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PLANAR FUNCTIONS AND COMMUTATIVE

SEMIFIELDS

Lilya Budaghyan — Tor Helleseth

ABSTRACT. This paper gives a short survey on planar functions and commu-
tative semifields and considers a possible extension of CCZ-equivalence which is
the most general known equivalence relation of functions preserving the planar
property.

1. PN and APN functions

Let p be any prime number and n any positive integer. A function F from
the field Fpn to itself is called planar if all the equations

F (x+ a)− F (x) = b, ∀ a, b ∈ Fpn , a �= 0 (1)

have exactly one solution, that is, if for any non-zero element a of Fpn the
function

DaF (x) = F (x+ a)− F (x),

called the derivative of F in the direction of a, is a permutation. Planar
functions were introduced in 1968 by D em b o w s k i and O s t r o m [18] in
context of finite geometry to describe projective planes with specific properties.
Since 1991 planar functions have attracted interest also from cryptography as
functions with optimal resistance to differential cryptanalysis. In this context
they were first considered in the work of N y b e r g [32], where they were given
a new name “perfect nonlinear” (PN) which described their important cryp-
tographic property of being as far as possible from being linear (in certain sense).
However, it is obvious that planar or PN functions exist only for p odd since
if p is even and x0 is a solution of (1) then x0 + a is a solution too, and the
functions, whose derivatives DaF, a ∈F∗

pn , are 2-to-1 mappings, possess the best
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possible resistance to differential cryptanalysis and are called almost perfect
nonlinear (APN).

There are several equivalence relations of functions for which PN and APN
properties are invariant. Due to these equivalence relations, having only one PN
(or APN) function one can generate a huge class of PN (resp. APN) functions.
The terminology for these equivalence relations was introduced in 2005 in [10]
while the ideas behind this terminology go back to the works of N y b e r g [33]
and C a r l e t , C h a r p i n and Z i n o v i e v [13]. To continue we need first to re-
call the following definitions:

���������� 1� A function F from Fpn to itself is called:

• linear if F (x) =
∑

0≤i<n aix
pi

, ai ∈ Fpn ;

• affine if F is a sum of a linear function and a constant;

• Dembowski-Ostrom polynomial (DO polynomial) if

F (x) =
∑

0≤k,j<n akjx
pk+pj

, aij ∈ Fpn ;

• quadratic if it is a sum of a DO polynomial and an affine function.

Definitions for equivalences below are given for functions from Fpn to itself.
However, they can be naturally extended to functions from A to B, where A
and B are arbitrary groups [10].

���������� 2� Two functions F and F ′ from Fpn to itself are called:

• affine equivalent (or linear equivalent) if F ′ = A1 ◦ F ◦A2, where the
mappings A1, A2 are affine (resp. linear) permutations of Fpn ;

• extended affine equivalent (EA-equivalent) if F ′ = A1 ◦ F ◦ A2 + A,
where the mappings A,A1, A2 are affine, and where A1, A2 are permuta-
tions of Fpn ;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some af-
fine permutation L of F2

pn the image of the graph of F is the graph of F ′,
that is, L(GF ) = GF ′ , where

GF =
{
(x, F (x))|x ∈ Fpn

}
and GF ′ =

{
(x, F ′(x))|x ∈ Fpn

}
.

Although different these equivalence relations are connected to each other.
It is obvious that linear equivalence is a particular case of affine equivalence,
and that affine equivalence is a particular case of EA-equivalence. As it is shown
in [13] EA-equivalence is a particular case of CCZ-equivalence and every permu-
tation is CCZ-equivalent to its inverse. For quite a long time it was believed that
CCZ-equivalence class of an arbitrary function F can be completely described
by means of EA-equivalence and of the inverses of permutations EA-equivalent
to F . In [6], [10], it is proven to be false: CCZ-equivalence is much more general.
However, there are particular cases of functions for which CCZ-equivalence can
be reduced to EA-equivalence. For instance, CCZ-equivalence coincides with:
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• EA-equivalence for planar functions [11], [27];

• linear equivalence for DO planar functions [11];

• EA-equivalence for all functions whose derivatives are surjective [12];

• EA-equivalence for all Boolean functions [7];

• EA-equivalence for all vectorial bent functions with p even [8].

It is useful to know cases where CCZ- and EA-equivalences coincide because,
in general, it is very difficult to determine whether two functions are CCZ-
-equivalent or not while EA-equivalence is much simpler and has a nice invariant,
algebraic degree of a function.

Nowadays, CCZ-equivalence is the most general known equivalence relation
of functions preserving PN and APN properties and it is appealing to find a more
general equivalence for which PN and APN properties are invariants. The first
attempts in this direction were made in [7], [22]. In [7] the first author and Carlet
consider two functions F and F ′ from Fpn to Fpm equivalent if the indicators of
the graphs of F and F ′ are CCZ-equivalent. Recall that for a given function F
from Fpn to Fpm the indicator 1GF

of its graph GF is

1GF
(x, y) =

{
1 if y = F (x),

0, otherwise.

However, as proven in [7], for p even that equivalence coincides with original
CCZ-equivalence of functions, and we prove in Section 4 of this paper that it co-
incides with CCZ-equivalence for p odd as well. In [22] E d e l and P o t t present
so-called “switching construction” which is proven to be an appropriate method
for constructing APN functions. This approach can be used potentially for pla-
nar functions as well but it is not developed yet for this case. Basing on this
construction they define an equivalence relation, called switching equivalence,
over APN functions. But when considered over all functions switching equiva-
lence does not preserve APN property, that is, if two functions are switching
equivalent and one of them is APN the second is not necessarily APN.

2. Commutative presemifields and semifields

As it is shown in [18], [16] quadratic planar functions have important connec-
tion with commutative semifields. A ring with left and right distributivity and
with no zero divisors is called a presemifield. A presemifield with a multiplica-
tive identity is called a semifield. Any finite presemifield can be represented
by

S = (Fpn ,+, �),
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where (Fpn ,+) is the additive group of Fpn and x�y = φ(x, y) with φ a function

from F2
pn onto Fpn , see [16].

Let
S1 = (Fpn ,+, ◦) and S2 = (Fpn ,+, �)

be two presemifields. They are called isotopic if there exist three linear permu-
tations L,M,N over Fpn such that

L(x ◦ y) = M (x) � N(y),

for any x, y ∈ Fpn . The triple (M,N,L) is called the isotopism between S1 and
S2. If M = N then S1 and S2 are called strongly isotopic.

Let S be a finite semifield. The subsets

Nl(S) =
{
α ∈ S : (α � x) � y = α � (x � y) for all x, y ∈ S

}
,

Nm(S) =
{
α ∈ S : (x � α) � y = x � (α � y) for all x, y ∈ S

}
,

Nr(S) =
{
α ∈ S : (x � y) � α = x � (y � α) for all x, y ∈ S

}
,

are called the left, middle and right nucleus of S, respectively, and the set
N(S) = Nl(S)∩Nm(S)∩Nr(S) is called the nucleus. These sets are finite fields
and, if S is commutative then Nl(S) = Nr(S). The nuclei measure how far S is
from being associative. The orders of the respective nuclei are invariant under
isotopism [16].

Every commutative presemifield can be transformed into a commutative semi-
field. Indeed, let S = (Fpn ,+, �) be a commutative presemifield which does not
contain an identity. To create a semifield from S choose any a ∈ F∗

pn and define
a new multiplication ◦ by

(x � a) ◦ (a � y) = x � y

for all x, y ∈ Fpn . Then S′ = (Fpn ,+, ◦) is a commutative semifield isotopic
to S with identity a � a. We say S′ is a commutative semifield correspond-
ing to the commutative presemifield S. An isotopism between S and S′ is
a strong isotopism

(
La(x), La(x), x

)
with a linear permutation La(x) = a � x,

see [16].

Every commutative presemifield defines a planar DO polynomial and vice
versa [16]. Let F be a quadratic PN function over Fpn . Then S = (Fpn ,+, �),
with

x � y = F (x+ y)− F (x)− F (y)

for any x, y ∈ Fpn , is a commutative presemifield. We denote by

SF = (Fpn ,+, ◦)
the commutative semifield corresponding to the commutative presemifield S
with isotopism

(
L1(x), L1(x), x

)
and we call SF = (Fpn ,+, ◦) the commuta-

tive semifield defined by the quadratic PN function F. Conversely, given
a commutative presemifield S = (Fpn ,+, �) of odd order, the function given by
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F (x) =
1

2
(x � x)

is a planar DO polynomial [16].

We have the following facts on connection between CCZ-equivalence, iso-
topisms and strong isotopisms:

• two planar DO polynomials F and F ′ are CCZ-equivalent if and only if
the corresponding commutative semifields SF and SF ′ are strongly iso-
topic [11];

• two commutative presemifields of order pn with n odd are isotopic if and
only if they are strongly isotopic [16];

• any commutative presemifield can generate at most two equivalence classes
of planar DO polynomials [16];

• if S1 and S2 are isotopic commutative semifields of characteristic p with
the order of the middle nuclei and nuclei pm and pk, respectively, then one
of the following statements must hold
(a) m/k is odd and S1 and S2 are strongly isotopic,
(b) m/k is even and either S1 and S2 are strongly isotopic or the only

isotopisms between S1 and S2 are of the form (α � N,N,L), where α
is a non-square element of Nm(S1).

Thus, in the case n even it is potentially possible that isotopic commutative pre-
semifields define CCZ-inequivalent quadratic PN functions. However, in practice,
no such cases are known.

3. Known cases of planar functions and commutative
semifields

Almost all known planar functions are DO polynomials. The only known
non-quadratic PN functions are the power functions

x
3t+1

2

over F3n , where t is odd and gcd(t, n) = 1 ( [15], [25]). Although commutative
semifields have been intensively studied for more than a hundred years, there are
only a few cases of commutative semifields of odd order known (see [11], [16]):

(i) x2

over Fpn which corresponds to the finite field Fpn ;

(ii) xpt+1

over Fpn , with n/gcd(t, n) odd, which correspond to Albert’s commutative
twisted fields [1], [18], [24];

(iii) the functions over Fp2k , which correspond to the Dickson semifields [19];
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(iv) the functions over Fp2k

(ax)p
s+1 − (ax)p

k(ps+1) +

k−1∑
i=0

cix
pi(pk+1), (2)

bxps+1 + (bxps+1)p
k

+ cxpk+1 +

k−1∑
i=1

rix
pk+i+pi

, (3)

where a, b ∈ F∗
p2k , b is not a square, c ∈ Fp2k \ Fpk , ri ∈ Fpk , 0 ≤ i < k,∑k−1

i=0 cix
pi

is a permutation of Fpk with coefficients in Fpk , gcd(k+s, 2k) =

gcd(k+ s, k), and for (3) also gcd(ps +1, pk +1) �= gcd
(
ps +1, (pk +1)/2

)
(see [11], [12]);

(v) xps+1 − ap
t−1xpt+p2t+s

over Fp3t , where a is primitive in Fp3t , gcd(3, t) = 1, t − s = 0 mod 3,
3t/gcd(s, 3t) is odd (see [36]);

(vi) xps+1 − ap
t−1xp3t+pt+s

over Fp4t , where a is primitive in Fp4t , ps ≡ pt ≡ 1 mod 4, 2t/gcd(s, 2t) is
odd (see [3]);

(vii) x10 ± x6 − x2

over F3n , with n odd, corresponding to the C o u l t e r-M a t t h e w s and
D i n g-Y u a n semifields [15], [21];

(viii) the function overF32k , with k odd, corresponding to the G a n l e y semifield
[23];

(ix) the function over F32k corresponding to the C o h e n-G a n l e y semifield
[14];

(x) the function over F310 corresponding to the P e n t t i l a-W i l l i a m s semi-
field [34];

(xi) the function over F38 corresponding to the C o u l t e r-H e n d e r s o n-K o -
s i c k semifield [17];

(xii) x2 + x90

over F35 (see [35]).

The first six cases above are defined for any odd prime p while the last six are
defined only for p = 3. The polynomial representations of functions (iii), (viii)-(x)
can be found in [29]. Note that PN functions (3) of family (iv) and families
(v) and (vi) were constructed by following patterns of some known families
of APN functions over fields of even characteristic, see [5], [9]. Further we have
the following important results of classification of commutative presemifields:
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• any semifield of order p2 is a finite field [26];

• any semifield of order p3 is either a finite field or Albert’s commutative
twisted field [28];

• if a commutative presemifield is isotopic to a finite field then it is strongly
isotopic to it [16];

• if a commutative presemifield is isotopic to Albert’s commutative twisted
field then it is strongly isotopic to it [16];

• a commutative presemifield which is three dimensional over its middle
nucleus is necessarily isotopic to Albert’ commutative twisted field [28].

4. On possible extension of CCZ-equivalence

The following natural generalization of CCZ-equivalence of functions was con-
sidered in [7]. Let n and m be any positive integers, p any prime. Two functions
F and F ′ from Fpn to Fpm are considered equivalent if their graphs 1GF

and
1G′

F
are CCZ-equivalent. However, as proven in [7], for p even this equivalence

coincides with original CCZ-equivalence of functions. Below we prove that it
coincides with CCZ-equivalence for p odd as well. First we need some auxiliary
results.

	�

� 1� Let p be an odd prime, n a positive integer, a ∈ Fpn and f any
function from Fpn to itself with the image set {0, a}. If the function F (x) =
x+ f(x) is a permutation of Fpn , then x− f(x) is its inverse.

P r o o f. Denoting F ′(x) = x− f(x) we get

F ′ ◦ F (x) = x+ f
(
x)− f(x+ f(x)

)
.

If f(x) = 0, then obviously F ′ ◦ F (x) = x. If f(x) = a, then F ′ ◦ F (x) =
x+a−f(x+a). Moreover, we have f(x+a) = a, since otherwise, F (x+a) = F (x)
which contradicts F being a permutation. Hence, when f(x) = a, we have also
F ′ ◦ F (x) = x. Therefore, F−1 = F ′. �

As mentioned in [10], CCZ-equivalence can be considered not only for func-
tions from Fpn to itself but also for functions between arbitrary groups H1 and
H2. In the following proposition we consider CCZ-equivalence of functions from
Fpn to F2.

�
��������� 1� Let p be an odd prime and n a positive integer. Two functions
f and f ′ from Fpn to F2 are CCZ-equivalent if and only if f ′ = f ◦A for some
affine permutation A of Fpn .
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P r o o f. Let the functions f and f ′ be CCZ-equivalent. Then there exists an af-
fine permutation L of Fpn×F2 such that L(Gf ) = Gf ′ . Without loss of generality
we can assume that L is linear. Then there exist linear functions L : Fpn → Fpn ,
φ : F2 → Fpn , l : Fpn → F2 and an element a ∈ F2 such that

L(x, y) = (
L(x) + φ(y), l(x) + ay

)
,

and for

F1(x) = L(x) + φ ◦ f(x),
F2(x) = l(x) + af(x),

F1 is a permutation of Fpn and

f ′(x) = F2 ◦ F−1
1 (x).

Note that any linear function l from Fn
p → F2 must be 0 since, otherwise, it is

balanced which is impossible since pn is an odd number. Hence, we have l(x) = 0
and, since L is a permutation, a = 1, that is, F2(x) = f(x). Besides, if φ ◦ f = 0
then obviously L is a permutation and f ′ = f ◦ L−1 and we can take A = L−1.
Hence we assume that φ has the image set {0, b}, where b �= 0 and φ ◦ f is not
a zero function.

Since F1 is a permutation and the image of φ ◦f consists of 2 elements then the
function L must have at most 2 zeros, and, since p ≥ 3 and L is a linear function
from Fpn to itself then it has exactly one zero, that is, L is a permutation. Hence,
and therefore, by Lemma 1 its inverse is

F1(x) = L
(
x+ L−1 ◦ φ ◦ f(x)),

where the function

F ∗
1 (x) = x+ L−1 ◦ φ ◦ f(x)

is a permutation too, and therefore, by Lemma 1 its inverse is

F ∗−1
1 (x) = x− L−1 ◦ φ ◦ f(x).

We get

F−1
1 (x) = F ∗−1

1 ◦ L−1(x)

and then

f ′ ◦ L(x) = F2 ◦ F ∗−1
1 (x) = f

(
x− L−1 ◦ φ ◦ f(x)).

If f(x) = 0, then f ′ ◦ L(x) = 0 = f(x). If f(x) = 1, then f
(
x− L−1(b)

)
= 1.

Indeed, if

f(x) = 1 and f
(
x− L−1(b)

)
= 0,

then

F ∗−1
(
x− L−1(b)

)
= x− L−1(b)− L−1 ◦ φ ◦ f(x− L−1(b)

)
= x− L−1(b),

F ∗−1(x) = x− L−1 ◦ φ ◦ f(x) = x− L−1(b),
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which contradict F ∗−1 being a permutation. Hence, f ′ ◦L(x) = f(x) and we can
take A = L−1. �

Now we can proof the main result of this section:

����
�
 2� Let n and m be any positive integers, p any prime, and F and F ′

any functions from Fpn to Fpm . Then F and F ′ are CCZ-equivalent if and only
if the indicators of their graphs 1GF

and 1GF ′ are CCZ-equivalent.

P r o o f. For the case p even this theorem states Corollary 1 of [7]. Let p be
odd. Since 1GF

and 1GF ′ are functions from Fpn × Fpm to F2, then according
to Proposition 1 they are CCZ-equivalent if and only if there exists an affine
permutation A of Fpn × Fpm that 1GF ′ = 1GF

◦ A, that is, if and only if F and
F ′ are CCZ-equivalent. �
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