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THE INCLUSION-EXCLUSION PRINCIPLE
WITHOUT DISTRIBUTIVITY

JANA KELEMENOVA

ABSTRACT. Inspired by the article of P. Grzegorzewski [The inclusion-ezclu-
sion principle for IF-events, Inform. Sci. 181 (2011), 536-546], who has worked
two generalizations of the inclusion-exclusion principle for IF-events, a generaliza-
tion of the inclusion-exclusion principle for mappings with values in semigroups is
presented here. The main idea is in replacing the distributivity and idempotency
laws, by one new axiom.

1. Introduction

P. Grzegorzewski gave two generalizations of the inclusion-exclusion
principle in [3] for IF-events applying two definitions for the union of IF-events.
As a reaction on this paper we have proved the principle for mappings from
the set of IF-sets to the semigroup [4]. We have worked on generalizations of
his theorem. First, we gave a theorem of the inclusion-exclusion principle on
semigroups in [4]. The same we have made for the special case, the mapping
from the set of IF-sets to the unit interval. Continuing with this topic, another
method of the proof of the inclusion-exclusion principle for mappings with values
in semigroups is presented in this paper. The conditions of distributivity and
idempotency were replaced by the new axiom.

The classical inclusion-exclusion principle states

P(Alu...uAn):zn:P(Ai)—Xn:P(AmAj)

i<j

+ zn: P(AiﬂAjﬂAk)_"'+(—l)n+1P(ﬁAi)

i<j<k
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for any sequence Ay, ..., A, from the domain of P: R — R (where P is non-
-negative, additive function in probability theory).
P. Grzegorzewski has defined the probability on IF-event A by the formula

P(A) = //j,AdP,l —/I/AdP N
Q Q

where P is the probability measure through 2.
This inclusion-exclusion principle has the form [3]:

P(OA;) ZiP(Al)—ZP(AZmAJ)—F Z'P(AZQAJOA]C)—

1<J 1<j<k
o (=DMIP (AN AN N AL);

n

P(efA) =) P(A) =D PAOA)+ > PAGAOA)—--
i=1 i<j i<j<k
o (D)"TIP (A0 AN O A).

Other authors (Lavinia Ciungu, Beloslav Rie¢an and Médria
Kukova) have worked this topic on IF-sets and IF-events by different methods
and using different operators. We mention a brief summary of their results. The
axiomatic definition of probability on IF-sets given in [6] is the following.

A mapping m: F — [0,1] is an IF-state if the following properties are
satisfied:

1. m(1q,0q) =1, m (0, 1o) = 0;
2. m(A®B)=m(A)+m(B) —m(A® B) for all A, B € F;
3. A, 7 Aimplies m(A,) / m(A).
Let m: F — [0,1] be an IF-state. Then there are probability measures
P,Q:S—10,1 and «€][0,1]
such that

m(A):/MAdP+Oé 1—/(uA+uA)dQ for all A € F.
Q Q

The result of L. Ciungu [2] using Lukasziewicz operators is following.
Let A; be IF-events, A; = (ua,,va,), i =1,...,n. Let m be an IF-state and

m(A):/,uAdP+a 1—/(,LLA+I/A)dQ

Q Q
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Then m satisfies the inclusion-exclusion principle
n
(D)X -Ymia e ( Q).
i=1 i<

In the proof of L. Ciungu representation theorem from [1] was used.

Another representation theorem by Riec¢an and Ciungu [1], correspond-
ing to axiomatic definition of probability from Riec¢an [7] was used in the
proof of M. Kukové [5]:

Any probability P: F — J can be expressed by the formulas:

P(A) =[PP (4), PE(4)]

P>(A) :/MAdP+a/(1 — p1a —va)dQ,

X X
PHA) = [padR+ B [(1— pa—va)dS.
foana]

Kukova [5] proved:

(U1)-

+ 5(141-0/1]-ﬂAk)—---+(—1)"“5(14101420...014").
i<j<k

M=
2|

—> P (AN 4))

1 i<j

A

Kukova used also the Lukasiewicz connectives:

A®B=((pa+ps) A1, (va+vp—1)V0)
A®B=((pa+ps—1)V0,(va+vp)Al)

to prove another form of the principle [5], that is
P (@A) 225(141) - Zf(A ©A
i=1 i=1 i<j

+ ) PAGAOA)— -+ ()P (A0 AN, 0 A,).
1<j<k
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2. Inclusion-exclusion principle without distributivity
for mapping with values in semigroups

As it is mentioned in the introduction, we skip the conditions of distributivity
and idempotency in the algebraic system (G, +,-), where “-” is commutative
binary operation, and (G, +) is a commutative semigroup.

The only required condition is the axiom

m((a+b)-¢)+m(a-b-c)=m(a-c)+m(b-c).

Example 2.1. Let S be a o-algebra of subsets of a set X. Let H be a linear
vector Banach Riesz space. Then, any vector measure m : & — H satisfies the
above condition.

ASSUMPTIONS 2.2.

e (G,+,-) is an algebraic system, where (G,+) is a commutative semigroup
and “ -7 is commutative binary operation,

e m:G — H is a mapping from the algebraic system (G,+,-) to the com-
mutative semigroup (H,+), satisfying the valuation property

m(a+b) +m(a-b) = m(a) +m(b), (I)
e there holds the axiom
m((a+b)-¢)+m(a-b-c)=m(a-c)+m(b-c). (1)

THEOREM 2.3. For n even

(Zak>+7§ 3 m(ai, - aiy - aiy)

k=11<i1<i2< - <12 <N

n/2
- Z Z m (@i, - @iy iy, ) - (I1T)

1<61 <9<+ <igp—1<n

For n odd there holds
((n+1)/2)—1
(Z%) > o mla e )
k=1 1< <ig <+ <o <n

(n+1)/2

= Z Z m (ai1 cQgy am,l) . (IV)

k=1 1<i1<ig<- <igr_1<n

In the following examples on the sum of even and odd number of elements
from (G, +,-) the process used in the proof for n general is presented. We add
the same terms to both sides of the equation and use the valuation property.
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Example 2.4. For n = 3. Let a,b,c € G. Using the valuation property (I)
we can write

m((a+b)+c)+m((a+b)-c) =m(a+b)+m(c),
from where we have:

m(a+b+c)+m((a+b)-¢)+m(a-b)+m(a-b-c)

=m(a+b) +m(c) +m(a-b)+m(a-b-c),

m(a+b+c)+m(a-c)+m(b-c)+ m(a-b)
=m(a+b) +m(c)+m(a-b)+m(a-b-c),

m(a+b+c)+m(a-b)+m(a-c)+m(b-c)
=m(a) +m(b) + m(c) + m(a-b-c).

A little bit complicated is the example for n even.
Example 2.5. For n =4
m((a+b+c)+d) +m((a+b+c)-d)
=m(a+b+c)+m(d),

m(a+b+c+d) +m(a-¢c)+m(b-¢c)+m(a-b)+m(a-d+b-d+c-d)
=m(a+b+c)+m(d) +m(a-c)+m(b-c)+m(a-b),

m(a+b+c+d) +m(a-c)+m(b-c)+m(a-b)+m(a-d+b-d+c-d)
=m(a) +m(b) + m(c) + m(d) + m(a-b-c),

m(a+b+c+d) +m(a-c)+mb-¢c)+m(a-b)+m(a-d+b-d+c-d)
+m(a-d-b-d)+m(a-d-c-d)+m(b-d-c-d)

=m(a) + m(b) + m(c) + m(d) + m(a-b-¢c)+m(a-b-d)
+m(a-c-d)+m(b-c-d),

m(a+b+c+d)+m(a-c)+m(b-c)+m(a-b) +m(a-d)+m(b-d)+m(c-d)
+m(a-b-c-d)

=m(a) + m(b) + m(c) + m(d)
+m(a-b-c)+m(a-b-d)+m(a-c-d)+m(b-c-d).
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Proof of the Theorem 2.3. We use the method of mathematical induc-
tion here. The assumption is that the principle for n elements of (G, +, ) holds
and we will prove, that it holds also for n + 1 elements.

At first, we will prove the principle for n even. From the induction assumption
we have

n/2

m(Zak>+Z Z M @iy Qiy = Qi)
k=1

k=1 1<i1<ia< -+ <igp<n

n/2

:Z Z m(ail.ai2... aizkfl)'

k=1 1<i1<iz< -+ <izp—1<n

The unique condition used here is the axiom (II) in its general form:

n n/2
m ((Zak> -an+1>+2 Z m (@i, Qiy * Ay * Apt1)
k=1

k=1 1<i1<io< + <igp<n

n/2

= Z Z m (ail PR DY an+1) . (V)

k=1 1<i1<ig< -+ <igr—1<n

By the help of (I) and by adding the same terms to both sides of the equation
we get

n+1 n n/2
m (Z ak> +m ((Z ak> ‘an+1> + ZSS,;”)
k=1 k=1

k=1

n/2

+ Z Z m (ail Tyttt gy an+1)

k=1 1<i1<iz<--- <izp<n

=m (Z ak> +m (ant+1)

k=1

n/2 n/2

+ Z Séz) + Z Z m (ail c gyttt Qg a/nJrl) . (VI)
k=1

k=1 1<i1<in< - <igr<n
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We use the induction assumption (III) on the right side of the equation
n+1 n/2
m (Zak> +ZS§Z>
k=1 k=1
n/2 n
+Z Z m (@i, Qi+ Qigy* A1) +M ((Zak> ~an+1>
k=1

k=1 1<i1<i2< - <12 <N

n/2 n/2

=385 A m(an) + > m (i Qiy * Qg+ Ang) -
k=1

k=1 1<i1<io< -+ <igr<n
(VII)
There can be used the result (V) for the left side of the equation

n+1 n/2

m (Zak> +ZS§Z>
k=1 k=1
n/2

T Z Z m (ail Tyttt Qg g anJrl)

k=1 1<i1<iz<-- <izgp—1<n

n/2

= Z 552)71 +m(an+1)
k=1

n/2

+ Z Z m (i, Qiy ++ Qigy - Q1) - (VIII)

k=1 1<i1<iz<--- <i2p<n

This yields the final formula of the inclusion-exclusion principle for n + 1 odd
number of elements from (G, +, ). Neither distributivity nor idempotency law
were used.

i ((n+2)/2) -1
m(Zak>+ Z Z m (i, Qiy -+ Gy, )
k=1

k=1 1<i1<ip<- <igp<n+1

(n+2)/2
= Z Z m(ah‘aiz"' ai%,l)~

k=1 1<i1<iz<-++ <igp—1<n+1

The proof for n odd is analogical, and concludes the proof. O
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3. Conclusions

The further research could be focused on the relevance of this axiom for the
family of IF-sets, and then to prove the inclusion-exclusion principle for IF-sets
by the help of the axiom.
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