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COMPARISON OF RAABE’S AND SCHLÖMILCH’S

TESTS

Franciszek Prus-Wísniowski

ABSTRACT. The exact relationship between the Raabe’s test and Schlömilch’s
test is described and a useful improved version of the divergence part of these
tests is given. Furhter, a more general “continuous” scale of tests is introduced;

it includes not only both commonly used versions of Raabe’s test, but also
Schlömilch’s test.

The aim of this note is to make a precise comparison between two classical
tests of convergence (and divergence) of real series with positive terms.

������� ����	 Let
∑

an be a series of positive terms and let

Rn := n

(
an

an+1
− 1

)
.

If lim inf Rn > 1, then the series
∑

an converges.

If Rn ≤ 1 for all sufficiently large n, then the series
∑

an diverges.

The strength of the well-known Raabe’s test lies in a comparison between the
series under investigation and the family of harmonic series

∑
1
np of order p > 0.

The same idea is used in the proof of the forgotten Schlömilch’s test.


��
����
���� ����	 Let
∑

an be a series of positive terms and let

Sn := n ln
an

an+1
.

If lim inf Sn > 1, then the series
∑

an converges.

If Sn ≤ 1 for all sufficiently large n, then the series
∑

an diverges.

I have decided to formulate the test for ratios an

an+1
(as B r o mw i c h [1],

F i c h t e n h o l z [2] and V o r o b e v [5] do) instead of using ratios an+1

an
(as

K n o p p [3] does), despite the fact that my investigation of the relationship
between the two tests was inspired by a remark made by K. K n o p p who
wrote that the Schlömilch’s test does not differ from Raabe’s test essentially
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[3, p. 287]. The difference between these two formulations of Raabe’s test has
been explained in my note [4].

It is worth mentioning that in the F i c h t e n h o l z’ s book [2] the condition
Rn < 1 (for all sufficiently large n) is given as a sufficient condition for divergence
of an investigated series while the proof of it supplied in the book works for the
weaker condition Rn ≤ 1 (for all sufficiently large n) as well.

Of course, the Raabe’s associated sequence (Rn) is easier to analyse than the
Schlömilch’s one (Sn), and this seems to be the reason behind Raabe’s test shin-
ing in numerous textbooks and Schlömilch’s test becoming obscure. K n o p p’ s
monography [3] is the only source I know that mentions the latter test. The only
reasonable example of a series

∑
an for which the sequence (Sn) works better

than the sequence (Rn) is

an =
1

x
√
x 3
√
x . . . n−1

√
x

for n ≥ 2,

where the parameter x is positive.

1. The comparison of the tests

That these tests are not equivalent it can be seen from the following example.

Example 1. For the series

∞∑
n=1

4n−1
[
(n− 1)!

]2
[(2n− 1)!!]2

we have Rn = 1 + 1
4n → 1+, and hence the Raabe’s test is inconclusive. On the

other hand, the Maclaurin’s formula

ln(1 + x) = x− x2

2
+ o(x2)

yields

Sn = n ln

(
1 +

1

n
+

1

4n2

)
= 1− 1− o(1)

4n
< 1

for all sufficiently large values of n, that is, the series diverges by Schlömilch’s
test.

It is perhaps surprising that the above series with its first term removed

∞∑
n=1

bn :=

∞∑
n=2

4n−1
[
(n− 1)!

]2
[(2n− 1)!!]2

=

∞∑
n=1

4n(n!)2(
(2n+ 1)!!

)2
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discloses divergence by both tests. Indeed, we get

bn
bn+1

= 1 +
1

n
−

3
4

n2
+ o

(
1

n2

)
,

and hence

Rn = 1 +
−3

4 + o(1)

n
−−−−→
n→∞ 1−

which proves divergence by Raabe’s test, and also

Sn = 1 +
−5

4

n
+ o

(
1

n

)
−−−−→
n→∞ 1−

which proves divergence by Schlömilch’s test.

Our first task is to compare the convergence parts of the two tests. We start
with a lemma that is a little bit more than we need, but its own beauty deserves
a full statement.

����� 1	 For any sequence (an)n∈N of positive numbers the sequences

(n ln an)n∈N and
(
n(an − 1)

)
n∈N

have exactly the same accumulation points.

P r o o f. We will actually show even more. Namely, for any sequence (an) of
positive numbers and any value g ∈ R the sequence

(
n(an − 1)

)
converges to g

if and only if the sequence (n ln an) converges to g.

If n(an − 1) → g ∈ R then an → 1, and hence the Maclaurin’s formula

n ln an = n ln
(
1 + (an − 1)

)
= n(an − 1)

[
1 +

o(an − 1)

an − 1

]
(1)

yields n ln an → g[1 + 0] = g.

If n(an − 1) → +∞, then by the Bernoulli’s inequality we get

ann =
[
1 + (an − 1)

]n ≥ 1 + n(an − 1) → +∞
and hence n ln an = ln ann → +∞.

If n(an − 1) → −∞, then for every c > 0 we have n(an − 1) ≤ −c for all
sufficiently large values of n. Hence

ann ≤
(
1− c

n

)n
for sufficiently large n, and therefore lim sup ann ≤ e−c for every c > 0. Thus
lim sup ann ≤ 0. Since all terms an are positive, it follows that lim ann = 0, and
hence n ln an = ln ann → −∞, which completes the proof of one implication.

If n ln an → g ∈ R, then an → 1. Hence by (1) we get n(an − 1) → g.

121



FRANCISZEK PRUS-WIŚNIOWSKI

If n ln an → +∞, then the inequality lnx ≤ x− 1 valid for x > 0 implies that

n(an − 1) ≥ n ln an → +∞.

If n ln an → −∞, then the inequality ex ≤ 1
1−x valid for x < 1 implies that

an ≤ e−
c
n ≤ 1

1 + c
n

for any c > 0 and for sufficiently large n. Thus one has

n(an − 1) ≤ −nc

n+ c

for those indices. Therefore, lim supn(an − 1) ≤ −c for all c > 0 and hence
limn(an − 1) = −∞. �

It follows from the lemma that lim infRn = lim inf Sn for every series Σan of
positive terms, and thus the convergence parts of Raabe’s test and of Schlömilch’s
test are equivalent.

The same cannot be said about the divergence parts of the tests as we know
by our Example 1. In order to explain the exact relationship between diver-
gence parts of the Raabe’s test and the Schlömilch’s test, let us note first that
a slight modification of the proof of the divergence part of Raabe’s test yields
the following observation.

����������� 1	 Let
∑

an be a series of positive terms. If

R(k)
n := (n− k)

(
an

an+1
− 1

)
≤ 1 (R+)

for a nonnegative integer k and for all sufficiently large indices n, then the series∑
an diverges.

The full discussion of this extension of Raabe’s test and also of relationship
of Knoppp’s version and Bromwich’s version of Raabe’s test can be found in [4].
A divergence test provided by condition (R+) is in fact slightly stronger than

the divergence part of Raabe’s test for the latter one and requires that R(k)
n ≤ 1

holds in the particular case k = 0. Actually, as it can be seen from its proof, the
new divergence test rests on ratio comparison of the series under investigation
not with the single harmonic series but with with all series of the form

∑
1

n−k ,

where k runs over nonnegative integers (and where the first k terms are tacitly
assumed to be equal to 1).

There is an analogous extension of the divergence part of Schlömilch’s test
which we formulate as our next proposition.

����������� 2	 Let
∑

an be a series of positive terms. If

S(k)
n := (n− k) ln

an
an+1

≤ 1 (S+)
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for a nonnegative integer k and for all sufficiently large indices n, then the series∑
an diverges.

P r o o f. If S(k)
n ≤ 1 for some nonnegative integer k and all sufficiently large

indices n, then ln an

an+1
≤ 1

n−k , which together with the inequality ex ≤ 1
1−x

valid for x < 1 implies that

an
an+1

≤ 1

1− 1
n−k

=

1
n−(k+1)

1
(n+1)−(k+1)

for all n large enough. Since the series
∑

1
n−(k+1) diverges, so does the series∑

an by the ratio comparison test [3, p. 114]. �

It is easy to see that for any sequence (cn) of positive terms the sequences(
(n−k) ln cn

)∞
n=1

and (n ln cn)
∞
n=1 have the same accumulation points, and thus

lim infn S(k)
n = lim infn Sn for any positive integer k, so that the new associated

sequences
(S(k)

n

)
do not improve the Schlömilch’s convergence test. But they do

strengthen the divergence part as the following example shows.

Example 2. The Schlömilch’s test is inconclusive when being applied to the
series

∞∑
n=1

(n− 1)!(n+ 2)![
(n+ 1)!

]2 ,

because
an

an+1
= 1 +

n+ 4

n2 + 3n
,

and thus

Sn = 1 +
1
2

n
+ o

(
1

n

)
→ 1+.

On the other hand

S(1)
n = (n− 1) ln

an
an+1

= (n− 1)

(
n+4

n2+3n − 1
2

[
n+4

n2+3n

]2
+ o

(
1
n2

))

= 1−
1
2

n
+ o

(
1

n

)
,

and hence S(1)
n < 1 for sufficiently large n, which proves divergence of the inves-

tigated series.

Our next proposition describes the relationship between the strengthened
versions of divergence parts of Raabe’s and Schlömilch’s tests.
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����������� 3	 A series
∑

an of positive terms satisfies the condition (R+)if
and only if satisfies the condition (S+)

P r o o f. Let
∑

an be a series with positive terms such that R(k)
n ≤ 1 for some

k ∈ N0 and for all n large enough. The inequality

(n− k)

(
an

an+1
− 1

)
≤ 1

implies that
an

an+1
≤ 1 +

1

n− k
.

Because of the inequality 1 + x < ex valid for x �= 0, we get

an
an+1

< e
1

n−k

and thus

(n− k) ln
an

an+1
< 1

for all sufficiently large indices n.

Now, if
∑

an is a series of positive terms such that

(n− k) ln
an

an+1
≤ 1

for some k ∈ N0 and for sufficiently large n, then the inequality ex < 1
1−x valid

for x < 1, x �= 0, implies that

an
an+1

≤ e
1

n−k <
1

1− 1
n−k

= 1 +
1

n− k − 1
.

Thus, if additionally n is greater than k + 1, we obtain(
n− (k + 1)

)( an
an+1

− 1

)
< 1

for all sufficiently large n. �

Roughly speaking, the first part of the preceding proof validates the implica-
tion

R(k)
n ≤ 1 ⇒ S(k)

n ≤ 1 (2)

and the second part shows that

S(k)
n ≤ 1 ⇒ R(k+1)

n ≤ 1. (3)

The shift of the parameter k by 1 in the second implication is the cause of the
classical Raabe’s divergence test being weaker than the Schlömilch’s one. This
completes the comparison of the two tests.
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However, the Knopp’s version of basic Raabe’s test [3, p. 285] with ratios an+1

an

is better than the basic Schlömilch’s test, since Knopp’s version is equivalent to

R(1)
n -test [4].

Example 3. Divergence of the series
∑

1
n lnn cannot be discovered either by

the strengthened Raabe’s test or by the strengthened Schlömilch’s test. Indeed,
given a nonnegative integer k, one has

R(k)
n = (n− k)

(
n+ 1

n

ln(n+ 1)

lnn
− 1

)
=

n− k

n lnn
· (n+ 1) ln(n+ 1)− n lnn

(n+ 1)− n
.

Hence by the Mean Value Theorem there is a number ξn ∈ (n, n+ 1) such that

R(k)
n =

n− k

n lnn

(
1 + ln ξn

)
=

ln ξn
lnn

+
n− k(1 + ln ξn)

n lnn
.

Since lim n
1+ln(n+1) = +∞, we get n

1+ln ξn
> k for all sufficiently large values of n

and thus
R(k)

n >
ln ξn
lnn

> 1

for those n. Since k was an arbitrary nonnegative integer, it follows that the
series

∑
1

n lnn does not satisfy the condition (R+)

The above example suggests that the strengthened Raabe’s test is weaker
than Bertrand’s test. In fact the strengthened Raabe’s test is about as strong as
the original Gauss’s test [3, p. 288], that is, if we only consider series that satisfy
the condition (4) below, then it is equivalent to the original Gauss’s test.

�������
 ������� ����	 Let
∑

an be a series of positive terms such that the
quotient an

an+1
can be written in the form

an
an+1

=
nk + α1n

k−1 + . . .+ αk

nk + β1nk−1 + . . .+ βk
(4)

for some k ∈ N, αi, βi ∈ R and for all sufficiently large values of n.

If α1 − β1 > 1, then the series
∑

an converges.

If α1 − β1 ≤ 1, then the series
∑

an diverges.

Indeed, if (4) holds, then limRn = α1 − β1, and by the virtue of the orig-
inal Raabe’s test, the series

∑
an converges if α1 − β1 > 1, and it diverges if

α1 − β1 < 1.

In the remaining case limRn = 1, we have α1 − β1 = 1. Then

R(p)
n = (n− p)

(
an

an+1
− 1

)

=
nk + (α2 − β2 − p)nk−1 + (α3 − β3 − p)nk−2 + . . .− p(αk − βk)

nk + β1nk−1 + . . .+ βk
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and hence R(p)
n < 1 for p so big that α2−β2−p < β1 and for sufficiently large n.

Thus the series
∑

an satisfies the condition (R+)and therefore it diverges.

We conclude the first part of the paper with one more example.

Example 4. Neither the basic Raabe’s test nor the basic Schlömilch’s test proves
divergence of

∞∑
n=3

(
2− 2

√
e
)(
2− 3

√
e
)
. . .
(
2− n−1

√
e
)
=

∞∑
n=3

an ,

but the strengthened Raabe’s test discloses its divergence.

Sn = n ln
1

2− e
1
n

= −n ln

(
1− 1

n
− 1

2n2
− o

(
1
n2

))
= 1 +

1

n
+ o

(
1

n

)

and hence Sn > 1 for all sufficiently large values of n. Therefore the basic Raabe’s
test fails to disclose divergence of the series as well, because of (2). Even the
level one strengthened Raabe’s test is inconclusive here, since

R(1)
n = (n− 1)

e
1
n − 1

2− e
1
n

= (n− 1)
1
n + 1

2n2 + o
(

1
n2

)
1− 1

n − 1
2n2 − o

(
1
n2

)
=

1 +
− 1

2

n + o( 1n )

1 + −1
n + o( 1n )

−−−−→
n→∞ 1+,

but the next level associated sequence works well:

R(2)
n = (n− 2)

e
1
n − 1

2− e
1
n

=
1 +

− 3
2+o(1)

n

1 + −1+o(1)
n

< 1

for all sufficiently large n, and therefore the series under investigation diverges
for it satisfies the condition (R+).

2. A unified Raabe-Schlömilch’s test

The following idea of unification of Raabe’s test and Schlömilch’s test has been
suggested to author by Z s o l t P á l e s during the 20th Summer Conference on
Real Functions theory in Liptovský Ján, Slovakia. Consider the function

f(r, x) =

{
xr−1

r if r �= 0,

lnx if r = 0,

defined for r ∈ R and for x > 0. Then the following proposition is true.
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����������� 4	 Let r be a real number and let
∑

an be a series of positive
terms. Define

Pr
n := n f

(
r,

an
an+1

)
.

If lim inf Pr
n > 1, then the series

∑
an converges.

If Pr
n ≤ 1 for all sufficiently large n, then the series

∑
an diverges.

Since the function f(r, x) is continuous in the first variable, the above Propo-
sition provides a “continuous”family of convergence/divergence tests depending
on a parameter r and embracing the classical tests. Indeed, taking r = 1, Propo-
sition 4 turns into Raabe’s test. The value r = 0 yields Schlömilch’s test and the
value r = −1 leads us to the Knopp’s version of Raabe’s test (see the second
paragraph of [4]).

Of course, f(r, 1) = 0 for every r and f(r, x) < 0 for x ∈ (0, 1), r ∈ R, and
f(r, x) > 0 for x ∈ (1, +∞), r ∈ R. It is not difficult to see that for a fixed
x �= 1 the function f(r, x) as a function of the first variable is increasing on each
of the open intervals (−∞, 0) and (0, +∞). Since f(r, x) → lnx as r → 0, it
follows that f(r, x) is a continuous and increasing function of r for any fixed
x �= 1. In particular, given r < s and a sequence (cn) of positive numbers, if
lim infn→∞ nf(r, cn) > 1, then lim infn→∞ nf(s, cn) > 1. This implication can
be reversed as it follows from the next lemma.

����� 2	 For any sequence (cn) of positive numbers and for any r �= 0 the se-

quences (n ln cn)n∈N and
(
n

crn−1
r

)
n∈N

have exactly the same accumulation points.

P r o o f. It is an extension of our Lemma 1 and an easy proof can be based on
the fact that for any sequence (an) of positive numbers and any value g ∈ R the
sequence

(
n(an − 1)

)
n∈N

converges to g if and only if the sequence (n ln an)n∈N

converges to g (the equivalence has been proved in the course of the proof of
Lemma 1). Thus, we will consider only two particular cases because the other
cases can be treated analogously.

First, if n
crn−1

r → g ∈ R for a given r �= 0, then n(crn − 1) → rg. Hence by the
above mentioned equivalence, n ln crn → rg which implies n ln cn → g.

Second, if n ln cn → −∞, then given r > 0, one has n ln crn → −∞, and hence

n(crn − 1) → −∞ which implies n
crn−1

r → −∞. On the other hand, given r < 0,
one has n ln crn → +∞ provided that n ln cn → −∞. Thus n(crn − 1) → +∞
which implies that n

crn−1
r → −∞. �

It follows from Lemma 2 that for any sequence (cn) of positive numbers and
any parameters r, s ∈ R the sequences(

nf(r, cn)
)
n∈N

and
(
nf(s, cn)

)
n∈N
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have exactly the same accumulation points. In particular

lim inf
n→∞ nf(r, cn) > 1 if and only if lim inf

n→∞ nf(s, cn) > 1

and this equivalence together with Raabe’s test (r = 1) proves the convergence
part of Proposition 4. Thus the strength of the convergence tests given by the
associated sequences (Pr

n)n∈N does not depend on the value of the parameter, r
and it is equal to the sensitiveness of the classical Raabe’s test.

We are now going to prove the divergence test given by Proposition 4. Since
the function f(r, x) for x ∈ (0, 1] takes values not exceeding 1 and since it is
increasing in the first variable for any x > 1, it suffices to show that given any
positive integer k the condition P−k

n ≤ 1 implies n
(

an

an+1
− 1

) ≤ 1 + O
(
1
n

)
,

because the latter condition (if satisfied for all sufficiently large n) implies di-
vergence of the series

∑
an ([4, Corollary]).

If

n

(
an

an+1

)−k

− 1

−k
≤ 1

for all large indices n, then

an
an+1

≤ k

√
1 +

k

n− k

for those n. Now, the expansion (1 + x)α = 1 + αx+ α(α−1)
2 x2 + o(x2) yields

n

(
an

an+1
− 1

)
≤ n

[(
1 + k

n−k

)1
k − 1

]
= 1+ 1

n−k + o
(
1
n

)
= 1 +O

(
1
n

)
which completes the proof of the divergence part of Proposition 4.

Observe that since the Corollary from [4] is a consequence of the divergence
test given by the condition (R+), the divergence test provided by Proposition 4
might be less sensitive than the one given by (R+). Actually, it is not the case.
These two divergence tests are in fact equivalent.

Clearly, R(0)
n = P1

n. Further, if k is a positive integer such that

R(k)
n = (n− k)

(
an

an+1
− 1

)
≤ 1,

that is
an

an+1
≤ 1 +

1

n− k
,

for all sufficiently large n, then(
an

an+1

)−2k

≥
(
1 +

1

n− k

)−2k

,
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and hence for r := −2k one has

Pr
n =n

(
an

an+1

)r
− 1

r

=n

(
an

an+1

)−2k

− 1

−2k
≤ n

(
1 + 1

n−k

)−2k

− 1

−2k

= n
n−k + −2k−1

2 · n
(n−k)2 + n · o

(
1

(n−k)2

)
=1− n+2k2

2(n−k)2 + o
(
1
n

) ≤ 1

for all sufficiently large indices n.

Thus, the test given in Proposition 4 is equivalent to our extension of Raabe’s
test.

On the other hand, the divergence tests given by the associated sequences
(Pr

n)n∈N for various values of the parameter r, are not equivalent.

Example 5. Given a positive integer k, consider a series
∑∞

n=k+2 an with the
general term

an := k

√(
1− k

k + 1

)(
1− k

k + 2

)
· · ·
(
1− k

n− 1

)
.

Then
an+1

an
=

k

√
1− k

n
and hence

P−k
n = n

(
an

an+1

)−k

− 1

−k
= 1

for all n ≥ k + 2. Thus, the series diverges by Proposition 4. However, given an
ε ∈ (0, 1), one has

P−k+ε
n = n

(
an

an+1

)−k+ε

− 1

−k + ε

=
n

−k + ε

[
k − ε

k

(
−k

n

)
+

(
1− ε

k

) (− ε
k

)
2

(
k

n

)2
+ o

((
k

n

)2)]

= 1 +
ε

2n
+ o

(
1

n

)
> 1

for all sufficiently large n. Thus, the test (Pr
n)n∈N does not disclose divergence

of the series for any r > −k, while the test with r = −k shows the divergence of
the series.
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ul. Wielkopolska 15
PL–70-453 Szczecin
POLAND

E-mail : wisniows@univ.szczecin.pl

130


