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ISOTOPY OF LATIN SQUARES

IN CRYPTOGRAPHY

Otokar Grošek — Marek Sýs

ABSTRACT. We present a new algorithm for a decision problem if two Latin
squares are isotopic. Our modification has the same complexity as Miller’s algo-
rithm, but in many practical situations is much faster. Based on our results we
study also a zero–knowledge protocol suggested in [3]. From our results it follows
that there are some problems in practical application of this protocol.

1. Introduction

Throughout this paper we use a common notation for the symmetric group
of elements from a set X as Sym(X). Especially, the symmetric group over
the symbol set In = {1, . . . , n} will be denoted by Sn. Also L(n) will denote
the set of all Latin squares over In. We will understand the Cayley table of
a quasigroup (S, ∗) over the symbol set In as a Latin square L = L(�ij) ∈ L(n)
with �ij = i∗ j. Therefore the notions of a quasigroup and a Latin square will be
freely interchanged in the paper. Since it is more natural and handy to express
definitions and results concerning the topic in the language of Latin squares, the
notion of a quasigroup will be used only sporadically.

A Latin square was regarded by Euler as a square matrix with n2 entries
of n different elements, none of them occurring twice within any row or column

of the matrix:

1 2 3 4 5
2 4 1 5 3
3 5 2 1 4
4 3 5 2 1
5 1 4 3 2

. Latin squares as a basic core for cryptographic

systems go approximately 20 years back although, there were some systems
where they played a marginal role. In 1941 A. A d r i a n A l b e r t has written
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that (quote [12] ) “. . . various algebraic structures can be used for ciphering”.
The first serious usage of Latin squares in Block ciphers with detailed analysis is
connected with the cipher IDEA [14]. In this paper authors used the concept of
non-isotopic quasigroups. Since that time plenty of papers has been published,
some of them are mentioned in [19]. It is customary to mention

• Block ciphers (L a i, M a s s e y IDEA 1990, [14]).

• (Almost) public key cryptography (K o s c i e l n y and M u l l e n 1999 [13],
M a r k o v s k i, G l i g o r o s k i, S t o j c e v s k a 2000 [15]).

• S-box theory (G r o š e k, S a t k o, N em o g a 2000 [9], [10], G r o š e k,
H o r á k, T r a n 2004 [11]).

• Stream ciphers (G l i g o r o s k i, M a r k o v s k i, K o c a r e v, G u s e v:
Edon80 2005 [6])

• Hash functions and MAC’s (G l i g o r o s k i, O d e g a r d, M i h o v a,
K n a p s k o g, K o c a r e v, D r á p a l : EDON-R 2009 [7]).

From such a brief list one can see a large potential of Latin squares for cryp-
tography along with their analysis as a part of cryptanalysis. One of the basic
properties of Latin squares is their membership to an isotopy class. These are
precisely Latin squares which differ in the row, column or element permutation,
respectively. We say that they are in some sense similar. Such Latin squares
are used in the stream cipher EDON 80, and in [22] authors analyzed the in-
fluence of isotopic Latin squares to the security of this cipher. Their analysis
by exhaustive search was possible because of the small size of them, namely
4 × 4. Nowadays ciphers, like EdonR [7] which is a candidate for the new stan-
dard SHA3, use much larger quasigroups. Thus a natural task arises: to develop
a strong toolkit for the decision problem if two Latin squares are isotopic.

In M i l l e r’ s paper [16] one can find an O(nlog2 n) algorithm based on a pre-
vious work of T a r j a n [17]. Obviously this algorithm is impossible to use for
EdonR analysis. In some other papers authors used a graph representation of
Latin squares, and the problem is converted to finding isomorphisms of strongly

regular graphs. Complexity of such algorithms is of the order O(nn
1/3 log2 n), and

hence they are, in general, slower than Miller’s algorithm.

2. Isotopy problem of two Latin squares

For convenience of a reader we briefly recall some basic definitions.

���������� 1 ([2])� Two Latin squares of order n are said to be isotopic if one
can be transformed into other by rearranging rows, rearranging columns, and
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renaming elements, that is, if the quasigroups whose multiplication tables they
represent are isotopic.

���������� 2 ( [1])� Let Latin squares L and L′ be isotopic. Let θ, ψ, ϕ be
bijections such that

ψ(�θ(i),ϕ(j)) = �′i,j .

Then (θ, ϕ, ψ) is called isotopism of L on L′. If L and L′ are identical (�ij = �′ij
for all (i, j), then isotopism is also called autotopism.

Application of an isotopism (θ, ϕ, ψ) on Latin square L we denote as L(θ,ϕ,ψ).

Isotopy is an important relation on the set of Latin squares. Even more this is
an equivalence relation which divides Ln on disjoint classes of isotopic squares.
And we have a decision problem

INPUT: Latin squares L,M of order n.

DECISION: Are they isotopic?

OUTPUT: YES – NO.

To solve this problem doest not require, in general, to find permutation
of rows θ, columns ϕ and symbols ψ if they are isotopic. One such approach
is due to F e r g u s o n [4] which was shown as wrong in [5]. An informal descrip-
tion is as follows:

• Let E be the equivalence relation on Ln in which L and M, or transpose
of M,M t are isotopic.

• One can assume a Latin square as n × n matrix, and calculate its deter-
minant.

• It has been shown in [4] that L and M , n ≤ 7, are isotopic iff they have
the same determinant.

• This result is not true for n = 8 as shown in [5].

One of the first attempts to use isotopy to evaluate security of a crypto-
graphic system was paper [22]. EDON80, as one of the submissions to the
ECRYPT Stream Ciphers Project—eSTREAM that passed to the Phase II, uses
so called e-transformers. They consist of four quasigroups of order n = 4 in each
e-transformer (out of 64 carefully chosen), selected to use by 80 bits key read as
two-bits sequences 00, 01, 10, 11. V o j v o d a and S ý s presented at SASC ’07 in
Bochum that all 64 are isotopic to (Z4,+). Moreover, they are polynomial [11]
over GF (22). If L,M are isotopic and L is polynomial, then M is polynomial.
Thus one polynomial is enough to describe e-transformers. These two facts may
imply a possible weakness, or simplification in hardware.

Another possibility is to use isotopy for a cryptographic primitive. It is known
that isotopy problem belongs to the “hard problems” [16]. As we mentioned
above the complexity by Miller’s algorithm is O(nlog2 n). Thus this problem can
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be (potentially) used in zero–knowledge protocols by Goldreich, Micali, Wigder-
son theorem which states that all NP problems give to rise to a zero-knowledge
proofs.

	
����� 1 (G o l d r e i c h-M i c a l i -W i g d e r s o n [8])� Every provable math-
ematical statement has a zero-knowledge proof.

We focus on this problem in the Section 4.

3. A new algorithm for isotopy

A well known Cayley theorem [18] states that any group (G, ∗) is isomorphic
to a subgroup G of the symmetric group Sym(G). This isomorphism is known
as a regular representation of G. Elements of G can be represented by left trans-
lations of G. Translation by a ∈ G is denoted by La, La : G �→ G, defined
for x ∈ G as La(x) = a ∗ x. Hence a group G is represented by the set of its
translations LG ⊆ Sym(G).

For a quasigroup Q we can similarly consider the set of left translations al-
though in this case LQ is not the isomorphic image of Q. The quasigroup is
defined by LQ uniquely. Next theorem states relation between translations and
isotopy of two quasigroups.

	
����� 2� Let (θ, ϕ, ψ) be isotopism of two quasigroups Q1 = (Q, ∗1) and
Q2 = (Q, ∗2). Then for the set of left translations LQ1

, LQ2
it is valid

LQ2
= ψLQ1

ϕ−1. (1)

From Theorem 2 we have a straightforward method how to find an isotopism
for two quasigroups Q1, Q2: For all ϕ, ψ ∈ Sym(Q) verify (1). This approach has
obviously a very high complexity. The next theorem is more practical for such
purposes.

	
����� 3� Let Q1 = (Q, ∗1), Q2 = (Q, ∗2) be two quasigroups and p2 ∈ LQ2
.

Then Q1, Q2 are isotopic iff there exist p1 ∈ LQ1
, p ∈ Sym(Q) such that

LQ2
p−1
2 = pLQ1

p−1
1 p−1. (2)

An algorithm based on Theorem 3 is much more effective than that based
on Theorem 2. It is enough to find for a fixed p2 ∈ LQ2

permutations p1 ∈
LQ1

, p ∈ Sym(Q) such that LQ2
p−1
2 = pLQ1

p−1
1 p−1. Since the sets of permu-

tations LQ2
p−1
2 , LQ1

p−1
1 are conjugate by p, and thus they possess the same

cycle structure. This fact allows to modify the set of permutations p from
the search space. The cycle structure of g, h ∈ Sn directly leads to the set
Cn(g, h) = {p| pgp−1 = h}. The cardinality of this set is given by the structure
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of permutations g, h. The cycle structure of p ∈ Sn is a vector of the num-
bers (a1, · · · , an), of disjoint cycles of p. More precisely, p possesses ai cycles of
the length i. For two conjugate permutations g, h, of the type (a1, · · · , an) we
have [21] |Cn(g, h)| =

∏n
i=1 ai!i

ai .

Another improvement for the isotopy algorithm is based on generators for the
conjugate sets G,H ⊆ Sn with Cn(G,H) = {p| pGp−1 = H}.
���������� 3� We say that G′ ⊆ G generates G ⊆ Sn, if for each τ ∈ G there
exists a sequence of permutations {g′n}kj=1 from G′ such that for the permutation
τ =

∏k
j=1 g

′
j.

A pseudocode of the algorithm to find Cn(G,H) is as follows:


������
� 1� Input: Set G,H ⊆ Sn Output: Set Cn(G,H)

(1) Divide gi ∈ G to cycles and find the smallest set G′ = {g1, · · · , gm} of
generators of G. Let |G′| = m.

(2) Divide to cycles permutations hi ∈ H.

(3) For each m-subset H ′ of h1, · · · , hm such that H ′ is of the same type as
G′, and H ′ generates H do:
(a) for each Pj ∈ Im such that gi and hPj (i) are of the same type, find

p ∈ Sn such that pG′p−1 = H ′.
(b) If pGp−1 = H add p to Cn(G,H).

(4) Return Cn(G,H).

We will use Algorithm 1 in the next one to find for two quasigroups G,H the
set of their isotopisms Is(G,H). To speed up this algorithm there was proven
in [21] a new necessary condition for the existence of an isotopism. The condition
is based on Theorem 4 and its Corollary.

���������� 4 ([1])� Let (Q, ∗) be a quasigroup and define new binary operations
∗(1,2,3), ∗(1,3,2), ∗(2,1,3), ∗(2,3,1), ∗(3,1,2), ∗(3,2,1) on Q as follows: relation a ∗ b = c
is valid if and only if

a ∗(1,2,3) b = c, a ∗(1,3,2) c = b, b ∗(2,1,3) a = c,

b ∗(2,3,1) c = a, c ∗(3,1,2) a = b, c ∗(3,2,1) b = a.

Then we say that
(
Q, ∗(i,j,k)

)
are conjugate with (Q, ∗).

Recall that all such quasigroups
(
Q, ∗(i,j,k)

)
are also conjugate each other,

and thus this is an equivalence relation on Ln.
	
����� 4� Let Q = (Q, ∗) be a quasigroup. If quasigroups Q1 =

(
Q, ∗(i,j,k)

)
,

Q2 =
(
Q, ∗(i,k,j)

)
are conjugate with Q, then LQ1

= {q−1|q ∈ LQ2
}.
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Let LQ1
= {g1, · · · , gn}, LQ2

= {h1, · · · , hn}. Next we simplify notation of

LQ1
g−1
i as LiQ1

and LQ2
h−1
i = LiQ2

, respectively.

��������� 5� Let Q = (Q, ∗) be a quasigroup of order n. For conjugate quasi-
groups Q1 =

(
Q, ∗(i,j,k)

)
, Q2 =

(
Q, ∗(i,k,j)

)
with Q there exists P ∈ Sn such that

L1
Q1
, L

P (1)
Q2

contain the same number of permutations with the same cyclic struc-

ture, i.e., are of the same type.

Finally, using the necessary condition in the Algorithm 1 we get our new
algorithm for finding isotopisms of two quasigroups.


������
� 2� Input: Quasigroups G,H of order n. Output: The set of their
isotopisms Is(G,H).

(1) Find conjugate quasigroups
G1 = G = G(1,2,3), G2 = G(2,1,3), G3 = G(3,1,2) and H1 = H = H(1,2,3),
H2 = H(2,1,3), H3 = H(3,1,2).

(2) Find permutations P1, P2, P3 ∈ Sn such that the sets LiGj
a L

Pj(i)
Hj

are of

the same type for all i, j ∈ In × I3. If such a triplet does not exist, then
Stop algorithm and Return Is(G,H) = ∅.

(3) For all j ∈ In, such that L1
G, L

j
H are of the same type do:

(a) By Algorithm 1 find sets Cn(L
1
G, L

j
H).

(b) Compute for all p ∈ Cn(L
1
G, L

j
H) two permutations ϕ = h−1

j pg1,

ψ = p. Find θ and Store in Is(G,H) isotopism (θ, ϕ, ψ).

(4) Return Is(G,H).

This algorithm has the same worst case complexity O(nlog2 n) as the Miller’s
algorithm [16]. Our contribution is in the step with necessary condition step (2)
which can distinguish non isotopic quasigroups of order n ≤ 8 in majority cases.

Probability for non isotopic quasigroups to pass step (2) is for orders 6, 7, 8
lower than 4.3 ∗ 10−3, 3.15 ∗ 10−5, 3.0 ∗ 10−10, respectively. If this was the case
for higher orders, too, then we would have a very strong probabilistic toolkit
to verify isotopy of two Latin squares. Its complexity is O(n3) only, and thus for
quasigroups of order n > 9 would be faster than Miller’s algorithm.

Based on our algorithm we can sharpen estimation of S a d e [20] for the
cardinality of autotopisms AUT (Q) of a quasigroup Q, which is n× n!.

	
����� 6� Let M be the set of permutations from Sn, where n ≥ 5 consisting
from cycles of the length 2 and 3 only. Then cardinality of their stabilizer in
the action of conjugacy |StSn

(p)|, except of n = 9, is maximal if it possesses
maximum of 2-cycles. For n = 9 the stabilizer is maximal if the permutation
consists of 3-cycles only.
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��������� 7� Let Q be a quasigroup of order n > 5. If n is even, then

|AUT (Q)| ≤ n(n− 1)(n/2)!2n/2.

For n odd, except of n = 9,

|AUT (Q)| ≤ n(n− 1)3((n− 3)/2)!2(n−3)/2.

For n = 9 we have

|Aut(Q)| ≤ 9(9− 1)3!33 = 11664.

4. Zero knowledge protocol and isotopy

As we mentioned above due to theorem Goldreich-Micali-Wigderson any hard
problem can be used in zero–knowledge protocols. Probably, led by this idea,
authors of [3] published their zero–knowledge protocol. In the protocol we have
two participants ui, uj , and public as well as secret parameters distributed as
follows:

• Public parameters of ui: isotopic Latin squares L,L′.
• Secret parameters of ui: I = (θi, ϕi, ψi).

• Aim of ui: to prove uj knowledge of I without revealing I itself.

The Protocol is based on public keys L,L′ and a secret key I = (θi, ϕi, ψi),
respectively. Realization of the protocol supposes the following steps:

(1) ui randomly permutes L to produce another Latin square, say H.

(2) ui sends H to uj .

(3) uj asks ui either to:
• prove that H,L are isotopic;
• prove that H,L′ are isotopic.

(4) ui complies. He either
• proves that H,L are isotopic;
• proves that H,L′ are isotopic.

(5) ui, uj repeat n-times steps (1)–(4) if necessary (i.e., a new H is generated).

In view of our new Algorithm 2, or Miller’s algorithm we performed an ex-
periment. To do this we used an equivalent definition of a quasigroup (Q, ∗):
���������� 5� Let (Q, ∗) be a set with binary operation satisfying the following
conditions: for any a, b ∈ Q there is a unique solution of the following equations

a ∗ b = x1, (3)

a ∗ x2 = b, (4)

x3 ∗ a = b. (5)
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Then (Q, ∗) is a quasigroup.

This definition leads to a construction of the set of generators ofQ. Informally,
we can start with two elements of Q, and construct more and more elements xi
by the following iteration: {a, b} → {x1, x2, x3} ∪ {a, b} → . . . This leads to
the definition.

���������� 6� Let f1, f2, f3 be functions defined as fi : Q×Q → Q such that
f1(a, b) = x1, f2(a, b) = x2, f3(a, b) = x3, in accordance with Definition 5 above.
Let G � Q such that

Q = f1(G,G) ∪ f2(G,G) ∪ f3(G,G) ∪G.
Then we call G the set of generators for Q.

Next we recall informally a variation of Miller’s Algorithm (or our new algo-
rithm) with generators.

(1) Find generators {a1, . . . , am} for Q1, m ≤ log2 n.

(2) For each subset {b1, . . . , bm} ⊂ Q2 verify if φ(aj) = bj is an isomorphism
Q1 → Q2.

(3) If YES, then they are isotopic, otherwise NOT.

Clearly, the complexity of this variation heavily depends on the size of the
set of generators of Q1. M i l l e r [16] proved that |G| ≤ log2 n, and this bound
appears in the complexity of his algorithm. Thus a natural question arise: What
is the number mi of non-isotopic quasigroups with |G| = i? From our exhaustive
computer search for 2 ≤ n ≤ 8 we get the results aggregated in the Table 1.

Table 1. Results of the computer search for non isotopic quasigroups with

respect of the size of generators mi.

n m1 m2 m3 m =
∑
mi

2 1 0 0 1

3 1 0 0 1

4 1 1 0 2

5 2 0 0 2

6 21 1 0 22

7 561 3 0 564

8 1676060 206 1 1676267

From this table one can see that:

• There is a limited number of quasigroups with |G| > 1;

• For majority of quasigroups complexity of the algorithm is O(
n|G|+o(1)) ≈

O(
n1+o(1)

)
.
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Thus the above mentioned protocol for majority of quasigroups probably faces
serious problems.

5. Conclusions

We presented a new algorithm for solving isotopy problem which is of the same
worst case complexity as Miller’s algorithm but in many practical situations it
is much more faster. We also discuss the zero–knowledge protocol introduced
in [3]. There are some practical considerations for this protocol in our results.

• The size of the quasigroup Q cannot be too large since (θi, ϕi, ψi) has to
be sent during the protocol;

• Thus our aim is to find a relatively small Q with a large set of generators G.
For really “small” n we can use a computer search. But then the protocol
is weak;

• Random search is very impractical (see Table 1). For special quasigroups,
like Q = Zn2 we have fast algorithms. The same is true for any group.

Thus we conclude that an applicability of the protocol is really in question.
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[21] SÝS, M.: Latin Squares in Cryptography. Honours PhD Thesis, Slovak Technical Univer-
sity, Bratislava, 2009.
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