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ON ALMOST NEARLY CONTINUOUS FUNCTIONS

WITH REFERENCE TO MULTIFUNCTIONS

Andrzej Rychlewicz

ABSTRACT. We deal with a new kind of continuity of multifunctions, namely

almost nearly quasi-continuous multifunctions have been introduced. Several pro-
perties of almost nearly quasi-continuous and almost upper (lower) nearly quasi-
continuous multifunctions have been obtained.

1. Introduction

Many mathematicians have been investigating a lot of forms of continuity. In
2004, the notion of almost nearly continuity of multifunctions was introduced
by E k i c i and it was shown (see [EK]) that this notion is closely related to
nearly compact spaces, especially to N-closed sets. The class of nearly compact
spaces was introduced by M. K. S i n g a l and A s h a M a t u r in 1969 (see
[SM]) while N-closed sets were defined by D. C a r n a h a n in [CA]. One kind
of a “weak” continuity is a quasi-continuity. It seems to be natural to consider
almost nearly quasi-continuous multifunctions. So, the purpose of the present
paper is to introduce and study this kind of continuity.

2. Preliminaries

From now on, cl (A) and int (A) will represent the closure and interior of
a subset A of a topological space, respectively.

A subset of a topological space is said to be regularly open (closed) if it is the
interior of some closed set (the closure of some open set) or, equivalently, if it is
the interior of its own closure (the closure of its own interior) (see, for instance,
[SM]). A set A in a topological space will be called semi-open (semi-closed) if
A ⊂ cl

(
int (A)

)
(A ⊂ int (cl (A))).

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 54A10, 54C08, 54C50, 54C60.
Keywords: nearly quasi-continuous multifunction, nearly compact space, N-closed set, mul-
tifunction, Baire’s category, almost coN-closed topology.

61



ANDRZEJ RYCHLEWICZ

It is known that the union of arbitrary class of semi-open sets is semi-open.
The notion of semi-open sets and their properties were introduced and studied
by N. L e v i n e [LE].

A topological space is called nearly compact if for every open cover there is
a finite subclass, such that the interiors of the closures of its members cover
the space or, equivalently, if every cover of the space by regularly open sets has
a finite subcover (see [SM]). A subset A of a topological space is called N-closed

if for any cover C of A by open sets there exists a finite subclass C̃ such that the
interiors of the closures of the set from C̃ covers A or, equivalently, if for any
cover of A by regularly open sets, there exists a finite subcover (see [CA]).

Next, (Y, τ) will denote a topological space. We will often use the following
fact.

����� 1� Let G be an open subset of a topological space Y such that Y \ G
is an N-closed set. Then int

(
cl (G)

)
is a regularly open set having an N-closed

complement.

P r o o f. It is clear that the set int
(
cl (G)

)
is regularly open. Let us denote

A = Y \ int (cl (G)
)
. Of course, A ⊂ Y \G. Let {Gt}t∈T be an open cover of the

set A. Then {Gt}t∈T ∪ (Y \ A) is an open cover of the set Y \ G. Then there
exist indexes t1, . . . , tk such that

k⋃
i=1

int
(
cl (Gti)

) ∪ int
(
cl (Y \A)) ⊃ Y \G.

Since

int
(
cl (Y \A)) = int

(
cl
(
int

(
cl (G)

)))
= int

(
cl (G)

)
then

A ∩ int
(
cl (Y \A)) = ∅.

It was shown that
k⋃

i=1

int
(
cl (Gti)

) ⊃ A.

The proof of the N-closedness of the set A is finished. �

Let τRO be a collection of subsets of Y defined as follows.

τRO = {U ∈ τ : U is regularly open set and Y \ U is N-closed}.
The collection τRO forms a base of some topology τN in Y called almost

coN-closed topology of the topology τ (see [KR]). The topology τs, a base of
which is equal to the family of all regularly open sets in the topology τ , is called
semi-regularization of the topology τ (see [PT]).
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From now on, we will assume that X is a topological space and F : X → Y is
a multifunction, i.e., F (x) is a nonempty subset of Y for each x from X.

F is said to be almost nearly continuous at a point x ∈ X if for any open
subsets V1 and V2 of Y having N -closed complement such that

x ∈ F+(V1) ∩ F−(V2)

there exists an open neighborhood U of x such that

U ⊂ F+
(
int

(
cl (V1)

)) ∩ F−
(
int

(
cl (V2)

))
.

If F is almost nearly continuous at any x ∈ X, it is called to be almost nearly
continuous.

Let us recall the notions of semi-continuous (lower and upper), continuous,
quasi-continuous (lower and upper) and quasi-continuous multifunctions.

F is said to be upper (lower) semi-continuous at a point x ∈ X if for any
open subset V of Y such that x ∈ F+(V ) (x ∈ F−(V )) there exists an open
neighborhood U of x such that U ⊂ F+(V ) (U ⊂ F−(V )).

F is semi-continuous at a point x ∈ X if for any open subsets V1 and V2 of Y
such that x ∈ F+(V1) ∩ F−(V2) there exists an open neighborhood set U of x
such that

U ⊂ F+(V1) ∩ F−(V2).

F is called upper (lower) quasi-continuous at a point x ∈ X (see [NE]) if for
any open subset V of Y such that x ∈ F+(V ) (x ∈ F−(V )) and for any open
neighborhood U of x there exists a nonempty open set W ⊂ U such that

W ⊂ F+(V ) (W ⊂ F−(V )).

We say that F is quasi-continuous at a point x ∈ X (see [NE]) if for any
open subsets V1 and V2 of Y such that x ∈ F+(V1) ∩ F−(V2) and for any
open neighborhood U of x there exists a nonempty open set W ⊂ U such that
U ⊂ F+(V1) ∩ F−(V2).

A multifunction F is said to be semi-continuous (lower and upper), contin-
uous, quasi-continuous (lower and upper) and quasi-continuous multifunctions
if F has this property at any point of X.

A multifunction F : X → Y is said to be upper (lower) almost nearly continu-
ous at a point x ∈ X if for any open subset V of Y having N -closed complement
such that x ∈ F+(V ) (x ∈ F−(V )) there exists an open neighborhood U of x
such that

U ⊂ F+
(
int

(
cl (V )

))
, U ⊂ F−

(
int

(
cl (V )

))
.

We say that a multifunction F is upper (lower) almost nearly continuous if it
is upper (lower) almost nearly continuous at any point x ∈ X (see [EK]).

Now, we are ready to introduce the notions of an almost nearly quasi-continu-
ous and upper (lower) almost nearly quasi-continuous multifunction.
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A multifunction F is called upper (lower) almost nearly quasi-continuous at
a point x ∈ X if for any open subset V of Y having N -closed complement
such that x ∈ F+(V ) (x ∈ F−(V )) and for any open set U 	 x there exists
a nonempty open set W ⊂ U such that

W ⊂ F+
(
int

(
cl (V )

))
, W ⊂ F−

(
int

(
cl (V )

))
.

We call a multifunction F almost nearly quasi-continuous at a point x ∈ X
if for any open subsets V1 and V2 of Y having N -closed complement such that
x ∈ F+(V1)∩F−(V2) and for any open set U 	 x there exists a nonempty open
set W ⊂ U such that

W ⊂ F+
(
int

(
cl (V )

)) ∩ F−
(
int

(
cl (V )

))
.

A multifunction F is said to be an almost nearly quasi-continuous (upper
almost nearly quasi-continuous, lower almost nearly quasi-continuous) multi-
function if F has this property at any point of X.

By Du
n(F ), Dl

n(F ), and Dn(F ) we will denote the set of all points at which
the multifunction F is not upper, not lower and not almost nearly continuous,
respectively.

By QCn(F ), QCu
n(F ), QCl

n(F ), QC(F ), QCu(F ) and QCl(F ), respectively,
we will denote the set of all points at which a multifunction F is almost nearly
quasi-continuous, upper almost nearly quasi-continuous, lower almost nearly
quasi-continuous, quasi-continuous, upper quasi-continuous, lower quasi-continu-
ous, respectively.

3. Basic properties

In this section, a lot of equivalence conditions to the ones introduced in the
definitions of an almost nearly quasi-continuous and upper (lower) almost nearly
quasi-continuous multifunction will be given and proved.

����	�� 1� Let F : X → Y be a multifunction. The following statements are
equivalent.

(a) F is upper almost nearly quasi-continuous.

(b) For any x ∈ X and for any regularly open set G ⊂ Y having N-closed
complement such that F (x) ⊂ G and for any open set U 	 x, there exists
a nonempty open set W ⊂ U such that F (z) ⊂ G for any z ∈ W.

(c) For any x ∈ X, any closed N-closed set K ⊂ Y such that x ∈ F+(Y \K)
and for any closed set H such that x ∈ X \ H, there exists a closed set
M ⊃ H,M 
= X such that F−(cl (int (K))

) ⊂ M.
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ON ALMOST NEARLY CONTINUOUS FUNCTIONS

(d) For any x ∈ X and for any open set G ⊂ Y having N-closed complement
such that F (x) ⊂ G, there exists a semi-open set A 	 x such that

A ⊂ F+
(
int

(
cl (G)

))
.

(e) F+(G) is semi-open set for any regularly open set G ⊂ Y having N-closed
complement.

(f) F−(K) is semi-closed set for any regularly closed N-closed set K ⊂ Y.

P r o o f. (a) ⇒ (b). Let x ∈ X and let G be a regularly open subset of Y having
N-closed complement such that F (x) ⊂ G and let U 	 x be an open subset of X.
Under the assumptions (F is upper almost nearly continuous), there exists an
open nonempty set W ⊂ U such that W ⊂ F+

(
int (cl (G))

)
. G is regularly open,

then G = int
(
cl (G)

)
and, consequently, W ⊂ F+(G).

(b) ⇒ (a). Let now x ∈ X and let G be an open set having N-closed comple-
ment such that F (x) ⊂ G and let U 	 x be an open subset of X. By Lemma 1,
we know that the set int

(
cl (G)

)
is regularly open and Y \int (cl (G)

)
is N-closed.

Since F (x) ⊂ int
(
cl (G)

)
then there exists an open nonempty set W ⊂ U such

that W ⊂ F+
(
int (cl (G))

)
.

(a) ⇒ (c). Let x ∈ X and let K be a closed N-closed subset of Y such that
x ∈ F+(Y \K). It is clear that Y \K is an open subset of Y having N-closed
complement. Let H be a closed subset of Y such that x ∈ X \H. Then X \H is
an open set. According to the definition of upper almost nearly continuity, there
exists an open nonempty set W ⊂ X \H such that

W ⊂ F+
(
int

(
cl (Y \K)

))
.

Let us observe that

int
(
cl (Y \K)

)
= int

(
Y \ int (K)

)
= Y \ cl (int (K)

)
.

It follows that

W ⊂ F+(Y \
(
cl
(
int (K)

))
= X \ F−

(
cl
(
int (K)

))
.

Let M = X \W, then

X \M ⊂ X \ F−
(
cl
(
int (K)

))

since M ⊃ F−(cl (int (K))
)
. It is evident that M is a closed set and M 
= X.

(c) ⇒ (a). Let x ∈ X and let G be an open subset of Y having N-closed
complement and let F (x) ⊂ G. Therefore, K = Y \G is a closed N-closed subset
of Y such that x ∈ F+(Y \ K). Let U 	 x be an open subset of X. Then
H = X \ U is a closed set such that x ∈ X \ H. Under the assumptions there
exists a closed set M ⊃ H,M 
= X such that F−(cl (int (K))

) ⊂ M . The last

inclusion implies that X \ F+
(
int (cl (G))

) ⊂ M = X \W, where W = X \M
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is an open nonempty set. It was shown that W ⊂ F+
(
int (cl (G))

)
. It is easy to

see that W ⊂ U.

(a) ⇒ (d). Let x ∈ X and let G be an open subset of Y having N-closed
complement and let F (x) ⊂ G. We know that for any open neighborhood U of
the point x there exists an open nonempty set WU ⊂ U such that

WU ⊂ F+
(
int

(
cl (G)

))
.

Let A = {x} ∪⋃ {WU : U is an open neighbourhood of x}. Hence
A ⊂ cl

(
int (A)

)
and, consequently, A 	 x is a semi-open set.

Additionally, A ⊂ F+
(
int (cl (G))

)
.

(d) ⇒ (a). Let x ∈ X and let G be an open subset of Y having N-closed
complement and let F (x) ⊂ G. Let U 	 x be an open subset of X. Under
assumptions, there exists a semi-open set A 	 x such that A ⊂ F+

(
int (cl (G))

)
.

Let W = U ∩ int (A).

Because of U ∩ A 
= ∅, W 
= ∅. It is easy to check that W ⊂ U and W ⊂ A.
Therefore W ⊂ F+

(
int (cl (G))

)
.

(d) ⇒ (e). Let G be a regularly open subset of Y having N-closed complement
and let x ∈ F+(G). Then F (x) ⊂ G. Under assumptions, there exists a semi-
open set Ax 	 x such that

Ax ⊂ F+(G) = F+
(
int

(
cl (G)

))
.

It can be easily seen that the set A =
⋃{

Ax : x ∈ F+(G)
}
is semi-open and

equal to the set F+(G).

(e) ⇒ (d). Let x ∈ X and G be an open subset of Y having N-closed com-
plement such that F (x) ⊂ G. Then, int

(
cl (G)

)
is a regularly open set hav-

ing N-closed complement. Therefore, F+
(
int (cl (G))

)
is semi-open. Of course,

x ∈ F+
(
int (cl (G))

)
.

(e) ⇒ (f). Let K be a regularly closed N-closed subset of Y . Then Y \K is
a regularly open having N-closed complement subset of Y . Under assumptions,
F+(Y \K) is a semi-open set. From this, we see that the set X \ F+(Y \K) =
F−(K) is semi-closed.

(f) ⇒ (e). The proof is similar to the previous case. �
����	�� 2� Let F : X → Y be a multifunction. The following statements are
equivalent.

(a) F is lower almost nearly quasi-continuous.

(b) For any x ∈ X and for any regularly open set G ⊂ Y having N-closed
complement such that F (x) ∩ G 
= ∅ and for any open set U 	 x, there
exists a nonempty open set W ⊂ U such that F (z)∩ G 
= ∅ for any z ∈ W.
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(c) For any x ∈ X and for any closed N-closed set K ⊂ Y such that x ∈
F−(Y \ K) and for any closed set H such that x ∈ X \ H, there exists
a closed set M ⊃ H,M 
= X such that F+

(
cl (int (K))

) ⊂ M.

(d) For any x ∈ X and for any open set G ⊂ Y having N-closed complement
such that F (x) ∩ G 
= ∅, there exists a semi-open set A 	 x such that
A ⊂ F−(int (cl (G))

)
.

(e) The set F−(G) is semi-open for any regularly open set G ⊂ Y having
N-closed complement.

(f) The set F+(K) is semi-closed for any regularly closed N-closed set K ⊂ Y.

����	�� 3� Let F : X → Y be a multifunction. The following statements ere
equivalent.

(a) F is almost nearly quasi-continuous.

(b) For any x ∈ X and for any regularly open subsets G1, G2 of Y having
N-closed complement such that F (x) ⊂ G1 and F (x) ∩ G2 
= ∅ and for
any open set U 	 x, there exists a nonempty open set W ⊂ U such that
F (z) ⊂ G1 and F (z) ∩G2 
= ∅ for any z ∈ W.

(c) For any x ∈ X and for any closed N-closed sets K1, K2 ⊂ Y such that
x ∈ F+(Y \K1)∩F−(Y \K2) and for any closed set H such that x ∈ X\H,
there exists a closed set M ⊃ H,M 
= X such that F−(cl (int (K1))

) ∪
F+

(
cl (int (K2))

) ⊂ M.

(d) For any x ∈ X and for any open sets G1, G2 ⊂ Y having N-closed com-
plement such that F (x) ⊂ G1 and F (x)∩G2 
= ∅, there exists a semi-open
set A 	 x such that A ⊂ F+

(
int (cl (G1))

) ∩ F−(int (cl (G2))
)
.

(e) The set F+(G1)∩F−(G2) is semi-open for any regularly open sets G1, G2

of Y having N-closed complement.

(f) The set F−(K1)∪F+(K2) is semi-closed for any regularly closed N-closed
set K1, K2 ⊂ Y.

P r o o f. (a) ⇒ (b). Let x ∈ X and G1, G2 be regularly open subsets of Y having
N-closed complement such that x ∈ F+(G1)∩F−(G2). Let U be an open subset
of X containing x. Under assumption, there exists a nonempty open set W ⊂ U
such that W ⊂ F+

(
int (cl (G1))

) ∩ F−(int (cl (G2))
)
. Hence,

W ⊂ F+(G1) ∩ F−(G2)

because G1, G2 are regularly open sets.

(b) ⇒ (a). Let x ∈ X and G1, G2 be open sets having N-closed complement
such that x ∈ F+(G1) ∩ F−(G2). Then, by Lemma 1, int

(
cl (G1)

)
, int

(
cl (G2)

)
are regularly open sets and it is clear that

x ∈ F+
(
int

(
cl (G1)

)) ∩ F−
(
int

(
cl (G2)

))
.

67



ANDRZEJ RYCHLEWICZ

Then, for any open set U 	 x, there exists an open nonempty set W ⊂ U such
that W ⊂ F+

(
int (cl (G1))

) ∩ F−(int (cl (G2))
)
.

(a) ⇒ (c). Let x ∈ X and K1, K2 ⊂ Y be closed N-closed sets such that

x ∈ F+(Y \K1) ∩ F−(Y \K2).

Let H be a closed subset of X such that x ∈ X \H. Then, there exists an open
nonempty set W ⊂ U = X \H such that

W ⊂ F+
(
int

(
cl (Y \K1)

)) ∩ F−
(
int

(
cl (Y \K2)

))
.

Let us denote M = X \W . Then, M is a closed set different from X and

M ⊃ X \
[
F+

(
int

(
cl (Y \K1)

)) ∩ F−
(
int

(
cl (Y \K2)

))]

=

[
X \ F+

(
int

(
cl (Y \K1)

))] ∪
[
X \ F−

(
int

(
cl (Y \K2)

))]

= F−
(
cl
(
int (K1)

)) ∪ F+
(
cl
(
int (K2)

))
.

(c) ⇒ (a). The proof is similar to the previous one.

(a)⇒ (d). Let x ∈ X and G1, G2 be open subsets of Y having N-closed
complement such that F (x) ⊂ G1 and F (x) ∩ G2 
= ∅. We know that for any
open subset U 	 x of Y there exists a nonempty open set WU ⊂ U such that
WU ⊂ F+

(
int (cl (G1))

) ∩ F−(int (cl (G2))
)
. Let

A = {x} ∪
⋃

{WU : U is an open neighbourhood of x}.
It is clear that A ⊂ cl

(
int (A)

)
and hence semi-open. Of course, x ∈ A and

A ⊂ F+
(
int (cl (G1))

) ∩ F−(int (cl (G2))
)
.

(d) ⇒ (a). Let x ∈ X and G1, G2 be open subsets of Y having N-closed
complement such that x ∈ F+(G1) ∩ F−(G2). Let U be an open neighborhood
of x. We know that there exists a semi open set

A ⊂ F+
(
int

(
cl (G1)

)) ∩ F−
(
int

(
cl (G2)

))

such that x ∈ A. Let W denote the set U∩ int (A). Since U∩A 
= ∅, then W 
= ∅.
Of course, W ⊂ U and W ⊂ A. Therefore,

W ⊂ F+
(
int

(
cl (G1)

)) ∩ F−
(
int

(
cl (G2)

))
.

(d) ⇒ (e). Let G1, G2 be regularly open subsets of Y having N-closed com-
plement such that x ∈ F+(G1) ∩ F−(G2). Let us denote by Ax a semi-open set
such that

x ∈ Ax ⊂ F+
(
int (cl (G1)

)) ∩ F−
(
int

(
cl (G2)

))
= F+(G1) ∩ F−(G2).
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Then, the set A =
⋃

x∈F+(G1)∩F−(G2)
Ax is semi-open and equal to the set

F+(G1) ∩ F−(G2).

(e) ⇒ (d). Let x ∈ X and G1, G2 be open subsets of Y having N-closed
complement such that F (x) ∈ G1 and F (x) ∩ G2 
= ∅. Then by Lemma 1,
int

(
cl (G1)

)
and int

(
cl (G2)

)
are regularly open sets having N-closed comple-

ment and F (x) ⊂ int
(
cl (G1)

)
and F (x) ∩ int

(
cl (G2)

) 
= ∅. Under assumption,

F+
(
int (cl (G1))

)∩ F−(int (cl (G2))
)
is a semi-open set. According to the above

remark, the proof of this part is completed.

(e) ⇒ (f). Let K1, K2 be regularly closed N-closed subsets of Y. Then the set

F+(Y \K1) ∩ F−(Y \K2)

is semi-open. The complement of this set is semi-closed and is equal to the set

X \
[
F+(Y \K1) ∩ F−(Y \K2)

]
= F−(K1) ∪ F+(K2).

(f) ⇒ (e). The proof is similar to the previous one. �

4. Main results

In the papers [EL] and [EN] the following theorems were proved.

����	�� 4� Let (Y, τ) be a second countable topological space.

(a) If F : X → Y is upper quasi-continuous multifunction such that F (x) is
a compact subset of the space Y for any x ∈ X, then the set of all points
at which F is not upper semicontinuous is of the first Baire’s category see
[EL, Th. 15].

(b) If F : X → Y is lower quasi-continuous multifunction then the set of all
points at which F is not lower semicontinuous is of the first Baire’s cate-
gory see [EL, Th. 16].

����	�� 5� Let (Y, τ) be a second countable topological space. If F : X → Y
is a multifunction such that F (x) is a compact subset of the space Y for any
x ∈ X, then the set QCu(F ) ∩QCl(F ) \QC(F ) is of the first Baire’s category
see [EN, Th. 1].

The question: Are the analogous theorems for almost near continuity case true?
The answer is positive. As it turns out, it is very useful to transfer our in-
vestigations to the multifunctions F : X → (

Y, τN
)
and to consider an almost

coN-closed topology. First, we need two lemmas.
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����� 2� A multifunction F : X → (Y, τ) is almost nearly continuous (upper
almost nearly continuous, lower almost nearly continuous) at a point x ∈ X
if and only if the multifunction F : X → (

Y, τN
)
is continuous (upper semi-

continuous, lower semi-continuous) at a point x.

P r o o f. We know that F is upper (lower) almost nearly continuous at a point
x ∈ X if and only if for any regularly open set V having N-closed complement
such that x ∈ F+(V ) (x ∈ F−(V )) there exists an open set U containing x such
that

U ⊂ F+(V ) (U ⊂ F+(V ))

see [EK, Th. 3.(3) and Th. 6.(3)]. Due to these facts the proof of upper (lower)
case is evident.

In order to prove almost nearly continuous case, let us assume that F : X →
(Y, τ) is almost nearly continuous at some point x. Let V1, V2 be regularly open
sets having N-closed complement such that F (x) ⊂ V1 and F (x)∩V2 
= ∅. Under
the assumptions, there exists an open set U 	 x such that

U ⊂ F+
(
int

(
cl (V1)

)) ∩ F−
(
int

(
cl (V2)

))
.

Since V1, V2 are regularly open sets, the last condition can be written as U ⊂
F+(V1) ∩ F−(V2).

Now, let us assume that F : X → (
Y, τN

)
is a continuous multifunction and let

V1, V2 be open sets having N-closed complement such that x ∈ F+(V1) and x ∈
F−(V2). By Lemma 1, the sets int

(
cl (V1)

)
and int

(
cl (V2)

)
are regularly open

sets having N-closed complement and x ∈ F+
(
int (cl (V1))

) ∩ F−(int (cl (V2))
)
.

Thus
U ⊂ F+

(
int

(
cl (V1)

)) ∩ F−
(
int

(
cl (V2)

))
for some open set U 	 x. �

The following lemma can be proved in a similar way.

����� 3� A multifunction F : X → (Y, τ) is almost nearly quasi-continuous
(upper almost nearly quasi-continuous, lower almost nearly quasi-continuous)
at a point x ∈ X if and only if the multifunction F : X → (

Y, τN
)
is quasi-

continuous (upper quasi-continuous, lower quasi-continuous) at a point x.

Now, we can start to formulate and prove the main theorems.

����	�� 6� Let us assume that there exists a countable base of the almost
coN-closed topology τN of a topology τ.

(a) If F : X → (Y, τ) is upper almost nearly quasi-continuous multifunction
such that F (x) is N-closed subset of the space Y for any x ∈ X, then the
set Du

n(F ) is of the first Baire’s category.
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(b) If F : X → (Y, τ) is lower almost nearly quasi-continuous multifunction
then the set Dl

n(F ) is of the first Baire’s category.

P r o o f.

(a) Under the assumption,
(
Y, τN

)
is a second countable space. By Lemma 3

F : X → (Y, τN) is upper quasi-continuous multifunction. Let x be an
arbitrary point of X. Because the set F (x) is N-closed with respect to
topology τ, then F (x) is a compact subset of the topological space (Y, τs)
see [NO, Th. 3.1.]. Since the topology τN is weaker than the topology τs,
the last condition means that F (x) is a compact subset of the topological
space

(
Y, τN

)
for any x ∈ X. By Lemma 2, the setDu

n(F ) is equal to the set

of all points at which a multifunction F : X → (
Y, τN

)
is not upper semi-

continuous. It follows that the set Du
n(F ) is of the first Baire’s category

(see Th. 4(a)).

(b) The proof is similar to the previous case.

�
����	�� 7� Let us assume that there exists a countable base of the almost
coN-closed topology τN of a topology τ. If F : X → (

Y, τ
)
is a multifunction

such that F (x) is N-closed subset of the space Y for any x ∈ X, then the set
QCu

n(F ) ∩QCl
n(F ) \QCn(F ) is of the first Baire’s category.

P r o o f. Similarly as in the proof of Theorem 6, N-closedness of the set F (x)
with respect to the topology τ, implies a compactness of F (x) in the topological
space

(
Y, τN

)
, for any x ∈ X. By Lemma 3, we have the following equalities

QCn(F ) = QC(F ), QCu
n(F ) = QCu(F ) and QCl

n(F ) = QCl(F ).

Since QCu(F ) ∩ QCl(F ) \ ∩QC(F ) is of the first Baire’s category (see Th. 5),
then the set QCu

n(F ) ∩QCl
n(F ) \QCn(F ) is of the first Baire’s category. �
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