

Zbigniew Duszyński

ABSTRACT. The following notations associated with a mapping $f:(X,\tau) \to (Y,\sigma)$ have been introduced in [D. S. Janković: A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985), 83–92]:

$$f_*: (X, \tau^{\alpha}) \to (Y, \sigma^{\alpha}), \quad f_{\alpha}: (X, \tau^{\alpha}) \to (Y, \sigma), \quad f^{\alpha}: (X, \tau) \to (Y, \sigma^{\alpha}),$$

where $f_*(x) = f_{\alpha}(x) = f^{\alpha}(x) = f(x)$ for each $x \in X$. Interrelationships between well-known openness-type properties (a.o.S., w.o., α -openness, a.o.W.) for $f, f_*, f^{\alpha}, f_{\alpha}$ are studied.

1. Preliminaries

Throughout the present paper (X,τ) and (Y,σ) stand for topological spaces on which no separation axioms are assumed. Let S be a subset of (X,τ) . The closure (the interior) of S in (X,τ) will be denoted by $\operatorname{cl}(S)$ or $\operatorname{cl}_{\tau}(S)$ (int (S)or $\operatorname{int}_{\tau}(S)$). The set S is said to be regular open, α -open [12], semi-open [8], semi-closed [2], preopen [9] in (X,τ) if $S = \operatorname{int}(\operatorname{cl}(S))$, $S \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$, $S \subset \operatorname{cl}(\operatorname{int}(S))$, int $(\operatorname{cl}(S)) \subset S$, $S \subset \operatorname{int}(\operatorname{cl}(S))$, respectively. The family of all closed (regular open, α -open, semi-open, semi-closed, preopen) subsets of (X,τ) is denoted by

$$c(X,\tau)$$
 (RO (X,τ) , τ^{α} , SO (X,τ) , SC (X,τ) , PO (X,τ)).

It is known [12] that τ^{α} is always a topology on X. Also, $\tau^{\alpha} = SO(X, \tau) \cap PO(X, \tau)$ [17, Lemma 3.1] and $\tau \subset \tau^{\alpha}$ for every space (X, τ) .

A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be *semi-continuous* or briefly s.c. [8] (*irresolute* [3], a.c.H. [6]) if

$$f^{-1}(V) \in \mathrm{SO}\left(X, \tau\right)$$

 $(f^{-1}(V) \in \mathrm{SO}\,(X,\tau),\, f^{-1}(V) \in \mathrm{PO}\,(X,\tau)) \text{ for each } V \in \sigma \text{ (resp. } V \in \mathrm{SO}\,(Y,\sigma), \, V \in \sigma).$

 $2000 \; \mathrm{Mathematics} \; \mathrm{Subject} \; \mathrm{Classification:} \; 54\mathrm{Co}8.$

Keywords: regular open, α -open, semi-open, preopen.

In [20, Theorem 4] D. A. Rose observed that a.c.H. and precontinuity [9] are equivalent. In [11] A. Neubrunnová showed that a.c.H. and s.c. are independent of each other.

A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be almost open in the sense of $Singal \, \& \, Singal$ or briefly a.o.S. [21] (α -open [10]) if $f(U) \in \sigma$ ($f(U) \in \sigma^{\alpha}$) for every $U \in RO(X, \tau)$ ($U \in \tau$). A mapping

$$f: (X, \tau) \to (Y, \sigma)$$

is said to be weakly open (briefly w.o.) [19] if $f(U) \subset \operatorname{int} (f(\operatorname{cl}(U)))$ for every $U \in \tau$. A mapping

$$f: (X, \tau) \to (Y, \sigma)$$

is said to be almost open in the sense of Wilansky [23] (briefly a.o. W.) if

$$f^{-1}(\operatorname{cl}(V)) \subset \operatorname{cl}(f^{-1}(V))$$
 for each $V \in \sigma$.

Recall that Wilansky originally considered a.o.W. mappings for injections only. In 1982, A. S. Mashhour *et al.* [9] introduced preopen mappings as the mappings with images of open sets being preopen. The same definition was independently used by D. A. Rose a little bit later [19]. In [20, Theorem 11] Rose proved that a.o.W. and preopenness coincide.

Relations between the above described notions are depicted in a diagram below (compare [4]) where an arrow stands for the implication, an arrow crossed out means the implication that does not hold, and a double arrow crossed out twice means that none of the two implications holds.

2. Weakly open mappings

The following known facts will be used.

Lemma 1. Let a space (X, τ) be arbitrary. Then

(a) [5, Lemma 1(i)]
$$\operatorname{cl}_{\tau}(S) = \operatorname{cl}_{\tau^{\alpha}}(S)$$
 for any $S \in \operatorname{SO}(X, \tau)$;

- (b) [5, Lemma 1(ii)] $\operatorname{int}_{\tau}(S) = \operatorname{int}_{\tau^{\alpha}}(S)$ for any $S \in \operatorname{SC}(X, \tau)$;
- (c) RO (X, τ^{α}) = RO (X, τ) (follows from [7, Corollary 2.4(a)]);
- (d) $SC(X, \tau^{\alpha}) = SC(X, \tau)$ (follows from [7, Proposition 2.1]);
- (e) [7, Corollary 2.5(a)] PO (X, τ^{α}) = PO (X, τ) ;

THEOREM 1. For any mapping $f: (X, \tau) \to (Y, \sigma)$

- (1) f is a.o.S. $\Leftrightarrow f_{\alpha}$ is a.o.S.,
- (2) f_* is a.o.S. $\Leftrightarrow f^{\alpha}$ is a.o.S.,
- (3) f is $a.o.S. \Rightarrow f^{\alpha}$ is a.o.S.

Proof. (1) and (2) follow from Lemma 1(c), while (3) is obvious by the inclusion $\sigma \subset \sigma^{\alpha}$.

The reverse implication to that of (3) above may be false, as it is seen by the following.

Example 1. Let

$$X = \{a, b, c, d, e\}, Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c, d\}\},\$$

and

$$\sigma = \{\emptyset, Y, \{a\}\}.$$

Define $f:(X,\tau)\to (Y,\sigma)$ as follows: f(a)=f(c)=a, f(b)=f(d)=b, f(e)=c. We have

$$\mathrm{RO}\,(X,\tau) = \{\emptyset, X, \{a,b\}, \{c,d\}\} \quad \text{and} \quad \sigma^{\alpha} = \{\emptyset, Y, \{a\}, \{a,b\}, \{a,c\}\}.$$

Thus, f^{α} is a.o.S., but f is not.

Recall that a mapping $f: (X, \tau) \to (Y, \sigma)$ is called *pre-semi-closed* [1, p. 8] if $f(F) \in SC(Y, \sigma)$ for each set $F \in SC(X, \tau)$.

LEMMA 2 ([16, Theorem 2.1]). A mapping $f: (X, \tau) \to (Y, \sigma)$ is a.o.S. if and only if $f(\text{int}(F)) \subset \text{int}(f(F))$ for each set $F \in SC(X, \tau)$.

THEOREM 2. Let an $f:(X,\tau)\to (Y,\sigma)$ be pre-semi-closed. Then

$$f^{\alpha}$$
 is a.o.S. \Longrightarrow f is a.o.S.

Proof. Let f^{α} be a.o.S. and pick an arbitrary $F \in SC(X, \tau)$. By Lemma 2, we have $f(\operatorname{int}_{\tau}(F)) = f^{\alpha}(\operatorname{int}_{\tau}(F)) \subset \operatorname{int}_{\sigma^{\alpha}}(f^{\alpha}(F))$. As f is pre-semi-closed, hence applying Lemma 1(b), we obtain $f(\operatorname{int}_{\tau}(F)) \subset \operatorname{int}_{\sigma}(f(F))$.

Corollary 1. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be pre-semi-closed. Then

$$f^{\alpha}$$
 is a.o.S. \iff f is a.o.S.

Proof. Theorem 1 (3) and Theorem 2.

Remark 1. The assumption that f is pre-semi-closed in Theorem 2 is necessary (Example 1). Consider, for instance, the image $f(\{c,d\})$.

THEOREM 3. For any $f: (X, \tau) \to (Y, \sigma)$

- (1) f is $w.o. \Leftrightarrow f_{\alpha}$ is w.o.,
- (2) f_* is w.o. $\Leftrightarrow f^{\alpha}$ is w.o.,
- (3) f is $w.o. \Rightarrow f^{\alpha}$ is w.o.

Proof.

(1): (\Rightarrow): Let f be w.o. and let $U \in \tau^{\alpha}$. Then we have

$$f_{\alpha}(U) = f(U) \subset f\left(\operatorname{int}_{\tau}\left(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U))\right)\right)$$
$$\subset \operatorname{int}_{\sigma}\left(f\left(\operatorname{cl}_{\tau}\left(\operatorname{int}_{\tau}\left(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U))\right)\right)\right)\right)$$
$$\subset \operatorname{int}_{\sigma}\left(f\left(\operatorname{cl}_{\tau}(U)\right)\right).$$

Since every α -open set is semi open, by Lemma 1(a) we get

$$f_{\alpha}(U) \subset \operatorname{int}_{\sigma} \Big(f \Big(\operatorname{cl}_{\tau^{\alpha}}(U) \Big) \Big) = \operatorname{int}_{\sigma} \Big(f_{\alpha} \Big(\operatorname{cl}_{\tau^{\alpha}}(U) \Big) \Big).$$

(\Leftarrow): Let f_{α} be w.o. and let $U \in \tau$. Then, by Lemma 1(**a**), we get $f(U) = f_{\alpha}(U) \subset \operatorname{int}_{\sigma} \left(f_{\alpha}(\operatorname{cl}_{\tau^{\alpha}}(U)) \right) = \operatorname{int}_{\sigma} \left(f(\operatorname{cl}_{\tau}(U)) \right)$.

- (2): It follows from calculations that consider the use of Lemma $1(\mathbf{a})$.
 - (\Rightarrow) : Let $U \in \tau$ be arbitrary. Since $U \in \tau^{\alpha}$ and f_* is w.o., we get:

$$f^{\alpha}(U) = f_{*}(U) \subset \operatorname{int}_{\sigma} \Big(f^{\alpha} \big(\operatorname{cl}_{\tau^{\alpha}}(U) \big) \Big) = \operatorname{int}_{\sigma} \Big(f^{\alpha} \big(\operatorname{cl}_{\tau}(U) \big) \Big).$$

(\Leftarrow): Let $U \in \tau^{\alpha}$, i.e., $U \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U)))$. By hypothesis we have

$$f_{*}(U) \subset f^{\alpha}\left(\operatorname{int}_{\tau}\left(\operatorname{cl}_{\tau}\left(\operatorname{int}_{\tau}(U)\right)\right)\right)$$

$$\subset \operatorname{int}_{\sigma^{\alpha}}\left(f^{\alpha}\left(\operatorname{cl}_{\tau}\left(\operatorname{int}_{\tau}(U)\right)\right)\right)$$

$$\subset \operatorname{int}_{\sigma^{\alpha}}\left(f_{*}\left(\operatorname{cl}_{\tau}(U)\right)\right)$$

$$= \operatorname{int}_{\sigma^{\alpha}}\left(f_{*}\left(\operatorname{cl}_{\tau^{\alpha}}(U)\right)\right).$$

(3): Let f be w.o. and U be from τ . In a view of the inclusion $\sigma \subset \sigma^{\alpha}$, the following is clear:

$$f^{\alpha}(U) = f(U) \subset \operatorname{int}_{\sigma} \Big(f(\operatorname{cl}_{\tau}(U)) \Big) \subset \operatorname{int}_{\sigma^{\alpha}} \Big(f^{\alpha}(\operatorname{cl}_{\tau}(U)) \Big).$$

The converse of Theorem 3(3) is not true, in general.

Example 2. Let $X = \{a, b, c, d, e\}$, $Y = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$, and $\sigma = \{\emptyset, Y, \{a\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be formally defined as in Example 1. One easily checks that f^{α} is w.o. At the same time f is not w.o., since $f(\{a, b\}) \not\subset \operatorname{int}_{\sigma}(f(\operatorname{cl}_{\tau}(\{a, b\})) = \{a\}$.

A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be *semi-closed* [14] if $f(F)\in SC(Y,\sigma)$ for every set $F\in c(X,\tau)$. It is well-known that pre-semi-closedness of f implies f is semi-closed, but not conversely.

THEOREM 4. Let $f: (X, \tau) \to (Y, \sigma)$ be semi-closed. Then

$$f^{\alpha}$$
 is w.o. \Longrightarrow f is w.o.

Proof. Let f^{α} be w.o. and $U \in \tau$. We get

$$f(U) = f^{\alpha}(U) \subset \operatorname{int}_{\sigma^{\alpha}} (f^{\alpha}(\operatorname{cl}_{\tau}(U))) = \operatorname{int}_{\sigma^{\alpha}} (f(\operatorname{cl}_{\tau}(U))),$$

where $f(\operatorname{cl}_{\tau}(U)) \in \operatorname{SC}(Y, \sigma)$. Thus, by Lemma 1(b), f is w.o.

COROLLARY 2. Assume that $f:(X,\tau)\to (Y,\sigma)$ is semi-closed. Then

$$f^{\alpha}$$
 is w.o. \iff f is w.o.

Proof. This equivalence follows from Theorems 3(3) and 4.

Remark 2. One can easily see that the mapping f^{α} from Example 2 is w.o., but f is not semi-closed (consider, for instance, the image $f(\{c, d, e\})$).

Clearly (see the proof of [15, Lemma 1.4]), for any $f:(X,\tau)\to (Y,\sigma)$ we have

$$f_*$$
 is a.o.S. \Longrightarrow f_* is w.o.

The converse may fail, as it is seen by [15, Example 1.5]. For spaces (X, σ) , (Y, τ) from that example, $\sigma = \sigma^{\alpha}$ and $\tau = \tau^{\alpha}$.

In [4] the author has shown the following.

Lemma 3. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be a.c. H. and pre-semi-closed. Then

$$f$$
 is a.o.S. \iff f is w.o.

COROLLARY 3. Let $f:(X,\tau)\to (Y,\sigma)$ be pre-semi-closed and let f_* be a.c. H. Then

$$f_*$$
 is w.o. \iff f_* is a.o.S.

Proof. By Lemma 1(d), pre-semi-closedness of f and f_* are equivalent. Thus, Lemma 3 yields the result.

Lemma 4. For any $f: (X, \tau) \to (Y, \sigma)$,

$$f_*$$
 is a.c.H. \Longrightarrow f is a.c.H.

Proof. Clear by the inclusion $\sigma \subset \sigma^{\alpha}$ and Lemma 1(e).

The reverse implication may be false.

EXAMPLE 3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$, and $\sigma = \{\emptyset, X, \{a\}\}$. The identity mapping id: $(X, \tau) \to (X, \sigma)$ is continuous and so a.c.H., but id, is not a.c.H. since $\operatorname{id}_*^{-1}(\{a, b\}) \notin \operatorname{PO}(X, \tau) = \operatorname{PO}(X, \tau^{\alpha})$.

COROLLARY 4. Let $f:(X,\tau) \to (Y,\sigma)$ be pre-semi-closed and f_* be a.c.H. Then

- (a) f_* is a.o.S. $\Leftrightarrow f$ is w.o.;
- (b) f is $a.o.S. \Leftrightarrow f_*$ is w.o.

Proof. Every pre-semi-closed mapping is semi-closed and therefore we can utilize Corollary 2. (a) Use Corollaries 3 and 2, and Theorem 3(2), (b) follows by Lemmas 4 and 3, Corollary 2, Theorem 3(2). \Box

3. a.o.W. mappings

LEMMA 5 ([12, Proposition 10]). In every space (X, τ) , $\tau^{\alpha} = (\tau^{\alpha})^{\alpha}$.

THEOREM 5. For any $f:(X,\tau)\to (Y,\sigma)$

- (1) f^{α} is α -open $\Leftrightarrow f$ is α -open;
- (2) f_* is α -open $\Leftrightarrow f_\alpha$ is α -open;
- (3) f_{α} is α -open $\Rightarrow f$ is α -open.

Proof. (1) follows from Lemma 5, (2) is obvious, while (3) is clear by the inclusion $\tau \subset \tau^{\alpha}$.

The implication converse to (3) may be not true.

Example 4. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, and $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is open (and so α -open), but id $_{\alpha}$ is not α -open since id $_{\alpha}(\{a,b\}) \notin \sigma^{\alpha} = \sigma$.

A mapping $f:(X,\tau)\to (X,\sigma)$ is called *pre-irresolute* [18] if the preimage $f^{-1}(V)\in \mathrm{PO}(X,\tau)$ for each $V\in \mathrm{PO}(Y,\sigma)$. In [4] we have proved the following.

Lemma 6. If a mapping is a.o.S. and pre-irresolute, then it is α -open.

LEMMA 7. If an $f:(X,\tau) \to (Y,\sigma)$ is a.o.S. and pre-irresolute, then f_* (or equiv. f_{α}) is α -open.

Proof. By Lemma 1(e), pre-irresolutness of f and pre-irresolutness of f_* are equivalent. From Theorem 1 we infer that f_* is a.o.S. Thus, the result follows directly from Lemma 6.

Each pre-irresolute mapping is a.c.H. but [18, Example 3] guarantees the existence of an a.c.H. mapping which is not pre-irresolute.

LEMMA 8 ([4]). If a mapping $f: (X, \tau) \to (Y, \sigma)$ is a.o.S. and a.c.H., then f is α -open if and only if it is pre-irresolute.

THEOREM 6. Let $f: (X, \tau) \to (Y, \sigma)$ be a.c. H. and a.o. S. Then

$$f$$
 is α -open \Longrightarrow f_{α} is α -open.

Proof. Lemmas 8 and 7.

COROLLARY 5. Let $f:(X,\tau)\to (Y,\sigma)$ be a.c.H. and a.o.S. Then

$$f$$
 is α -open \iff f_{α} is α -open.

Proof. From Theorems 5 and 6.

THEOREM 7. For every $f:(X,\tau)\to (Y,\sigma)$ we have

- (1) f^{α} is a.o. W. $\Leftrightarrow f$ is a.o. W.;
- (2) f_* is a.o. $W_* \Leftrightarrow f_\alpha$ is a.o. W_* ;
- (3) f_{α} is a.o. $W \Rightarrow f$ is a.o. W.

Proof. (1) and (2) follow by Lemma 1(e) while (3) is obvious by $\tau \subset \tau^{\alpha}$.

The implication in Theorem 7(3) is not reversible.

EXAMPLE 5. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is a.o.W. (open, in fact), but id_{\alpha} is not a.o.W. since $\{a, b\} \notin PO(X, \sigma)$.

LEMMA 9 ([22, Lemma 3.9]). A mapping $f: (X, \tau) \to (Y, \sigma)$ is a.o. W. if and only if

$$f^{-1}(\operatorname{cl}(V)) \subset \operatorname{cl}(f^{-1}(V))$$
 for every $V \in \operatorname{SO}(Y, \sigma)$.

THEOREM 8. Let a mapping $f: (X, \tau) \to (Y, \sigma)$ be s.c. Then

$$f$$
 is a.o. W . \Longrightarrow f_{α} is a.o. W .

Proof. Let $V \in SO(Y, \sigma)$ be arbitrary. By [13, Lemma 2], cl(V) = cl(int(V)). Thus, by our assumption and by Lemma 1(a), we get

$$f_{\alpha}^{-1}(\operatorname{cl}_{\sigma}(V)) = f^{-1}(\operatorname{cl}_{\sigma}(\operatorname{int}_{\sigma}(V))) \subset \operatorname{cl}_{\tau}(f^{-1}(\operatorname{int}_{\sigma}(V)))$$
$$= \operatorname{cl}_{\tau^{\alpha}}(f^{-1}(\operatorname{int}(V))) \subset \operatorname{cl}_{\tau^{\alpha}}(f_{\alpha}^{-1}(V)).$$

By Lemma 9, f_{α} is a.o. W.

COROLLARY 6. Let $f:(X,\tau)\to (Y,\sigma)$ be s.c. Then

$$f$$
 is a.o. W . \iff f_{α} is a.o. W .

Remark 3. It is not difficult to see that an $f:(X,\tau)\to (Y,\sigma)$ is a.o. W. if and only if $f^{-1}(\operatorname{cl}(V))\subset\operatorname{cl}(f^{-1}(V))$ for every $V\in\sigma^{\alpha}$ (use inclusions $\sigma\subset\sigma^{\alpha}\subset\operatorname{SO}(Y,\sigma)$).

Obviously, any mapping f fulfils the implication:

$$f_*$$
 is α -open \Longrightarrow f_* is a.o.W.

However, the converse can fail.

EXAMPLE 6. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$. It can be seen that $\tau = \tau^{\alpha}$ and $\sigma = \sigma^{\alpha}$. Hence, id: $(X, \tau) \to (X, \sigma)$ is a.o. W. but it is not α -open as id $(\{b\}) \notin \sigma$.

Lemma 10 ([4]). Let a mapping f be pre-irresolute and pre-semi-closed. Then

$$f$$
 is a.o. W . \iff f is α -open.

COROLLARY 7. Let an f be pre-irresolute and pre-semi-closed. Then

$$f_*$$
 is a.o. W. \iff f_* is α -open.

Proof. By Lemma 1(d),(e) we get that pre-irresoluteness of f and f_* coincide, and that pre-semi-closedness of f and f_* coincide also. Thus our result follows directly from Lemma 10.

COROLLARY 8. Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be s.c., pre-irresolute, and pre-semi-closed. Then

- (a) f_* is α -open $\Leftrightarrow f$ is a.o. W.;
- (b) f is α -open $\Leftrightarrow f_*$ is a.o. W.

Proof. (a) From Corollaries 7 and 6 and Theorem 7(2). (b) From Lemma 10, Corollary 6, and Theorem 7(2). \Box

The next examples prove that s.c. and pre-irresoluteness are independent of each other.

Example 7.

- (a) Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{\emptyset, X, \{a\}\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is continuous, but it is not pre-irresolute since $\{a, c\} \notin PO(X, \tau)$.
- (b) Let $X = \{a, b\}, \tau = \{\emptyset, X\}, \sigma = \{\emptyset, X, \{a\}\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is pre-irresolute and not s.c.

A bijection is said to be a *semi-homeomorphism* [3] if it is irresolute and presemi-open [3]. For a bijection, pre-semi-openness and pre-semi-closedness are equivalent notions.

The two concluding corollaries are immediate consequences of some previous results.

COROLLARY 9. Let f be a semi-homeomorphism. Then

- (a) f_* is a.o.S. $\Leftrightarrow f$ is a.o.S.;
- **(b)** f_* is w.o. $\Leftrightarrow f$ is w.o.;
- (c) f_* is a.o. $W_* \Leftrightarrow f$ is a.o. W_*

Proof. (a) Corollary 1 and Theorem 1(2). (b) Corollary 2 and Theorem 3(2). (c) Corollary 6 and Theorem 7(2). \Box

COROLLARY 10. For a homeomorphism f we have

f is α -open \iff f_* is α -open.

Proof. It follows from Corollary 5 and Theorem 5(2).

We recall that every homeomorphism is a semi-homeomorphism, but not conversely [3, Example 1.2].

REFERENCES

- ARYA, S. P.—BHAMINI, M. P.: A generalization of normal spaces, Mat. Vesnik 35 (1983), 1-10.
- [2] CROSSLEY, C. G.—HILDEBRAND, S. K.: Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [3] CROSSLEY, C. G.—HILDEBRAND, S. K.: Semi-topological properties, Fund. Math. 74 (1972), 233–254.
- [4] DUSZYŃSKI, Z.: Almost openness and weak openness of mappings, submitted.
- [5] GARG, G. L.—SIVARAJ, D.: Semitopological properties, Mat. Vesnik 36 (1984), 137-142.
- [6] HUSAIN, T.: Almost continuous mappings, Prace Mat. 10 (1966), 1-7.
- [7] JANKOVIĆ, D. S.: A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46 (1985), 83-92.
- [8] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [9] MASHHOUR, A. S.—ABD EL-MONSEF, M. E.—EL-DEEB, S. N.: On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- [10] MASHHOUR, A. S.—HASANEIN, I. A.—EL-DEEB, S. N.: α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983), 213-218.
- [11] NEUBRUNNOVÁ, A.: On certain generalizations of the notion of continuity, Mat. čas. 23 (1973), 374–380.
- [12] NJÄSTAD, O.: On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [13] NOIRI, T.: On semi-continuous mappings, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Natur. 54 (1973), 210-214.

- [14] NOIRI, T.: A generalization of closed mappings, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Natur. 54 (1973), 412-415.
- [15] NOIRI, T.: Semi-continuity and weak-continuity, Czechoslovak Math. J. 31 (106) (1981), 314-321.
- [16] NOIRI, T.: Almost-open functions, Indian J. Math. 25 (1983), 73-79.
- [17] NOIRI, T.: On α -continuous functions, Čas. pěst. mat. **109** (1984), 118–126.
- [18] REILLY, I. L.—VAMANAMURTHY, M. K.: On α-continuity in topological spaces, Acta Math. Hungar. 45 (1985), 27–32.
- [19] ROSE, D. A.: Weak openness and almost openness, Internat. J. Math. Math. Sci. 7 (1984), 35-40.
- [20] ROSE, D. A.: Weak continuity and almost continuity, Internat. J. Math. Math. Sci. 7 (1984), 311-318.
- [21] SINGAL, M. K.—SINGAL, A. R.: Almost-continuous mappings, Yokohama Math. J. 16 (1968), 63–73.
- [22] SIVARAJ, D.: A note on S-closed spaces, Acta Math. Hungar. 44 (1984), 207-213.
- [23] WILANSKY, A.: Topics in Functional Analysis, Lecture Notes in Math., Vol. 45, Springer--Verlag, Berlin, 1967.

Received July 4, 2007

Casimirus the Great University Institute of Mathematics pl. Weyssenhoffa 11 PL-85-072 Bydgoszcz POLAND

E-mail: imath@ukw.edu.pl