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Madeline González Muñiz — Rainer Steinwandt

ABSTRACT. In recent years, quite some progress has been made in understand-
ing the security of encryption schemes in the presence of key-dependent plaintexts.
Here, we motivate and explore the security of a setting, where an adversary against

a signature scheme can access signatures on key-dependent messages.
We propose a way to formalize the security of signature schemes in the pres-

ence of key-dependent signatures (KDS). It turns out that the situation is quite
different from key-dependent encryption: already to achieve KDS-security under
non-adaptive chosen message attacks, the use of a stateful signing algorithm is
inevitable—even in the random oracle model. After discussing the connection be-

tween key-dependent signing and forward security, we present a compiler to lift
any EUF-CMA secure one-time signature scheme to a forward secure signature
scheme offering KDS-CMA security.

1. Introduction

Established security notions for encryption schemes like IND-CCA refer to
scenarios where encrypted plaintexts do not depend on the secret key. For some
scenarios—like encrypting a hard disk storing the secret decryption key—such
a security model is inadequate. Here the question of secure encryption in the
presence of key-dependent messages naturally arises, and in recent years, sig-
nificant progress in understanding such scenarios has been made (see [BRS03],
[BPS07], [HK07], [BHHO08], [HH08], [HU08], [ACPS09] for instance).

For signature schemes, scenarios with key-dependent messages seem much
less understood. Although perhaps being less obvious than for key-dependent
encryption, a scenario where an adversary may have access to signatures on
key-dependent messages is not that far-fetched: if we grant an adversary ac-
cess to the signature of a (possibly encrypted) backup of a hard disk containing
the secret signing key, then this is a scenario not covered by EUF-CMA secu-
rity. A natural question arises about how to combine the security definitions of
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key-dependent encryption and signing to come up with a signcryption scheme
that is secure in the presence of key-dependent messages, and this is explored
in [Gon09]. Key-dependent signing seems also interesting in connection with
combined public key schemes as discussed by H a b e r and P i n k a s [HP01]
or G o n z á l e z V a s c o et al. [VHS09]: here keys used for decrypting and for
signing are not necessarily independent, and signing a message derived from
output of the decryption algorithm may actually imply signing a key-dependent
message.

Our contribution. Following the notion of key dependent message (KDM)
security proposed by B l a c k et al. [BRS03], we propose a formalization of
security in the presence of key dependent signatures (KDS). As discussed in
Section 3.1, for stateless signers, a natural definition—where an adversay can
obtain signatures on chosen key-dependent messages—allows no secure realiza-
tion, even in the random oracle model. A compiler is presented which transforms
any EUF-CMA secure one-time signature scheme into a (necessarily stateful)
KDS-CMA secure signature scheme, offering also forward security. In Section 4
we show that KDS-security and forward security are related, but independent
security goals.

Further related work. In addition to research on forward secure signature
schemes and on encryption in the presence of key-dependent messages, also,
research on leakage resilient cryptography can be mentioned here. Specifically,
K a t z [Kat09] explores signature schemes with bounded leakage resilience, where
an adversary has limited access to information on the secret signing key. In
a sense, the focus of [Kat09] is dual to ours: The work in [Kat09] focuses on
a stateless signing algorithm, i.e., the secret key is not updated. To cope with
such a scenario, a bound on the total leakage is imposed. In the discussion
below, the adversary could in principle expose the complete secret key bit by
bit, and we need a stateful signing algorithm to prevent such attacks. In terms of
modeling adversarial capabilities, we decided to allow key-dependent queries to
a signing oracle, rather than a sequence of leakage functions. As here we do not
aim at modeling attacks at the implementation level, like side-channel attacks,
this seems a viable model.

In F a u s t et al.’s independent work [FKPR09] on Leakage-Resilient Sig-

natures, side-channel attacks are a central motivation. F a u s t et al. focus on
a scenario with bounded leakage per invocation, respectively, leakage functions
with bounded range. Like in the next section, stateful signature schemes are
considered, and the resulting security notion is called UF-CMLA. F a u s t et al.
present a compiler that lifts a 3-time signature scheme to an UF-CMLA secure
signature scheme that can sign a prespecified number of messages.
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2. Preliminaries and definitions

As already indicated and as will be detailed below, for our purposes it is
crucial to allow a stateful signing algorithm, and the subsequent definitions take
this into account.

2.1. Signature schemes and existential unforgeability

We formalize a signature scheme similarly as in [GMR88]. Technically, the
main difference from [GMR88] is that we consider the secret key as part of
the signer’s state, instead of allowing auxiliary input to the signing algorithm.
Moreover, we also allow the signing algorithm to output an error symbol.Definition 1 (Signature scheme). A signature scheme S is a triple of polyno-
mial time algorithms S = (K,S ,V):

− K is a probabilistic key generation algorithm which on input the security
parameter 1k returns a pair (sk, pk) of keys—a public verification key pk
with matching secret signing key sk ∈ {0, 1}∗. In case of a stateful signer,
we interpret sk as initial state of the signer, i. e., all secret information of
the signer is part of its state.

− S is a probabilistic signing algorithm which on input a messageM ∈ {0, 1}∗

and state sk—which in case of a stateless signer is just the secret key–
–returns a signature σ ∈ {0, 1}∗on M or an error symbol ⊥. Moreover, the
state value sk is updated.

− V is a deterministic verification algorithm which on input a public key
pk, a message M, and a candidate signature σ for M returns true or false,
indicating whether σ is a valid signature for M under the public key pk.

For pairs (sk, pk) output by K we require that with overwhelming probability
the obvious correctness condition holds: for all messages M we have

Vpk
(
M,Ssk(M )

)
= true.

The standard security requirement for signature schemes is EUF-CMA which
stands for existential unforgeability under adaptive chosen message attack

(cf. [GMR88]):Definition 2 (EUF-CMA). Let S = (K,S ,V) be a signature scheme, and let
Aeuf be a probabilistic polynomial time algorithm. Consider the following attack
scenario:

1. Compute a key pair (sk, pk)
$
← K(1k), and hand pk as input to Aeuf.

2. The adversary Aeuf is given unrestricted access to a signing oracle OS to
run Ssk(·).

3. Eventually, Aeuf outputs a message M and a signature σ.
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Let QueriedEarlier be the event that Aeuf outputs a message M that has al-
ready been queried to the signing oracle OS . The success probability SucceufA =
SuccAeuf (k) of Aeuf is defined as

SuccAeuf := Pr
[
Vpk(M,σ) = true and ¬QueriedEarlier

]
,

and we call the signature scheme S secure in the sense of EUF-CMA if SuccAeuf

is negligible for all probabilistic polynomial time adversaries Aeuf.

Remark 1. The above definition of EUF-CMA security carries over to one-time
signature schemes in the obvious way—the only modification being that Aeuf

can query the signing oracle OS only once.

In particular, security in the sense of EUF-CMA does not allow an adversary to
obtain signatures on key-dependent messages—like a signature on the complete
secret key (state) sk. In fact, given an EUF-CMA secure signature scheme, it
is easy to come up with a signature scheme that is still EUF-CMA secure, but
where a single key-dependent message query breaks the security of the scheme.

2.2. Security in the presence of key-dependent signatures

Informally, a signature scheme S = (K,S ,V) is referred to as KDS-CMA

secure if it is secure despite a forger’s ability to obtain signatures on arbitrary
(efficiently computable) functions g of the signer’s state sk. In particular, g has
access to the secret key stored at the time of signing.Definition 3 (KDS-CMA). Let the triple S = (K,S ,V) be a signature scheme,
and letAkds be a probabilistic polynomial time algorithm. Consider the following
attack scenario:

1. Compute a key pair (sk, pk)
$
←K(1k), and hand pk as input to Akds.

2. The adversary Akds is given unrestricted access to a signing oracle ÔS . The

oracle ÔS accepts as input a function g, represented as a boolean circuit
of polynomial size, and executes the signing algorithm S with the current
state sk and the message g(sk) as input.1

3. Eventually, Akds outputs a message M ∈ {0, 1}∗ and a signature σ.

Let QueriedEarlier be the event that Akds outputs a message M such that one

of Akds’s queries g to the signing oracle ÔS evaluated to g(sk) = M . Then the
success probability SuccAkds = SuccAkds(k) of Akds is defined as

SuccAkds := Pr
[
Vpk(M,σ) = true and ¬QueriedEarlier

]
,

and we call the signature scheme S secure in the sense of KDS-CMA if SuccAkds

is negligible for all probabilistic polynomial time adversaries Akds.

1In the random oracle model, g may invoke the random oracle.
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3. Achieving KDS-CMA security

By definition, security in the sense of KDS-CMA implies security in the sense
of EUF-CMA, and the question arises whether/how security in the sense of Def-
inition 3 can be achieved.

3.1. Impossibility of KDS-CMA with a stateless signing algorithm

As a first (negative) result, we note that no signature scheme with a stateless
signing algorithm can meet the security goal of KDS-CMA security.

Remark 2. Let S = (K,S ,V) be a signature scheme with a stateless signing
algorithm S , i. e., the secret signing key sk is not changed by executing S . Then
the signature scheme S is not secure in the sense of KDS-CMA.

P r o o f. Let sk = b0, . . . , bℓ−1 ∈ {0, 1}
ℓ be the bit representation of the secret

key and fix i ∈ {0, . . . , ℓ − 1} arbitrary. Then the adversary A may query ÔS

for a signature on bi and use the public verification algorithm V to determine
if the returned signature σ satisfies Vpk(0, σ) = true or Vpk(1, σ) = true. Thus ℓ
queries to ÔS are sufficient to extract the complete secret signing key sk, and
hereafter creating a forgery is trivial. �

Despite its simplicity, the attack in the proof of Remark 2 is quite devastating,
and it might not be obvious if KDS-CMA security can be achieved at all. In the
next section we show that, in the random oracle model, allowing the signing
algorithm to be stateful enables the derivation of a KDS-CMA secure signature
scheme from any one-time EUF-CMA secure one.

3.2. From one-time EUF-CMA to KDS-CMA: a compiler

The compiler in Figure 1 uses a random oracleH : {0, 1}∗−→ {0, 1}k to trans-
form any one-time EUF-CMA secure signature scheme into one that is KDS-CMA

secure (in the random oracle model). While we do not expect this construction
to be optimal from an efficiency point of view, it provides a tool to systematically
construct KDS-CMA secure signature schemes.Proposition 1. Let S = (K,S ,V) be a one-time signature scheme that is secure

in the sense of EUF-CMA. Then the signature scheme Ŝ = (K̂, Ŝ , V̂) obtained

from the compiler in Figure 1 is secure in the sense of KDS-CMA in the random

oracle model.

P r o o f. Let Akdm be an adversary in the sense of KDS-CMA, having a non-

-negligible success probability in creating a forgery for the signature scheme Ŝ.
Then we can construct an adversary Aeuf that violates EUF-CMA security of the
underlying one-time signature scheme S. For doing so, we start withAeuf running
a simulation of Akds, including a simulation of all oracles. We modify Aeuf ’s
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K̂: Create a key pair (skcrt0 , pkcrt0 )
$
←K(1k), return pkcrt0 as public verifi-

cation key and use sk := (skcrt0 , λ, []) as initial state, where [] is an empty
list and λ the empty string.

Ŝ: To sign the ith (1 ≤ i) message M ∈ {0, 1}∗ proceed as follows:

− Create two fresh key pairs (skcrti , pkcrti )
$
←K(1k), (skmsg

i , pkmsg
i )

$
←

K(1k).

− Compute Certi := pkcrti ‖pk
msg
i ‖σi with σi

$
←Sskcrt

i−1
(pkcrti ‖pk

msg
i ).

− Update the internal state sk =
(
skcrti−1, sk

msg
i−1 , [Certµ]1≤µ≤i−1

)
to

sk ←
(
skcrti , skmsg

i , [Certµ]1≤µ≤i

)
.

− Compute s
$
←Sskmsg

i

(
r ‖ H(M ‖ r)

)
, where r

$
←{0, 1}k is chosen

uniformly at random.
− Return the signature

(
r, s, [Certµ]1≤µ≤i

)
.

V̂: On input a message M and a candidate signature
(
r, s, [Certµ]1≤µ≤i

)
,

output true if all of the following conditions hold. Otherwise output
false:

− Vpkmsg
i

(
r ‖ H(M ‖ r), s

)
= true,

− Vpkcrt
µ−1

(pkcrtµ ‖ pkmsg
µ , σµ) = true for all 1 ≤ µ ≤ i, where

Certµ = pkcrtµ ‖ pkmsg
µ ‖ σµ.

Figure 1. Deriving a KDS-CMA secure signature scheme, where it is as-
sumed that public keys pkcrt

i
, pkmsg

i
are represented with a fixed length

encoding.

simulation strategy through a short sequence of games, the last one yielding an
attack on the EUF-CMA security of the underlying one-time signature scheme S.

Game 0. This is a trivial simulation of the original attack game played by Akds:
The public verification key and initial secret state of the challenge for Akds are

fixed by Aeuf by running the key generation algorithm K̂. From here on, all
needed oracles for Akds can be simulated faithfully:

Random oracle: For simulating Akds’s random oracle, Aeuf creates an em-
pty list LRO. Then, whenever Akds queries its random oracle with a mes-
sage x such that LRO contains no entry of the form (x, ·), Aeuf chooses
a value rx ∈ {0, 1}

k uniformly at random, appends the pair (x, rx) to LRO

and sends rx to Akds. In case Akds queries LRO a second time with the
same value x, Aeuf returns the stored random value rx.
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Signing oracle: Knowing the initial secret key, Aeuf can faithfully answer

queries to ÔS by simply executing Ŝ with the appropriate input and using
the above simulation of the random oracle H.

Game 1. Let Collision be the event that during the simulation, Aeuf stores
pairs (x, rx) and (x′, rx′) in LRO, where x 6= x′ and rx = rx′ . Whenever the event
Collision occurs, Aeuf gives up, without creating a successful forgery. As Akds

is polynomially bounded, Collision occurs with negligible probability only, and
subsequently we may assume that the event Collision does not occur.

Game 2. Let qs be a polynomial upper bound for the number of signing queries

made by Akds, and let gi be the ith function/message submitted to ÔS by Akds.
By pk∗ we denote the public key to be attacked by Aeuf in the definition of
EUF-CMA security. In this game Aeuf chooses an index i∗ ∈ {0, . . . , qs} and
then, if i∗ 6= 0, a flag Γ ∈ {crt,msg} uniformly at random—for i∗= 0 we always
set Γ := crt. Now, in the simulation Aeuf replaces the public key pkΓi∗ with the
challenge public key pk∗. In case that Akds does not submit any signature queries

to ÔS , this modification is not detectable for Akds. Similarly, answering signature
queries gi with i < i∗ is still possible, as the secret key sk∗ associated to the
challenge key pk∗ is not needed here. Moreover, Aeuf can compute Certi∗+1:

− If Γ = crt, then Aeuf can use its signing oracle to compute Certi∗+1.

− If Γ = msg, then Aeuf knows skcrti∗ .

Consequently, Aeuf is able to correctly answer all signature queries gi with i > i∗,
too. For the only “critical” query gi∗ , we consider two cases:

− If the value
{

gi∗
((
sk∗, skmsg

i∗ , [Certµ]1≤µ≤i∗
))

if Γ = crt,

gi∗
((
skcrti∗ , sk∗, [Certµ]1≤µ≤i∗

))
if Γ = msg

(1)

can be predicted (in the sense specified in Remark 3) by Akds, we modify
Akds to make such a prediction, therewith replacing the potentially key-
-dependent query gi∗ with a key-independent query gi∗ . By construction,
the success probability of Akds remains non-negligible, provided it was
non-negligible before.

Remark 3. Let σ be a signature on the value output above in (1). We say
that Akds can predict the value (1) if there exists a probabilistic polynomial
time (extractor) algorithm E which on input the state of Akds and gi∗ out-
puts a message M such that M equals the value in (1) with non-negligible
probability.
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− If the value (1) can be predicted with negligible probability only, Aeuf

creates a key pair (sk′, pk′)
$
←K(1k), a random r′

$
←{0, 1}k and queries

M ′ ‖ r′ :=

{
gi∗

((
sk′, skmsg

i∗ , [Certµ]1≤µ≤i∗
))
‖ r′ if Γ = crt,

gi∗
((
skcrt

i∗ , sk′, [Certµ]1≤µ≤i∗
))
‖ r′ if Γ = msg

to its simulation of the random oracle. The use of sk′ instead of sk∗ in
the evaluation of gi∗ cannot be noticed by Akds unless the event Collision
occurs.

The value Ssk∗

(
r′ ‖ H(M ′ ‖ r′)

)
is handed to Akds as s-component of the

signature. If Γ = msg, this value can be obtained from Aeuf ’s signing oracle,
otherwise Aeuf can compute this value itself.

Note that the adversary is only forced to predict during the critical query gi∗ .
For i 6= i∗, Aeuf can faithfully answer all key-dependent queries since it has
generated the keys during the simulation. Where this is not the case, the ad-
versary Akds may have to predict a polynomial number of values, which in turn
may make its success probability negligible, depending on the correctness of the
predictions.

Game 3. Let
(
M, (r, s, [Certµ]1≤µ≤i)

)
be a successful forgery returned by Akds.

With probability ≥ 1/(2qs+1) (minus some negligible function), this forgery in-
cludes a signature on a message that can be verified successfully with pkΓi∗ = pk∗

and one of the following holds—in all other cases the simulation of Akds needs
to be restarted.

− The list [Certµ]1≤µ≤i contains a Certµ = pkcrtµ ‖ pkmsg
µ ‖ σµ, where

Vpk∗(pkcrtµ ‖ pkmsg
µ , σµ) = true and pkcrtµ ‖ pkmsg

µ has not been submitted

to Aeuf ’s signing oracle. Consequently, Aeuf has created a valid forgery.

− We have Vpk∗

(
r ‖H(M ‖ r), s

)
= true and r ‖H(M ‖ r) has not been sub-

mitted to Aeuf ’s signing oracle. Consequently, Aeuf has created a valid
forgery.

Summarizing, we see that if Akds’s forgery is valid with non-negligible prob-
ability, the same holds for Aeuf ’s forgery. �

4. KDS-CMA and forward security

In forward security, so-called key-evolving signature schemes are considered,
and compromise of the current secret key does not enable an adversary to forge
signatures pertaining to the past. Signatures for messages signed in the past
under a fixed public key are valid even if the current secret key is exposed.
Furthermore, the adversary cannot forge signatures with a “date” prior to key
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exposure. In this section we discuss connections between KDS-CMA and forward
security—to the latter, we will refer to as FWD-CMA.

4.1. Key-evolving signature schemes and forward security

We adopt some terminology from B e l l a r e and M i n e r [BM99a], [BM99b],
starting by defining a key-evolving signature scheme.Definition 4 (Key-evolving signature scheme). A key-evolving signature sche-
me Sf is a quadruple of polynomial time algorithms S = (Kf,Uf,Sf,Vf ):

1. Kf is a probabilistic key generation algorithm which on input the security
parameter 1k, the total number of time periods T ∈ N (and possibly other
parameters) returns a pair (sk0, pk) of keys—a public verification key pk
with matching (base) secret signing key sk0.

2. Uf is a deterministic secret key update algorithm which takes as input the
secret signing key skj−1 of the previous time period j − 1 and returns the
secret signing key skj for time period j.

3. Sf is a probabilistic signing algorithm that on input a messageM ∈ {0, 1}∗

and the secret signing key skj of the current time period j returns a sig-

nature 〈j, ζ〉
$
←Sf

skj
(M ) for M for time period j ∈ N or returns an error

symbol ⊥.

4. Vf is a deterministic verification algorithm which on input a public key
pk, a message M, and a signature 〈j, ζ〉 returns true or false, indicating
whether the signature is accepted or rejected, respectively.

We may assume that skj stores the value j itself for period j ∈ {1, . . . , T} as
well as the total number T of time periods. Further on, we adopt the convention
that skT+1 is the empty string and that Uf (skT ) returns skT+1. Both the current
time period j and the total number of time periods T are publicly known and
accessible to an adversaryAfwd along with the attacked public key pk. The actual
attack game used to define forward security of a key-evolving signature scheme
involves three stages: the chosen message attack phase (cma), the break-in phase
(breakin), and the forgery phase (forge).Definition 5 (FWD-CMA). Let Sf = (Kf,Uf,Sf,Vf ) be a key-evolving signa-
ture scheme, and let Afwd be a probabilistic polynomial time algorithm. Consider
the following attack scenario:

1. CMA phase

Set j ← 0, and generate a key pair (sk0, pk)
$
←Kf (1k, . . . , T ).2

repeat
j ← j + 1; skj ← U

f(skj−1)

2Here, ‘. . . ’ indicates that further auxiliary input parameters may be present.
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MADELINE GONZÁLEZ MUÑIZ — RAINER STEINWANDT

d
$
←Afwd O

j

Sf (cma, pk)
until (d = breakin) or (j = T )
if d 6= breakin and j = T
then j = T + 1

end if

2. Breakin phase

The adversary Afwd is handed the current secret key skj.

3. Forge phase

Eventually, Afwd outputs a message M and a signature 〈b, ζ〉 with b < j.

Let QueriedEarlier be the event that Afwd outputs a message M that has al-
ready been queried to a signing oracle Oj

Sf . The success probability SuccAfwd =

SuccAfwd(1k, . . . , T ) of Afwd is defined as

SuccAfwd := Pr
[
Vf
pk

(
M, 〈b, ζ〉

)
= true and ¬QueriedEarlier

]
,

and we call the signature scheme Sf forward-secure if SuccAfwd is negligible (in k)
for all probabilistic polynomial time adversaries Afwd.

The process in Definition 5 is strictly ordered in that once an adversary gives
up the signing oracle for skj , it cannot obtain access to that oracle again. At some
point, the adversary Afwd decides to use its break-in privilege and is returned
the current secret key skj . To be successful, Afwd must forge a signature under
skb for some b < j and new message M.

Remark 4. By definition, a FWD-CMA secure scheme allows an adversary Afwd

to submit a polynomial number of queries to its signing oracle within a single
time period j. Thus, in the presence of key-dependent messages, an attack as
presented in the proof of Remark 2 may reveal the complete secret key, before
an update of the secret key occurs. In other words, security in the sense of
FWD-CMA does not imply strong security guarantees in the presence of key-
-dependent messages.

Contrasting the above negative statement, after applying some technical mod-
ifications to obtain a syntactically correct key-evolving signature scheme, the
compiler in Figure 1 (which was designed to achieve KDS-CMA security) can be
used to lift an EUF-CMA secure one-time signature scheme S to a forward secure
key-evolving signature scheme Sf.

4.2. The compiler revisited: from one-time EUF-CMA to FWD-CMA

Figure 2 summarizes the necessary small changes to the compiler in Figure 1.
The time periods are included in the state, the signature, and the certificates.

Using Definitions 4 and 5, we can show that the scheme derived in Figure 2
is FWD-CMA secure by adapting the proof of Proposition 1 accordingly:
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Kf : Create a key pair (skcrt−1, pk
crt
−1)

$
←K(1k), return pkcrt−1 as public veri-

fication key and use sk := (0, skcrt−1, λ, []) as initial state, where [] is an
empty list and λ the empty string.

Uf : On input of the state sk =
(
j, skcrti , skmsg

i , [Certµ]0≤µ≤i

)
, if j = −1,

then we create two fresh key pairs (skcrt0 , pkcrt0 )
$
←K(1k), (skmsg

0 , pkmsg
0 )

$
←K(1k) and update the internal state to sk ←

(
0, skcrt0 , skmsg

0 , [Cert0]
)
.

Else, the internal state becomes sk ←
(
j +1, skcrti , skmsg

i , [Certµ]0≤µ≤i

)

leaving the secret keys and certificates the same.

Sf : To sign the ith (1 ≤ i) message M ∈ {0, 1}∗ proceed as follows:

− Create two fresh key pairs (skcrti , pkcrti )
$
←K(1k), (skmsg

i , pkmsg
i )

$
←

K(1k).

− Set Certi := j ‖ pkcrti ‖ pkmsg
i ‖ ζi with ζi

$
←Sskcrt

i−1
(j ‖ pkcrti ‖

pkmsg
i ), where j is the current time period.

− Update the internal state sk =
(
j, skcrti−1, sk

msg
i−1, [Certµ]0≤µ≤i−1

)
to

sk ←
(
j, skcrti , skmsg

i , [Certµ]0≤µ≤i

)
.

− Compute s
$
←Sskmsg

i

(
r ‖ H(M ‖ r)

)
, where r

$
←{0, 1}k is chosen

uniformly at random.
− Return the signature

〈
j,
(
r, s, [Certµ]0≤µ≤i

)〉
.

Vf : On input a message M and a candidate signature〈
j,
(
r, s, [Certµ]0≤µ≤i

)〉
, output true if all of the following conditions

hold. Otherwise output false:
− Vpkmsg

i

(
r ‖ H(M ‖ r), s

)
= true.

− Vpkcrt
µ−1

(j ‖ pkcrtµ ‖ pkmsg
µ , ζµ) = true for all 0 ≤ µ ≤ i, where

Certµ = j ‖ pkcrtµ ‖ pkmsg
µ ‖ ζµ.

Figure 2. Forward-secure modification of the KDS-CMA compiler from
Figure 1, with time periods j ∈ {1, . . . , T} being understood as being

represented with a fixed length encoding.Proposition 2. Let S = (K,S ,V) be a one-time signature scheme that is

secure in the sense of EUF-CMA. Then the key-evolving signature scheme

Sf = (Kf,Uf,Sf,Vf ) obtained from the compiler in Figure 2 is secure in the

sense of FWD-CMA in the random oracle model.

P r o o f. Let Afwd be an adversary in the sense of FWD-CMA, having a non-
-negligible success probability in creating a forgery for the signature scheme Sf

given in Figure 2. Then we can construct an adversary Aeuf that violates
EUF-CMA security of the underlying one-time signature scheme S.
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CMA phase. We start with Aeuf running a simulation of Afwd, and adapt
Game 0 in the proof of Proposition 1 in the obvious way: replace adversary

Akds with Afwd, signature scheme Ŝ with Sf, and signing oracle ÔS with Oj

Sf .

The public verification key and initial secret key of the challenge for Afwd are
fixed by Aeuf by running Kf. Likewise, we replace adversary Akds with Afwd in
Game 1, and denote by qs a polynomial upper bound for the number of signing
queries made by Afwd and by Γ ∈ {crt,msg} a randomly chosen flag.

Let Mi be the ith message submitted to Oj

Sf by Afwd. By pk∗ we denote

the public key to be attacked by Aeuf in the definition of EUF-CMA security.
Analogously as in Game 2, Aeuf selects an index i∗ ∈ {−1, . . . , qs} uniformly at
random, and in the simulation replaces the public key pkΓi∗ with the challenge
public key pk∗. Answering signature queries Mi with i 6= i∗ is possible, as the
relevant secret keys skcrti , skmsg

i are known to Aeuf. Moreover, Aeuf can use its
own signing oracle to compute a valid signature of Mi∗ . This enables Aeuf to
correctly answer all signature queries Mi for all time periods j.

Breaking phase. At any time interval j,Afwd can output a special value breakin
and obtain the current secret key

(
j, skcrti , skmsg

i , [Certµ]0≤µ≤i

)
, but must create

a forgery using an index b < j to be successful. When i 6= i∗, Aeuf can correctly
reveal the secret key ski. In case i = i∗, however, Aeuf gives up without creating
a forgery. The probability that Afwd chooses pkΓi∗ at target of its forgery—and
consequently is not handed skΓi∗—is ≥ 1/(2qs+3), and therefore non-negligible.

Forge phase. Since the probability that i = i∗ is at least 1/(2qs+3), if Afwd can
forge with non-negligible probability p, then p/(2qs + 3) is still non-negligible,
since qs is polynomial in the security parameter. If Afwd does not use pkΓi∗ in
its forgery, the simulation needs to be restarted. Otherwise, Afwd outputs mes-
sage M with verifiable signature

〈
b, (r, s, [Certµ]0≤µ≤i)

〉
and one of the following

cases holds:

− The list [Certµ]0≤µ≤i contains a Certµ = b ‖ pkcrtµ ‖ pkmsg
µ ‖ σµ, where

Vpk∗(b ‖ pkcrtµ ‖ pkmsg
µ , σµ) = true and b ‖ pkcrtµ ‖ pkmsg

µ has not been

submitted to Aeuf ’s signing oracle. Consequently, Aeuf has created a valid
forgery.

− We have Vpk∗

(
r ‖ H(M ‖ r), s

)
= true and r ‖ H(M ‖ r) has, with

overwhelming probability, not been submitted to Aeuf ’s signing oracle.
Consequently, Aeuf has created a valid forgery.

Hence, with non-negligible probability Afwd’s forgery is also valid for Aeuf. �

On a simple long signature solution to achieve FWD-CMA. In [BM99b,
Section 3.3] B e l l a r e and M i n e r describe a construction to achieve forward
security given an EUF-CMA secure signature. The resulting signature scheme
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Sℓ = (Kℓ,U ℓ,Sℓ,Vℓ) can be summarized as in Figure 3. We note that this scheme
is not secure in the sense of FWD-CMA, however:

Kℓ: Create a key pair (sk0, pk0)
$
←K, return pk := pk0 as public

verification key and use sk := (sk0, []) as initial state, where [] is
an empty list.

U ℓ: To update the secret state ski−1 for 1 ≤ i ≤ T proceed as follows:

− Create a fresh key pair (ski, pki)
$
←K(1k).

− Compute Certi := (pki, σi), where σi
$
←Sski−1

(i ‖ pki).

− Update the internal state sk =
(
ski−1, [Certµ]1≤µ≤i−1)

)
to

sk ←
(
ski, [Certµ]1≤µ≤i

)
.

Sℓ: To sign during the ith (1 ≤ i ≤ T ) time period a message M ∈
{0, 1}∗, proceed as follows:

− Compute s
$
←Sski

(M ).
− Return the signature

(
s, [Certµ]1≤µ≤i

)
.

Vℓ: On input a message M and a candidate signature(
s, [Certµ]1≤µ≤i

)
, output true if all of the following conditions hold.

Otherwise output false:
− Vpki

(M, s) = true

− Vpkµ−1
(i ‖ pkµ, σµ) = true for all 1 ≤ µ ≤ i, where

Certµ = (pkµ, σµ).

Figure 3. Long signatures.

Remark 5. Let Sℓ = (Kℓ,U ℓ,Sℓ,Vℓ) be the signature scheme described in Fig-
ure 3. Then Sℓ is not secure in the sense of FWD-CMA.

P r o o f. Running the key generation algorithm Kℓ, our adversary Afwd creates
a key pair (sk∗, pk∗) and requests a signature on the message i ‖ p∗ during pe-
riod i − 1. The signature is stored by Afwd as σi, where Certi := (pki, σi). For

an arbitrary message M, now Afwd can use ski = sk∗ to compute s
$
←Sski

(M ).
Hence,

(
s, [Certµ]1≤µ≤i

)
is a valid forged signature on M as verified by Vℓ. �

The adversary Afwd succeeds because the signatures requested can be used
later on as certificates in the forgery. Therefore, we can avoid this attack if we
append a 1 in front of any public key pki to be used in a certificate, as well as
append a 0 in front of any messageM to be signed. More specifically, in Figure 3,
we would write σi

$
←,Sski−1

(1 ‖ i ‖ pki) in the secret key update algorithm U ℓ, and

s
$
←Sski

(0 ‖M ) in the signing algorithm Sℓ—with the analogous modifications
in the verification algorithm.
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5. Conclusion

Given an existentially unforgeable one-time signature scheme, the construc-
tion we presented yields a signature scheme offering strong guarantees in the
presence of key-dependent messages. Especially, if we are willing to make stronger
assumptions than the availability of a one-time signature, the efficiency of our
compiler is not completely satisfying, and exploring alternative constructions
seems worthwhile. For instance, techniques as used for aggregate signatures
might be attractive to reduce the size of signatures. Also, the feasibility of tree-
based constructions (as in [BM99b], [FKPR09]) lends itself as a natural topic
for further research. Finally, from a practical point of view, it appears desirable
to explore in more detail which guarantees can be achieved with a “stateless”
signing algorithm, i.e., if the signer’s secret key cannot be updated.

Acknowledgements. We thank M a r ı́ a I s a b e l G o n z á l e z V a s c o for
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REFERENCES

[ACPS09] APPLEBAUM, B.—CASH, D.—PEIKERT, C.—SAHAI, A.: Fast cryptographic
primitives and circular-secure encryption based on hard learning problems, in: Ad-

vances in Cryptology—CRYPTO ’09 (S. Halevi, ed.), 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, 2009. Lecture Notes in Comput.
Sci., Vol. 5677, Springer, Berlin, 2009, pp. 595–618.

[BHHO08] BONEH, D.—HALEVI, S.—HAMBURG, M.—OSTROVSKY, R.: Circular-
secure encryption from decision Diffie-Hellman, in: Advances in Cryptology–
–CRYPTO ’08 (D. Wagner, ed.), 28th Annual International Cryptology Confer-

ence, Santa Barbara, CA, USA, 2008, Lecture Notes in Comput. Sci., Vol. 5157,
Springer, Berlin, 2008, pp. 108–125.

[BM99a] BELLARE, M.—MINER, S. K.: A forward-secure digital signature scheme, in:
Advances in Cryptology—CRYPTO ’99, Lecture Notes in Comput. Sci., Vol. 1666,
Springer, Berlin, 1999, pp. 431–448.

[BM99b] BELLARE, M.—MINER, S. K.: A forward-secure digital signature scheme,

http://cseweb.ucsd.edu/~mihir/papers/fsig.html, July, 1999, Full version of
[BM99a].

[BPS07] BACKES, M.—PFITZMANN, B.—SCEDROV, A.: Key-dependent message se-
curity under active attacks–BRSIM/UC-soundness of symbolic encryption with
key cycles, in: CSF ’07, Proc. of the 20th IEEE Computer Security Foundations

Symposium, IEEE Computer Society, Washington, DC, USA, 2007, pp. 112–124,
http://dx.doi.org/10.1109/CSF.2007.23.

[BRS03] BLACK, J.—ROGAWAY, P.—SHRIMPTON, T.: Encryption-scheme security in
the presence of key-dependent messages, in: SAC ’02—Selected Areas in Cryptog-
raphy (K. Nyberg et al., eds.), 9th Annual International Workshop, St. John’s,
Newfoundland, Canada, 2002, Lecture Notes in Comput. Sci., Vol. 2595, Springer,

Berlin, 2003, pp. 62–75.

28

http://cseweb.ucsd.edu/~mihir/papers/fsig.html


SECURITY OF SIGNATURE SCHEMES...

[FKPR09] FAUST, S.—KILTZ, E.—PIETRZAK, K.—ROTHBLUM, G.: Leakage-resilient

signatures, Cryptology ePrint Archive: Report 2009/282, June, 2009,
http://eprint.iacr.org/2009/282.

[GMR88] GOLDWASSER, S.—MICALI, S.—RIVEST, R. L.: A digital signature scheme
secure against adaptive chosen-message attacks, SIAM J. Comput. 17 (1988),
281–308.

[Gon09] GONZALEZ, M: Cryptography in the Presence of Key-Dependent Messages. Ph.D.

Thesis, Florida Atlantic University, December 2009,
http://brain.math.fau.edu/Gonzalez/dissertation.pdf.

[HH08] HAITNER, I.—HOLENSTEINY, T.: On the (im)possibility of key dependent en-
cryption, in: TCC ’09—Theory of Cryptography (O. Reingold, ed.), 6th Theory of
Cryptography Conference, San Francisco, CA, USA, 2009, Lecture Notes in Com-
put. Sci., Vol. 5444, Springer, Berlin, 2009, pp. 202–219.

[HK07] HALEVI, S.—KRAWCZYK, H.: Security under key-dependent inputs, in: Proc. of
the 14th ACM Conference on Computer and Communications Security—CCS ’07
(P. Ning et al., eds.), Alexandria, Virginia, USA, 2007, ACM, New York, NY, USA,
2007, pp. 466–475, http://doi.acm.org/10.1145/1315245.1315303.

[HP01] HABER, S.—PINKAS, B.: Securely combining public-key cryptosystems, in:

CCS ’01—Computer and Communications Security (P. Samarati, ed.), 8th ACM
Conference, Philadelphia, PA, USA, 2001, ACM, New York, 2001, pp. 215–224.

[HU08] HOFHEINZ, D.—UNRUH, D.: Towards key-dependent message security in the
standard model, in: EUROCRYPT ’08—Advances in Cryptology (N. Smart, ed.),
27th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Istanbul, Turkey, 2008, Lecture Notes in Comput. Sci., Vol.

4965, Springer, Berlin, 2008, pp. 108–126.
[Kat09] KATZ, J.: Signature schemes with bounded leakage resilience, Cryptology ePrint

Archive:Report 2009/220, May, 2009, http://eprint.iacr.org/2009/220.
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