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THE INCLUSION-EXCLUSION PRINCIPLE

WITHOUT DISTRIBUTIVITY

Jana Kelemenová

ABSTRACT. Inspired by the article of P. Grzegorzewski [The inclusion-exclu-

sion principle for IF-events, Inform. Sci. 181 (2011), 536–546], who has worked
two generalizations of the inclusion-exclusion principle for IF-events, a generaliza-
tion of the inclusion-exclusion principle for mappings with values in semigroups is
presented here. The main idea is in replacing the distributivity and idempotency

laws, by one new axiom.

1. Introduction

P. G r z e g o r z e w s k i gave two generalizations of the inclusion-exclusion
principle in [3] for IF-events applying two definitions for the union of IF-events.
As a reaction on this paper we have proved the principle for mappings from
the set of IF-sets to the semigroup [4]. We have worked on generalizations of
his theorem. First, we gave a theorem of the inclusion-exclusion principle on
semigroups in [4]. The same we have made for the special case, the mapping
from the set of IF-sets to the unit interval. Continuing with this topic, another
method of the proof of the inclusion-exclusion principle for mappings with values
in semigroups is presented in this paper. The conditions of distributivity and
idempotency were replaced by the new axiom.

The classical inclusion-exclusion principle states

P (A1 ∪ . . . ∪ An) =

n
∑

i=1

P (Ai)−

n
∑

i<j

P (Ai ∩Aj)

+

n
∑

i<j<k

P (Ai ∩ Aj ∩ Ak)− · · ·+ (−1)n+1
P

(

n
⋂

i=1

Ai

)
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for any sequence A1, . . . , An from the domain of P : R → R (where P is non-
-negative, additive function in probability theory).

P. Grzegorzewski has defined the probability on IF-event A by the formula

P(A) =





∫

Ω

µAdP, 1 −

∫

Ω

νAdP



 ,

where P is the probability measure through Ω.

This inclusion-exclusion principle has the form [3]:

P

(

n
⋃

i=1

Ai

)

=

n
∑

i=1

P (Ai) −
∑

i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − · · ·

· · · + (−1)n+1P (A1 ∩ A2 ∩ . . . ∩ An) ;

P (⊕n
i=1Ai) =

n
∑

i=1

P (Ai) −
∑

i<j

P (Ai ⊙ Aj) +
∑

i<j<k

P (Ai ⊙Aj ⊙Ak) − · · ·

· · · + (−1)n+1P (A1 ⊙A2 ∩ . . .⊙An) .

Other authors (L a v i n i a C i u n g u, B e l o s l a v R i e č a n and M á r i a
K u k o v á) have worked this topic on IF-sets and IF-events by different methods
and using different operators. We mention a brief summary of their results. The
axiomatic definition of probability on IF-sets given in [6] is the following.

A mapping m : F −→ [0, 1] is an IF-state if the following properties are
satisfied:

1. m (1Ω, 0Ω) = 1, m (0Ω, 1Ω) = 0;

2. m (A⊕B) = m(A) + m(B) −m(A⊙B) for all A,B ∈ F ;

3. An ր A implies m(An) ր m(A).

Let m : F −→ [0, 1] be an IF-state. Then there are probability measures

P,Q : S −→ [0, 1] and α ∈ [0, 1]

such that

m (A) =

∫

Ω

µAdP + α



1 −

∫

Ω

(µA + νA) dQ



 for all A ∈ F.

The result of L. C i u n g u [2] using  Lukasziewicz operators is following.

Let Ai be IF-events, Ai = (µAi
, νAi

), i = 1, . . . , n. Let m be an IF-state and

m(A) =

∫

Ω

µAdP + α



1 −

∫

Ω

(µA + νA) dQ



 .
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Then m satisfies the inclusion-exclusion principle

m

(

n
⊕

i=1

Ai

)

=

n
∑

i=1

m (Ai) −

n
∑

i<j

m (Ai ⊙Aj) + · · · + (−1)n+1m

(

n
⊙

i=1

Ai

)

.

In the proof of L. C i u n g u representation theorem from [1] was used.

Another representation theorem by R i e č a n and C i u n g u [1], correspond-
ing to axiomatic definition of probability from R i e č a n [7] was used in the
proof of M. K u k o v á [5]:

Any probability P : F → J can be expressed by the formulas:

P(A) =
[

P♭(A),P♯(A)
]

and

P♭(A) =

∫

X

µAdP + α

∫

X

(1 − µA − νA) dQ,

P♯(A) =

∫

X

µAdR + β

∫

X

(1 − µA − νA) dS.

K u k o v á [5] proved:

P

(

n
⋃

i=1

Ai

)

=

n
∑

i=1

P (Ai) −
∑

i<j

P (Ai ∩ Aj)

+
∑

i<j<k

P (Ai ∩Aj ∩Ak) − · · · + (−1)n+1P (A1 ∩ A2 ∩ . . . ∩ An) .

K u k o v á used also the  Lukasiewicz connectives:

A⊕B =
(

(µA + µB) ∧ 1, (νA + νB − 1) ∨ 0
)

,

A⊙B =
(

(µA + µB − 1) ∨ 0, (νA + νB) ∧ 1
)

to prove another form of the principle [5], that is

P

(

n
⊕

i=1

Ai

)

=

n
∑

i=1

P(Ai) −
∑

i<j

P (Ai ⊙Aj)

+
∑

i<j<k

P (Ai ⊙Aj ⊙Ak) − · · · + (−1)n+1P (A1 ⊙ A2 ∩ . . .⊙An) .
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2. Inclusion-exclusion principle without distributivity

for mapping with values in semigroups

As it is mentioned in the introduction, we skip the conditions of distributivity
and idempotency in the algebraic system (G,+, ·), where “ · ” is commutative
binary operation, and (G,+) is a commutative semigroup.

The only required condition is the axiom

m
(

(a + b) · c
)

+ m (a · b · c) = m (a · c) + m (b · c) .

Example 2.1. Let S be a σ-algebra of subsets of a set X. Let H be a linear
vector Banach Riesz space. Then, any vector measure m : S → H satisfies the
above condition.Assumptions 2.2.

• (G,+, ·) is an algebraic system, where (G,+) is a commutative semigroup

and “ · ” is commutative binary operation,

• m : G → H is a mapping from the algebraic system (G,+, ·) to the com-

mutative semigroup (H,+), satisfying the valuation property

m(a + b) + m(a · b) = m(a) + m(b), (I)

• there holds the axiom

m
(

(a + b) · c
)

+ m (a · b · c) = m (a · c) + m (b · c) . (II)Theorem 2.3. For n even

m

(

n
∑

k=1

ak

)

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m
(

ai1 · ai2 · · · ai2k
)

=

n/2
∑

k=1

∑

1≤i1<i2<···<i2k−1≤n

m
(

ai1 · ai2 · · · ai2k−1

)

. (III)

For n odd there holds

m

(

n
∑

k=1

ak

)

+

((n+1)/2)−1
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m
(

ai1 · ai2 · · · ai2k
)

=

(n+1)/2
∑

k=1

∑

1≤i1<i2<···<i2k−1≤n

m
(

ai1 · ai2 · · · ai2k−1

)

. (IV)

In the following examples on the sum of even and odd number of elements
from (G,+, ·) the process used in the proof for n general is presented. We add
the same terms to both sides of the equation and use the valuation property.
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Example 2.4. For n = 3. Let a, b, c ∈ G. Using the valuation property (I)
we can write

m
(

(a + b) + c
)

+ m
(

(a + b) · c
)

= m (a + b) + m (c) ,

from where we have:

m (a + b + c) + m
(

(a + b) · c
)

+ m (a · b) + m (a · b · c)

= m(a + b) + m(c) + m(a · b) + m(a · b · c),

m(a + b + c) + m(a · c) + m(b · c) + m(a · b)

= m(a + b) + m(c) + m(a · b) + m(a · b · c),

m(a + b + c) + m(a · b) + m(a · c) + m(b · c)

= m(a) + m(b) + m(c) + m(a · b · c).

A little bit complicated is the example for n even.

Example 2.5. For n = 4

m
(

(a + b + c) + d
)

+ m
(

(a + b + c) · d
)

= m(a + b + c) + m(d),

m(a + b + c + d) + m(a · c) + m(b · c) + m(a · b) + m(a · d + b · d + c · d)

= m(a + b + c) + m(d) + m(a · c) + m(b · c) + m(a · b),

m(a + b + c + d) + m(a · c) + m(b · c) + m(a · b) + m(a · d + b · d + c · d)

= m(a) + m(b) + m(c) + m(d) + m(a · b · c),

m(a + b + c + d) + m(a · c) + m(b · c) + m(a · b) + m(a · d + b · d + c · d)

+ m(a · d · b · d) + m(a · d · c · d) + m(b · d · c · d)

= m(a) + m(b) + m(c) + m(d) + m(a · b · c) + m(a · b · d)

+ m(a · c · d) + m(b · c · d),

m(a + b + c + d) + m(a · c) + m(b · c) + m(a · b) + m(a · d) + m(b · d) + m(c · d)

+ m (a · b · c · d)

= m(a) + m(b) + m(c) + m(d)

+ m(a · b · c) + m(a · b · d) + m(a · c · d) + m(b · c · d).
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P r o o f o f t h e T h e o r e m 2.3. We use the method of mathematical induc-
tion here. The assumption is that the principle for n elements of (G,+, ·) holds
and we will prove, that it holds also for n + 1 elements.

At first, we will prove the principle for n even. From the induction assumption
we have

m

(

n
∑

k=1

ak

)

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k)

=

n/2
∑

k=1

∑

1≤i1<i2<···<i2k−1≤n

m
(

ai1 · ai2 · · · ai2k−1

)

.

The unique condition used here is the axiom (II) in its general form:

m

((

n
∑

k=1

ak

)

· an+1

)

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k · an+1)

=

n/2
∑

k=1

∑

1≤i1<i2<···<i2k−1≤n

m
(

ai1 · ai2 · · · ai2k−1
· an+1

)

. (V)

By the help of (I) and by adding the same terms to both sides of the equation
we get

m

(

n+1
∑

k=1

ak

)

+ m

((

n
∑

k=1

ak

)

· an+1

)

+

n/2
∑

k=1

S
(n)
2k

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k · an+1)

= m

(

n
∑

k=1

ak

)

+ m (an+1)

+

n/2
∑

k=1

S
(n)
2k +

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k · an+1) . (VI)
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We use the induction assumption (III) on the right side of the equation

m

(

n+1
∑

k=1

ak

)

+

n/2
∑

k=1

S
(n)
2k

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k · an+1) + m

((

n
∑

k=1

ak

)

· an+1

)

=

n/2
∑

k=1

S
(n)
2k−1 + m (an+1) +

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k · an+1) .

(VII)

There can be used the result (V) for the left side of the equation

m

(

n+1
∑

k=1

ak

)

+

n/2
∑

k=1

S
(n)
2k

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k−1≤n

m
(

ai1 · ai2 · · · ai2k−1
· an+1

)

=

n/2
∑

k=1

S
(n)
2k−1 + m(an+1)

+

n/2
∑

k=1

∑

1≤i1<i2<···<i2k≤n

m (ai1 · ai2 · · · ai2k · an+1) . (VIII)

This yields the final formula of the inclusion-exclusion principle for n + 1 odd
number of elements from (G,+, ·). Neither distributivity nor idempotency law
were used.

m

(

n+1
∑

k=1

ak

)

+

(

(n+2)/2
)

−1
∑

k=1

∑

1≤i1<i2<···<i2k≤n+1

m (ai1 · ai2 · · · ai2k)

=

(n+2)/2
∑

k=1

∑

1≤i1<i2<···<i2k−1≤n+1

m
(

ai1 · ai2 · · · ai2k−1

)

.

The proof for n odd is analogical, and concludes the proof. �
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3. Conclusions

The further research could be focused on the relevance of this axiom for the
family of IF-sets, and then to prove the inclusion-exclusion principle for IF-sets
by the help of the axiom.
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