range of LT. Less evident is the following identity

A−1
[

I − PA
L

]

=
[

(I − PL)A (I − PL)
]+

, (4)

where + denotes the Moore-Penrose g-inverse matrix. See Proposition A1 for the
proof.
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2. Estimability and the variance matrix of θ̂

If an exact design x1, . . . , xN (with xi ∈ X ) is used, the corresponding ob-
servations yx1

, . . . , yxN
are supposed to be independent, and the L.S. estimator

of θ is equal to

θ̂ = arg min
θ∈Θ,

C(θ)=0

N
∑

k=1

[

yxk
− η (xk, θ)

]2
.

As it is standard, we consider the (approximate or asymptotic) design ξ,
which is a probability measure having a finite support and defined on the design
space X . For each x ∈ X the value ξ (x) (or in a more correct notation ξ ({x}))
is interpreted as the approximate relative frequency of independently replicated
observations at x.

By θ̄ we denote the true value of θ (in theory) or the point of localization of θ
(in locally optimal design). It is supposed that θ̄ ∈ int (Θ).

Notice that many results presented in this and the following sections are based
on the proofs in Section 5.

In a model without constraints the information matrix is M (ξ), and the
estimate of θ can be unique only if M (ξ) is nonsingular. On the other hand,
in models with constraints this holds only if the matrix H (ξ) is nonsingular
(see Corollary 1 to Proposition A2). However, there is no reason to interpret
H (ξ) as the information matrix in the model with constraints. In linear models
with constraints linear in θ the nonsingularity of H (ξ) is also sufficient for the

uniqueness of θ̂, but in nonlinear models we must add the condition of asymptotic
identifiability: θ̄ is supposed to be the unique minimizer in

min
θ∈Θ,

C(θ)=0

∑

x∈X

[

η (x, θ)− η
(

x, θ̄
)

]2

ξ (x)

(see Corollary 2 of Proposition A2).

Now we give some alternative formulae for the (asymptotic) variance matrix

of θ̂. If the model (1) is without constraints we have, up to the multiplicative

term
(

σ2

N

)

VarM(ξ)

(

θ̂
)

= M−1 (ξ)

but when we have constraints, we have several, seemingly different expressions.
We can write

VarM(ξ)

(

θ̂
)

= D
[

DTM (ξ)D
]−1

DT

(see Corollary 3 of Proposition A2), or alternatively

VarM(ξ)

(

θ̂
)

= Ṽ
[

M (ξ) + LTL
]

(5)
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with Ṽ (.) defined by (2) (see Corollary 3 to Proposition A2), or

VarM(ξ)

(

θ̂
)

=
[

(I − PL)M (ξ) (I − PL)
]+

. (6)

Notice that the equality of (5) with (6) follows from (4) when we take A =
M (ξ) + LTL, and from (3) when we take A = I.

Moreover, if (L∗)
T
is any matrix with the same column space as LT, we are

allowed to put L∗ instead of L into (5). This fact follows from the equality
of projectors PL = PL∗ , hence the right-hand size of (6) remains unchanged,

and from (4) it follows that it is equal to Ṽ
[

M (ξ) + (L∗)
T
L∗

]

.

However, it seems that from all these alternatives the alternative (5) is prefer-
able from the practical point of view.

3. Global optimality criteria

In the model (1), but without constraints, the classical optimality criteria
are based on convex functions of the information matrix: -ln detM (ξ) for D-op-
timality, tr

{

M−1 (ξ)
}

for A-optimality, maxu:‖u‖=1 u
TM−1 (ξ)u for E-optima-

lity. Since in a model without constraints M−1 (ξ) is the variance matrix of θ̂,

these criteria can be expressed equivalently as functions of VarM(ξ)

(

θ̂
)

. Evi-
dently, this indicates the way how to obtain optimality criteria in models with
constraints. However, more complicated functions of the matrix M (ξ) are then
obtained

Φ
[

M (ξ)
]

= tr Ṽ
(

M (ξ) + LTL
)

for A-optimality,

Φ
[

M (ξ)
]

= maxu:‖u‖=1 u
T
[

Ṽ
(

M (ξ) + LTL
)

]

u for E-optimality.

Here Ṽ (.) is defined in (2).

The situation is more complicated in case of D-optimality, because to take

ln detVarM(ξ)

(

θ̂
)

is a nonsense since VarM(ξ)

(

θ̂
)

is singular for any ξ. This is
because by the presence of constraints the model is overparametrized, so we have
to consider the D-optimality criterion in the equivalent model (8) introduced
in Proposition A2, which is without constraints. In principle we have to choose
the parameters denoted by β, introduced in the equivalent model (8), and the
D-optimality criterion should be given by

Φ
[

M (ξ)
]

= − ln det
[

DTM (ξ)D
]

(see Proposition A2 ). However, in Proposition A2 we present no construction
of such parameters. Fortunately, as is well known, in models without constraints
the criterion of D-optimality is invariant to a reparametrization of the model.
More precisely, the ordering of designs according to the optimality criterion does
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not depend on this choice of parametrization. Hence, instead ofD we can use any
matrix with the same column space. Since LD = 0 (see Proposition A2), we can
follow the recommendation of P á z m a n (2002), and take the QR decomposition
of LT

LT = (T,Q)

(

R

0

)

.

The columns of the matrix T form an orthogonal basis of the column space of LT,
and the columns of the matrix Q form an orthogonal basis of its orthogonal com-
plement, hence of the column space of D, and we can take for the D-optimality
criterion the function

Φ
[

M (ξ)
]

= − ln det
[

QTM (ξ)Q
]

.

But curiously, as it is shown in Section 4, for the “equivalence theorem” we do
not need the computation neither of Q nor of D.

Are the new criteria given by so complicated expressions still convex functions

of M (ξ) or of ξ? The answer is yes. It follows from the formula VarM(ξ)

(

θ̂
)

=

D
[

DTM (ξ)D
]−1

DT (see Corollary 3 of Proposition A2).

4. The equivalence theorem

In general, for any convex and differentiable optimality criterion Φ we have
the well known “equivalence theorem” (cf., e.g., P á z m a n (1986), Proposition
IV.2.7):

A design µ is Φ-optimal if and only if
{

max
x∈X

fT (x)
[

−∇MΦ (M )
]

f (x)

}

M=M(µ)

=
{

tr
[

−M∇MΦ (M )
]

}

M=M(µ),
(7)

where the gradient ∇MΦ (M ) is a p× p matrix with components

{

∇MΦ (M )
}

ij
=

∂Φ (M )

∂Mij
.

In a model without constraints, we have ∇M

[

− ln det (M )
]

= −M−1 for

D-optimality, ∇M

[

tr
(

M−1
)]

= −M−2 for A-optimality. In models with con-
straints we obtain following.

For A-optimality

∇M tr
{

Ṽ
[

M + LTL
]

}

= −
(

I − PH
L

)

H−2
(

I − PH
L

)

= −
[

VarM
(

θ̂
)

]2

.

Here we used (2), and the equality

A (α)
dA− (α)

dα
A (α) = −A (α)A− (α)

dA (α)

dα
A− (α)A (α)
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valid for any g-inverse A− (α) of a square matrix A (α) (cf. H a r v i l l e (2000),
Lemma 15.10.5). The resulting formula for the gradient hence does not depend

on the matrix D when using (5) for VarM
(

θ̂
)

.

For D-optimality

∂

∂Mij

{

− ln det
(

DTMD
)}

=− tr

{

(

DTMD
)−1 ∂

(

DTMD
)

∂Mij

}

=−
{

D
(

DTMD
)−1

DT
}

ij

=−
{

VarM
(

θ̂
)

}

ij
.

Here we used that ∂
∂Aij

{

− ln det (A)
}

= −{A−1}ji for any nonsingular square

matrix A (cf. H a r v i l l e (2000), Eq. (8.7)). So

∇M

{

− ln det
(

DTMD
)

}

= −VarM
(

θ̂
)

,

a formula that again does not depend on the matrix D when using (5).

The equivalence theorem for D-optimality then follows, according to (7)

A design µ is D-optimal if and only if

max
z∈X

fT (z)
[

VarM(µ)

(

θ̂
)

]

f (z) =
∑

x∈X

fT (x)
[

VarM(µ)

(

θ̂
)

]

f (x)µ (x) .

As a consequence we have that the D-optimal design is supported only by

those points x ∈ X , where the maximum of fT (x)
[

VarM(µ)

(

θ̂
)]

f (x) is attained.

It is easy to obtain corresponding results for A-optimality.

5. ProofsProposition A1. The identity (4) is valid.

P r o o f. We use here properties of orthogonal projectors. First we verify straight-
forwardly three equalities

(I − PL)A
−1

(

I − PA
L

)

= A−1
(

I − PA
L

)

,

(I − PL)
(

I − PA
L

)

= (I − PL) ,
(

I − PA
L

)

(I − PL) =
(

I − PA
L

)

.

We used here that PL and PA
L are projectors onto the same space (= the col-

umn space of LT ), and that LA−1LT
(

LA−1LT
)−

L = L since L and LA−1LT

have the same column space. Then, after denoting C = (I − PL)A (I − PL),
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B = A−1
[

I − PA
L

]

we verify that CBC = C, BCB = B, CB = I − PL = BC.
Hence B is the Moore-Penrose g-inverse of C. �

(We notice that similar properties have been used for estimators in singular
models without constraints or for quadratic estimators in K u b á č e k, K u b á č -
k o v á, V o l a u f o v á (1995), pp. 116 and 441).Proposition A2. Let L be of full rank (=q). Then there is an open set B ∈Rp−q

and a mapping φ of B onto a subset of Θ such that

1) there is a β̄ ∈ B such that φ
(

β̄
)

= θ̄,

2) C
[

φ (β)
]

= 0 for every β ∈ B,

3)
[∂φ(β)

∂βT

]

β̄
is full rank = p− q,

4) L
[∂φ(β)

∂βT

]

β̄
= LD = 0.

5) The original model with constraints (1) is locally (hence asymptotically)
equivalent to the model without constraints

yx = η (x, φ (β)) + εx; β ∈ B ∈Rp−r, (8)

x ∈ X , Var (εx) = σ2.

P r o o f. Suppose, without loss of generality, that the first q rows of the q×p ma-

trix L are linearly independent. Denote α = (θ1, . . . , θq)
T, β = (θq+1, . . . , θp)

T.
Then from C (α, β) = 0 we obtain by the implicit function theorem that there is

a neighborhood B of β̄ =
(

θ̄q+1, . . . , θ̄p
)T

and a mapping g from B onto a neigh-

borhood of ᾱ =
(

θ̄1, . . . , θ̄q
)T

such that g
(

β̄
)

= ᾱ, C
(

g (β) , β
)

= 0 for β ∈ B,
and that

∂g (β)

∂βT
= −

[

∂C (α, β)

∂αT

]−1
∂C (α, β)

∂βT
. (9)

Denote

φ (β) =
(

g (β) , β
)T
.

Evidently, C
[

φ (β)
]

= 0 for every β ∈ B, and φ
(

β̄
)

= θ̄. Moreover,

∂φ (β)

∂βT
=

(

∂g (β)

∂βT
, I

)

has rank p− q because I is here the identity (p− q)× (p− q) matrix. For β ∈ B
we have from C

[

φ (β)
]

= 0

0 =
∂C [φ (β)]

∂βT
= L

[

φ (β)
]∂φ (β)

∂βT
; β ∈ B.

Since for the asymptotics only some neighborhoods of β̄ and of θ̄ are of impor-
tance, statement 5) follows from C

[

φ (β)
]

= 0 which is valid for every β ∈ B. �
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ANDREJ PÁZMANCorollary 1. The information matrix in the model (8) is equal to DTM (ξ)D
and it is nonsingular if and only if H (ξ) = M (ξ) + LTL is nonsingular.

P r o o f. The information matrix in the model (8) is

∑

x∈X

∂η (x, φ (β))

∂β

∂η (x, φ (β))

∂βT
ξ (x) = DTM (ξ)D.

Denote FT ≡
(

f (x1)
√

ξ (x1), . . . , f (xN )
√

ξ (xN )
)

, where {x1, . . . , xN} is the

support of ξ. Then M (ξ) = FTF , and M (ξ) has the same column space as FT,
which we denote by E . The matrix DTM (ξ)D is nonsingular if and only if D is
full rank and the column space of D is a subset of E . And this is if and only if the
matrix

(

LT, FT
)

is full rank (= p) since L and D are orthogonal matrices with

complementary ranks (Proposition A2). Finally, LTL + M (ξ) =
(

LT, FT
) (

L
F

)

has the same rank as
(

LT, FT
)

. �Corollary 2. We have
{

β̄
}

= argmin
β∈B

∑

x∈X

[

η
(

x, φ (β)
)

− η
(

x, φ
(

β̄
)

)]2

ξ (x)

⇔
{

θ̄
}

= arg min
θ∈Θ,

C(θ)=0

∑

x∈X

[

η (x, θ)− η
(

x, θ̄
)

]2

ξ (x) .Corollary 3. In the model (8) the asymptotic variance is

VarM(ξ)

(

β̂
)

=
[

DTM (ξ)D
]−1

.

In the model (1) we have

VarM(ξ)

(

θ̂
)

= DVarM(ξ)

(

β̂
)

DT = Ṽ
[

M (ξ) + LTL
]

.

P r o o f. The first statement follows from Corollary 1. Further, since θ̂ = φ
(

β̂
)

we have VarM
(

θ̂
)

= DVarM
(

β̂
)

DT.

Hence
VarM

(

θ̂
)

= D
[

DTMD
]−1

DT = D
[

DTHD
]−1

DT.

We used here that LD = 0. Hence

VarM
(

θ̂
)

= H−1/2ZH−1/2,

where Z ≡ H1/2D
[

DTHD
]−1

DTH1/2 is evidently the orthogonal projector

onto the column space of the matrix H1/2D. But according to Proposition A2,
point 4, H1/2D and H−1/2L are orthogonal matrices with complementary ranks,
so Z and PH

L are complementary orthogonal projectors. In other words,
Z = I − PH

L . Hence finally,

VarM
(

θ̂
)

= H−1/2
[

I − PH
L

]

H−1/2 = Ṽ
[

M + LTL
]

. �
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