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ABSTRACT:  Using efficient marketing strategies for understanding and improving the 

relation between vendors and clients rests upon analyzing and forecasting a wealth of data 

which appear at different time resolutions and at levels of aggregation.  More often than 

not, market success does not have consistent explanations in terms of a few independent 

influence factors.  Indeed, it may be difficult to explain why certain products or services 

tend to sell well while others do not. The rather limited success of finding general 

explanations from which to draw specific conclusions good enough in order to generate 

forecasting models results in our proposal to use data driven models with no strong prior 

hypothesis concerning the nature of dependencies between potentially relevant variables. If 

the relations between the data are not purely random, then a general or flexible enough data 

driven model will eventually identify them. However, this may come at a high cost 

concerning computational resources and with the risk of overtraining. It may also preclude 

any useful on-line or real time applications of such models. In order to remedy this, we 

propose a modeling cycle which provides information about the adequacy of a model com-

plexity class and which also highlights some nonstandard measures of expected model 

performance.      

Keywords:  Aggregate market reaction, individual client behavior, data modeling, deep 

neural networks, overtraining   

 

JEL Classification: M3, D8, C1, C8. 

1. Introduction and motivation 
The use of effective marketing strategies in the relationship between seller and 

buyer depends on a detailed data analysis and the use of this data to forecast 

collective and individual behavior of economic agents. The data may be collected 

both at multiple aggregation levels as well as within different functional relations 

between such agents. In many specific market situations, the mechanisms 

influencing eventual market success have no consistent theoretical explanation. For 
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instance, it often remains a surprise as to why some products are successfully sold 

and others are not, despite having seemingly attractive characteristics.  

A way out would be to collect very large amounts of detailed behavioral and other 

market related data, as customers may follow hidden “addictive” behavioral 

patterns which may be detected, explored and finally exploited – at least to the 

benefit of vendors. Mapping this data against vending success is an important 

technique resulting in many types of forecasting and classification models which 

may also explain purchasing behavior or ranking of alternatives, etc.. However, 

such big data are predominantely private and are being considered to be an 

important asset of e.g. technology firms or consultancies. Nevertheless, there is 

now a clear tendency of increasingly “disclosing” such private data putting them 

into the public domain. The price to pay are here the obligatory privacy preserving 

transformations of the data imposed by law to be applied by the data supplier, 

which may somewhat diminish accuracy and information content.     

In the public sphere there are usually small data sets available whose analysis can 

best be done by means of a classic linear model (or a logistic model for 

classification which merely transforms a linear relation, Hosmer and Lemeshow 

(2000)). When, at the other extreme, a considerable amount of data is available, 

both data analysis and modelling will best be done by means of a neural model 

(including its many recent variants related to deep learning, view e.g. Bishop 

(2006), Montavon et al. (2012), Goodfellow et al. (2016)). The downside of the 

latter approach is (1) large to excessive consumption of computational resources 

and (2) a considerable uncertainty concerning the adequacy of the resulting neural 

model complexity. While an optimized linear model (Press et al. (2007)) may 

indeed be viewed as being the best model for independent additive influence 

factors explaining a dependent variable (sales, say) there is nothing similar in spirit 

we can say about a neural model.   Aside from the (not so remote) possibility that 

the model data do not contain all relevant influence variables (McLachlan (2014), 

Trippa et al. (2015), Gareth et al. (2015)), the resulting linear model can be termed 

truly optimal in the sense that no better linear model does exist. A similar statement 

may never be forwarded for a neural model. While it is able to potentially capture 

any practically relevant type of non-separable and of non-additive (i.e. nonlinear) 

influences (Bishop (1995, 2006)), one can never be sure if it is also optimal in 

some sense. Accordingly, it may be (grossly) overtrained, which means it is much 

more powerful than the noisy data would allow or it is effectively much less 

poweful than its architecture (number of neurons and parameters) would imply. 

The latter case can be achieved rather easily by implicitly deactivating whole 

branches of the network (view e.g. Zimmermann and Weigend (1997), Montavon 

et al. (2101)). 
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Hence the task of data modeling in a market environment is to find elements which 

point towards correcting model complexity: if the data is severly limited use a 

linear model, otherwise be careful to clarify which is the adequate model 

complexity for the problem at hand.        

In the sequel we will address this problem by finding data models for two 

conceptually distict data sets which nevertheless stand for two relevant problems in 

quantitative marketing, namely (1) forecasting a aggregate quantity (vending 

prices, say) and (2) forecasting the reaction of a new client (buying insurance, say). 

Some of the available data sets are quite extensive (in the range of 10
4
 data points), 

such that there is substantial a priori uncertainty concerning the adequate model 

class to use.  Data may be more or less redundant, and linear models may suffice. 

However, there are also different criteria along which to measure modelling 

success as well as forecasting stability (Bishop (2006)). Hence, there may be 

situations where a more general modelling approach (e.g. neural models) would 

deliver the best results.      

In order to offer an answer to these questions we proceed by using two empirical 

data sets with data volumes as announced above, the first being used in order to 

forecast an aggregate market quantity (regression-based model) and the second one 

being used in order to forecast a client’s choice (classification-based model).  We 

illustrate the gains and downsides for transiting from a linear regression model to a 

neural network (regression) and transiting from LDA (linear discriminat analysis) 

to a neural network including a deep learning neural network variant 

(classification).  In doing so we have to explain a few preparatory modelling steps 

which are required in the case of neural networks but which are not required in 

linear modelling.  In the case of neural networks, we need to (1) preprocess data 

and continue with the important aspects related to training the networks, i.e. (2) 

choosing activation function, employing a variant of error backpropagation, and, 

finally, (3) using cross-validation in order to check for over- or under-training of 

the resulting models (Trippa et al (2015), Kamisnsky et al. (2017)). We conclude 

with some comments on the usability of today’s technology and data availability, 

but we also offer an outlook concerning the type of deep neural networks to be 

used on future still much bigger and more integrated data sets. 

  

2. Research methodology  

While in market modeling and in quantitative marketing research there is plenty of 

scope to use unsupervised statistical learning (e.g. Chollet (2018) for recent 

examples), i.e. clustering or segmenting persons, products, industries, etc., into 

groups for deriving recommendations as well as using semi-supervised learing in 

case of partial availability of label data (see e.g. Bishop (2006), Gareth et al. (2015) 
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for technical accounts), in the present paper we concentrate on models estimated or 

trained by supervised learning as is still a more common practice in econometric 

and marketing applications. Hence, we assume that all input and associated target 

data are available, there are no missing values in the data, and there are no a priori 

unknown cathegories (labels) which data subsets are going to be grouped into by 

subsequent modeling. We propose the following modeling cycle which may be 

associated with meta-learning about market model building: 

1. Find at least two data sets which serve different modeling goals and which by 

their nature may be complementary, at least in principle  

2. Estimate and evaluate basic linear prediction models on these data sets 

3. Employ conventional neural networks – subsample the data if required 

4. Evaluate alternative, possibly more problem adequate error functions 

5. Define and employ an extensive validation procedure on steps 3 and 4 

6. Use deep neural networks on full data as a more demanding expert backend 

Repeated steps 1 - 6 for different market data and associated predictions tasks may 

lead over time to a realistic judgement of pertinent statistical modelling 

possibilities and even to new experimental modeling designs. 

With the above stated restrictions in mind we start out from at least two market 

data repositories with the generic data format being  (   ), where input   is a     

- matrix and the target or output   is in general a     - matrix, respectively.  A 

line from  , namely    contains the ith  observation of input features from the data 

base. Such an observation might refer to e.g. an object, an action or a person with 

respective     (supposedly independent) characteristics. Associated with each 

observation is an output (according to context a target or a response), which may 

be real- valued (implying to find a regression model on the data) or categorical, 

like e.g. “yes/no” (implying a classification model).   

In general, one would use multiple regression and multi-label classification (hence 

   ). In the data examples to follow we refrain from these general cases. We here 

also refrain from considering time series models where a prediction is conditioned 

on the (immediate) respective past inputs. Hence, our data model basically poses 

the question “given an input vector does appear what the most probable output is?”    

 

Linear base models 

In view of the general aim of finding well performing prediction models but also of 

using the least demanding modeling approach (in terms of highly specialized 

technical expertise and of avoiding excessive use of computational resources) one 

would naturally start out by using basic linear models for both regression and 

classification.  Given the above definitions a linear (regression) model estimated by 
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minimizing the squared residuals (squared deviations of the predictions from the 

outputs) reads:  

Find a parameter vector    which minimizes a user given error function  

 (   (   ))  over all         , with the quadratic error  (   )   

  (   (   ))       
 

 
∑(         (    )) 

 

 

   

 

and with the model being   (    )         ∑       
 

   
, i.e. it is a hyperplane in the 

m-dimensional feature space.  A linear binary classification which assumes 

     *   +, say, is a hyperplane perpendicular to the connecting line of barycenters 

(centers of gravity) of the data points of the two classes.  If         ∑    
 (   )
    is the 

barycenter for observations with      and        ∑    
 (   )
    for the remaining 

observations with     , an optimal separating hyperplane will sit somewhere on 

the line     (   )  , with          and with the mentioned perpendicularity 

condition of   ∑ (          )  
    

 

   
. 

Such linear optimality schemes are computed cheaply. But they strictly do apply 

just in case of data generated under Gaussian distributions with well separated 

means (Press et al. 2007). The ideal case is to find a linear model such that the 

remaining errors (unexplained residuals) are themselves normally distributed, 

meaning that there is no more systematic dependency to extract from the data. As 

soon as these assumptions concerning the data and the models are not verified the 

question of how to find an adequate (performant, parsimonious) data model is fully 

open again.         

 

Conventional (shallow) neural networks 

The aforementioned conditions may be rarely satisfied in practice. A valid but 

pragmatic argument in favor of linear models in econometrics and quantitative 

marketing is that of data scarceness. While still true for many interesting sub-

domains this is changing fast. A subtler argument refers to the judgement that 

economic data tends to be heavily corrupted by different noise sources and as such 

is not very reliable anyway. Repeated waves of at best moderately successful 

attempts to model (high frequency, etc.) financial data streams (e.g. Zimmermann 

and Weigend (1997)) which come with the promise of being extremely lucrative 

for the modeler underline this conclusion.  

However, the general data landscape for market related modelling is much more 

diverse than financial times series or trading and the prediction tasks are equally 

very different in nature. Additionally, some data like recorded opinions, actions or 

decisions, etc., are not easily associated with “noise” in any classical sense.  In all 
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these cases and when we suspect that a linear model is suboptimal for some reason 

we may switch to a much more flexible modeling tool like neural networks. Neural 

networks can be used for regression and classification alike (and for many more 

different tasks as well). They are highly parameterized nonlinear statistical models 

and therefore capable to model very different behaviors by potentially producing a 

very large spectrum of different input-output mappings (for a recent account see 

Montavon et al. (2012)).   

A conventional neural network has these capabilities but it requires in general a 

huge (computational) training effort which is further potentiated by the necessity of 

cross-validation (Bishop (1995, 2006)). The latter is a procedure for actively 

avoiding overtraining (i.e. showing good performance in training but being a poor 

forecaster on unseen or new examples). Also, training may be practically 

ineffective for bigger data sets. The upside is that they do not need extensive 

technical knowledge and many software packages (e.g. R, SPSS, Eviews, etc.) do 

provide user-friendly basic tools. Their basic mode of operation goes as follows: 

starting out from a user chosen error function as in the case of the linear model,  

 (   (   )) which we intend to minimize, the main difference concerns the model f 

(.,.). We will refer to the standard feedforward neural network for supervised 

learning. This model is a hierarchical composition of simple nomlinear nodes (the 

“neurons”) which are interconnected like nodes of a directed weighted graph 

without cycles.  The inputs are the sinks of such a graph and the output is the goal. 

The graph (or neural network) incidence matrix is such that only a (lower, say) 

triangle contains connections.  Shunting connections are also not used, such that 

the networks look like sandwitched neurons.  Figure 1 is depicting the incidences 

of a 5:3:2:1 neural network.  There are 5 inputs followed by 3 neurons in a first 

layer (the 3x5 shaded area) which is followed by a second layer of neurons (the 

2x3 shaded area) and finally by an output neuron taking the outputs of the neurons 

from the second layers as their inputs. Every neuron takes as many weighted inputs 

as there are outputs in the previous layer. 
 

 Inputs  Neurons 

Inputs x   

 

 

Neurons  

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

  

  

  

1 1 1 

1 1 1 

Output f(.)           1 1  

 

Figure 1:  A small feedforward neural network incidence matrix 
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The generic formula for e.g. neuron number 4 (first neuron in the second layer) is 

given by 
  ( )     (            ( )        ( )       ( ) ). 

In this way one recursively reaches the input data (via          ).  This network has 

a total of 3x5 + 3  plus 2x3 + 2  and 2+1  (=29) parameters      . As is quite 

obvious the number of of these parameters grows fast in the number of inputs and 

neurons.  From the viewpoint of standard statistical modelling (e.g. Hosmer and 

Lemesow (2000)) this may seem highly questionable, especially for a given 

constant number of observations.  From the point of view of machine learning 

(Bishop (2006)) only consistent prediction performance counts – much less the 

means by which this may be achieved. An argument in favor of this is the very 

nature of a typical neuron transfer function  ( ). Such a function belongs to a class 

of “squashers”, a much-used representative of which is  (   )       (   ),  with 

c a real constant and u a real variable. This function converges to -1 for large 

negative values of u, grows monotonuously, and converges to +1 for large positive 

u. The constant c shifts the zero location to the left or to the right. It thereby allows 

for itself a series of different responses. More to the point, for increasing values of  

u, u>c, the function   ( )  rapidely becomes insensitive (i.e.  
  ( )

  
   ). As most 

types of parameter adaptation (“learning”) in order to minimize the error function 

over a training data set draw on exactly this sensitivity of the neurons to incoming 

signals (e.g. if an incoming signal contributed to an error at the output its strength 

and direction may be weakened or reversed and vice versa) a neuron can herewith 

be steered out of its sensitive domain. Hence a formally very complicated looking 

network may effectively implement a much simpler functionality. With virtually no 

resource limits on computation the right configuration can eventually be reached.  

Hence, the downside of this property of neurons and conventional neural networks 

is twofold (1) increasingly insensitive neurons slow down learning very much, and 

(2) a time-consuming cross-validation procedure may be required in order to reach 

acceptable results.  

The main purpose of cross-validation in general is to test the out-of-sample 

prediction performance, i.e. predicting new data that was not seen during learning a 

model of any kind in order to identify issues related to overtraining (Kaminski et al 

(2017)). The cross-validation error is essentially the mean error resulting from a 

large number of models (re-)trained on data where “k out of N” data points were 

randomly removed. The error contribution of each such model, however, is 

measured on exactly those k data points. Even for k=1 this error provides a 

consistent estimate of the error to be expected on truly independent data sets (i.e. 

on unknown future data occurring within a real-life application). 
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Deep neural networks  

A deep neural network (DNN) has a potentially large number of layers (view figure 

1) and, consequently, a very large number of neurons.  DNN used for image 

classification use millions of examples, thousands of input features (e.g. pixels) and 

tens of millions of neurons and parameters,  e.g. consult  Goodfellow et al (2016) 

and Liou et al. (2014). They hope to isolate patterns or object features from images 

by mapping a large number of partially overlapping picture segments to the 

consecutive layer of neurons in a chain which may contain hundreds of layers.  The 

theory concering DNN is not new (Hinton et al (2006) and the references therein). 

However, by employing top level information technology with very high 

computational throughput, such applications enjoy remarkable success since 

approximately 2012 onwards. In our market modelling applications, we can’t make 

use of information from geometrical neighborhoods (at least for now, i.e. without 

fusing conventional data with multi-media content); we use only certain aspects of 

DNN and their more demanding technology for cross-checking the quality of our 

models. In principal we use the following features of DNN: (1) the ability to cope 

with much bigger data sets owing to advanced implementations by computer code 

Keras (view e.g. Chollet (2018)) using backends like Theano (a code for deep 

learning by Montreal University, view e.g. Bourez (2017)) and/or Tensorflow (a 

code forwarded by Google, view e.g. Bevan (2018)). Futhermore, (2) the ability of 

auto-regularizing inititially over-specified neural networks leading to problem-

adapted model complexity which tend to avoid over-training. This was traditionally 

achived by adding complexity penalties to the error function  (   (   )), mostly by 

restricting the “mass” of active parameters and /or by restricting the functional 

complexity (e.g. the curvature) of the input-output map  (   ).  The updated goal 

of model building would then be to find a parameter vector    which minimizes the 

weigted sum of the error, the parameter mass and that of the the input-output 

variation, namely  

 

    (   (   ))       ∑             (  
  (   )

  
  
   (   )

   
    ) + … 

 

with hyperparametes      a, to be set by the user (Hirasawa et al. (2000)), 

weighting, respectively, the parameter mass, the penalization of this reducing the 

specification risk (Bishop (1995)), and G(.), a positive function increasing in its 

arguments, penalizing excessive variation and curvature (view e.g. Schebesch 

(2003)).  This has the aspect of a well-defined optimization problem and would 

also have the advantage of not throwing away observations for the purpose of 

validation, but it is nevertheless hard or at least tedious to realize in computational 

practice.  
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A more practical way of neural modeling with regularization is Dropout. In 

principle, this idea has been in use for a long time in various neural network 

approaches and is known as “pruning and re-activation cycle” (Bishop (1995), 

Zimmermann and Weigend (1997)).  However, in the case of DNN the drop-out 

method works especially well: A drop-out probability can be chosen for each layer. 

Drop-out randomly removes nodes from the network along with all their input and 

output connections and thus prevents over-training.  A sparsely connected neural 

network emerges that is well adapted to the prediction task 

 
Figure 2:  Basic principle of drop-out: deactivating some neurons  

 

The process may be repeated over the training epochs following a mechanism 

which may be complicated in detail but serves the overall purpose of thinning out 

the network without following an expensive gradient-based recipe. The remaining 

(active) neurons and their incoming parameters are updated by automatic 

differentiation (Baydin et al. (2018)), an efficient version of using symbolic 

derivatives. By and large the modern implementations of DNN draw on ideas 

expressed by the above regularization goal, especially as the provide new and very 

efficient implementations of tensor-valued second derivatives.    

  

Modeling aggregate market behavior by regression-based data models 

For the comparative analysis of a regression-based task to be done between a 

classical linear model and a classical neural network, we chose a set of data 

containing N=506 observations and a total number of 14 variables (features) in 

total. This data set contains information gathered by the US Census from several 

locations within the Boston area in Massachusets and was later included in the 

StatLib archive (Repo1 (2018)) and is now publicly available through the R-CRAN 

data archieves as well (Rcran (2018)). 
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The motivation for the selection of this set of variables for the task of house price 

prediction as a function of social, environmental and economic factors is 

documented in Harrison and Rubinfeld (1978). The 14 features (attributes) in each 

observation recorded at a location of the region are: 

1. CRIM - per capita crime rate by city 

2. ZN - the proportion of residential land for lots of over 8,000 square meters. 

3. INDUS - the percentage of land occupied by non-retail business on the city. 

4. CHAS - Variable dummy Charles River (1 if the river passes through the city, 

otherwise 0) 

5. NOX - the concentration of nitrogen oxides (parts per 10 million) 

6. RM - the average number of rooms per dwelling 

7. AGE - the proportion of owner-occupied dwellings built before 1940 

8. DIS - the weighted distance of five Boston employment centers 

9. RAD - accessibility index for radial motorways 

10. TAX - the total property tax rate of $ 10,000 

11. PTRATIO - the student-teacher report by city 

12. B - 1000 (A - 0.63)
2
, where A is the proportion of Afro-Americans in the 

locality 

13. LSTAT - percentage of the population with lower social status 

14. MEDV - Median value of owner-occupied homes (in steps of $1000)  

(source: http://lib.stat.cmu.edu/datasets/boston, slightly adapted) 

The last variable MEDV was chosen as a prediction target and the rest are treated 

as independent input variables per observation. Hence, we have a number of inputs 

m=13 and a sibgle real valued output, p=1, completing thus the basic description of 

our modelling data (   ). 

At first, we are looking for a linear model, formally expressed by     (     )    , 

with         , which minimizes the mean squared error    ∑   
 

 .  In the case of a 

linear model there are exactly 14 parameters of the linear regression with the 

components:            , with    the intercept, which is dictated by the fact that 

we have 13 separable inputs. In the general case when  a neural network is for 

example, the vector   may have arbitrary length. Figure 3 depicts the linear 

correlations between the inputs as a histogram. Excluding the last bar (diagonal of 

the correlation matrix) and may conclude by visual inspection that there is no clear 

pattern leading one expect an optimal outcome from a linear model which separates 

the contribution of each input. The seems to be an execption which we will wait to 

identify by the linear model. Already at this point one may expect that non-

linear structures (such as those of neural networks) may capture more of the 

nonseparable influences in the data. 

  



 

 

 
 

 

Deac, D.S., Schebesch, K.B. (2018)  

Market forecasts and client behavioral data:  towards finding adequate model complexity 
 

 

 
 

 

Studia Universitatis “Vasile Goldis” Arad. Economics Series Vol 28 Issue 3/2018 

ISSN: 1584-2339; (online) ISSN: 2285 – 3065 

Web: publicatii.uvvg.ro/index.php/studiaeconomia.Pages 50 – 75 

 

60 

 
 

Fig.3 Distribution of linear correlations between the 14 variables. 

 

To facilitate comparison, we begin with the estimation of a linear model (Gareth et 

al. (2015)), which can be trained in a matter of seconds by a modern statistical 

modeling software tool (e.g. R). This will be followed by the training of non-linear 

models. A major downside of the latter is the necessity of a cross-validation 

procedure in order to avoid over-training. Also their training-validation cycle 

duration can increase very sharply with an increasing number of observations.  

The estimation of the linear model by the appropriate module from the software 

tool R (i.e generalized linear modelling – glm() ) results in the following output 

(Figure 4):  

 
 

glm ( formula = medv ~., data = data) 
Deviance Residuals: 
     Min       1Q    Median     3Q    Max 
-15.5944739  -2.7297159    0.5180489    1.7770506    26.1992710 
  
Coefficients: 

   Estimate   Std. Error   t value 

( Intercept) 36.4594883851  5.1034588106   7.14407 

crim                -0.1080113578  0.0328649942 - 3.28652 
zn   0.0464204584  0.0137274615   3.38158 
indus         0.0205586264 0.0614956890   0.33431 
chas   2.6867338193  0.8615797562   3.11838 
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nox       -17.7666112283  3.8197437074  - 4.65126 
rm   3.8098652068  0.4179252538   9.11614 
age   0.0006922246  0.0132097820   0.05240 

dis        -1.4755668456  0.1994547347  - 7.39800 
rad   0.3060494790  0.0663464403   4.61290 

tax        -0.0123345939  0.0037605364  - 3.28001 

ptratio      -0.9527472317  0.1308267559  - 7.28251 
black         0.0093116833 0.0026859649   3.46679 
lstat        -0.5247583779 0.0507152782 -10.34715 
Pr (> | t |) 

( Intercept)    0.00000000000328344 *** 
crim         0.00108681 ** 
zn   0.00077811 *** 
indus        0.73828807 
chas   0.00192503 ** 
nox   0.00000424564380765 *** 
rm        <0.000000000000000222 *** 
age   0.95822931 
dis   0.00000000000060135 *** 

rad   0.00000507052902269 *** 
tax   0.00111164 ** 
ptratio  0.00000000000130884 *** 
black         0.00057286 *** 
lstat       <0.000000000000000222 *** 
--- 

Signify. codes:    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 
 

  
Fig. 4 Linear model statistics for the housing data prediction  

 

Indeed, there is a single variable, namely nox (the concentration of nitrogen 

oxides) with a high negative influence on the model output. Together with the very 

high estimated value of the intercept in comparison to the rest of the estimated 

model parameters the results from Fig. 4 underline the impression that the linear 

model may be suboptimal in being near degenerate with regrad to all the 13 input 

dimensions.   

 

Training a conventional neural network as a next step will help clarify if this 

judgement about the hitherto estimated linear can be justified. The neural 

configuration we subject to the training procedure 13:5:2:1, i.e. the 13 given inputs, 

five neurons in the first layer, two neurons in the second layer, and one output.  

The motivation for this (heuristically) chosen configurartion is simply to force the 

model to compress information in two steps, reducing the number of neurons each 

time by at least one half. This model has already (13x5+5) + (5x2+2) + (2+1) = 85 



 

 

 
 

 

Deac, D.S., Schebesch, K.B. (2018)  

Market forecasts and client behavioral data:  towards finding adequate model complexity 
 

 

 
 

 

Studia Universitatis “Vasile Goldis” Arad. Economics Series Vol 28 Issue 3/2018 

ISSN: 1584-2339; (online) ISSN: 2285 – 3065 

Web: publicatii.uvvg.ro/index.php/studiaeconomia.Pages 50 – 75 

 

62 

free parameters, which taken together with the tanh(.)-neurons used in the hidden 

layers results in a nominally much more powerful data model then the linear 

benchmark. 

For all neural network modelling, it is highly recommended to standardize 

variables as minimum data preprocessing (view Kotsiantis et al. (2006)), for 

instance by mapping the actual range of each variable uniformly into the interval 

[0,1] (such transformations should also be reversible for later analysis). After 

standardizing the data, we employ a more recent, user friendly R-package for 

conventional neural networks.  The neural network training will be performed with 

error-backpropagation by minimizing the mean squared error (by default).  

 
nn < - neuralnet (f, data = xtrain_, hidden = c(5,2), 
linear.output = T) 

 

Fig. 5 Training a conventional neural network with an R-package resultin in model nn. 

 

Using this model, we calculate the perdictions on the (held out) test set examples 

and the mean squared error of the model on the test set. We compare the two 

average square errors on the test set produced by the linear model (lm) and the 

neural network model (nn): 
  
print (paste (MSE.lm, MSE.nn)) 

[1 ] " 21.6297593507225     10.1542277747038 " 

 
Fig. 6  Comparison of linear (left) Neural network model errors (right) 

  

Upon comparing the two errors the superiority of the predictions by the neural 

network clearly results. Another way of viewing the extend of the diffrerence 

between the forecasts of the two models on the test is by comparing the scatter 

plots of actual against the predicted outputs for each model. The closer the points 

group around the diagonal the better are the prdictions (perfect predictions imply 

all the points are exactly on this diagonal). The result of this comparison is 

shown in Fig. 7, and it indicates that the locations of the points produced by the 

neural model are grouped more closely around the diagonal (lhs inset of Fig. 7) 

than those produced by the linear model (rhs inset of Fig. 7). In this example, the 

difference is clearly noticed, by visual inspection.  
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Fig. 7: Comparison of the scatter plots “predicted against true values” for both models 

 

In general, in the case of neural networks, a single training cycle (validated on a 

single test set) does not provide sufficient confidence in the expected prediction 

performance of the model. In order to obtain a more valid estimate we proceed by 

using a process of cross-validation. This process is in essence a loop over k >> 1 

“newly parametreized” neural networks obtained by training them, respectively, on 

a data set which left out one or more observations chosen at random.  

 
set.seed (450) 
cv.error <- NULL 
k <- 100 

for ( i in 1: k) { 

index <- sample ( 1: nrow (data), round (0.9 * nrow (data) 
train.cv <- scaled [index,] 
test.cv <- scaled [-index,] 

nn <- neuralnet ( f, data = train.cv , hidden = c (5,2), 
linear.output = T) 

  prnn <- compute (nn, test.cv [, 1: 13]) 

  pr.nn <- pr.nn $ net.result * (max (time $ MEDVE) -min (time $ 
MEDVE)) + min (time $ MEDVE) 

  test.cv.r <- (test.cv $ medv) * (max $ data) $ min (data $ medv) 
-min (data $ medv) 

cv.error [i] <- sum ( (test.cv.r - pr.nn) ^ 2) / nrow (test.cv) 
} 
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mean ( cv.error ) 
cv.error 

 
Fig. 8 Validation procedure for neural network models 

 

The expected prediction performance is then given by the average error measured 

over all the left-out observations (they serve as a sort of collective test set). We 

implemented the following validation procedure in R which leaves out 10% of the 

observations chosen at random. This loop produces 100 newly parameterized 

models saving the respective errors in the vector named cv.error  (view Fig.8).  

For the linear model, a similar validation procedure returns an expected error 

of 23.71698765, which is slightly worse than the error produced over the single 

model at the beginng of this section.  The validation procedure depicted in Fig.8 

produced over the 100 neural networks an expected error of 12.50847839. The 

difference between the two values confirms the superiority of the neural model in a 

statistically most robust way. 

The slightly worse performance of both model types under the validation procedure 

is to be expected since in any case, the training sets of the models are by 10% 

shorter than those from the former experiments. An interesting additional in-

formation for the appreciation of modeling risk by neural networks on this specific 

data can be seen in the error distribution on the different neural models produced 

during the validation procedure: 

 
Fig. 9  Histogram of error distribution over 100 neural models 

 

The visualized information confirms the modeling quality of the neural networks, 

indicating concentrated of errors around a low value. At the same time of 
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highlights the chances of being deceived by a single or a too low number of 

modelling attempts.   

 

Modelling individual client behavior by classification-based data models 

We now turn to the case of a much bigger data set which requires a classification 

model in order to predict the buying decision of clients. Such classification models 

are often used in quantitative marketing and in marketing research. They have a 

wide area of applicability in predicting differrent kinds of actions (including fraud, 

churn, etc.), attitudes and opinions. As versions of supervised learning they are 

instrument in helping to build recommender systems and other personalized servi-

ces.  The data we use in our experiments to be described in the sequel are available 

from the     UC Irvine Machine Learning Repository (UC stands for University of 

California). They contain selected information about a direct marketing campaign 

of a Portuguese banking institution. It was used by Moro et al. (2014) in the 

context of telemarketing decision support. The goal of this campaign is to persuade 

customers to underwrite a term deposit. This dataset was technically obtained by 

downloading the file bank-additional-full.csv contained in an 

archieved file bank-additional.zip from the named repository (Repo2 

(2018)).  The raw data contain N=41,188 obervations (past clients) and each client 

is described by m=20 features including a feature (decision recorded in the past) 

which will be used as the dependent variable. Table 1 contains the description of 

these variables.  

The last entry from Tab. 1 is the categorical variable ("yes / no") that expresses the 

purchase option and will be the prediction target. Using R, we convert a selection 

of categorical data (which were represented by alphanumeric strings) into 

numerical equivalent representations. Similar procedures transform the dependent 

variable y_train, as well as those for the test set, namely  x_test and 

y_test. We chose the traing set to contain 35009 observations (clients) and the 

complementary test set to contains 6179 observations (15% of the total of 41188). 

 
Table 1    

Description of client variables from the financial marketing classification task 

Variable name Description Type 

age Age of the client Numerical 

job Occupation of the client 12 categories 

marital Marital status 4 categories 

education The client's level of training 9 categories 

default Indicates whether the customer has a short-term credit 3 categories 

housing Indicates whether the client has a home loan 3 categories 

John Indicates if the client has a personal loan 3 categories 
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contact Type of contact communication 2 categories 

month The month in which the last contact was made 12 categories 

day_of_week The day the last contact was made 5 categories 

duration The last contact time in seconds Numerical 

campaign 
The number of contacts made during this campaign for 

this client (including the last contact) 
Numerical 

pdays 
The number of days the customer was last contacted in a 

previous campaign 
Numerical 

 
previous 

The number of contacts made before this campaign for 

this client 
Numerical 

poutcome The result of your previous marketing campaign 3 categories 

Empvarrate Rate of change in occupancy rate (quarterly indicator) Numerical 

conspriceidx Consumer price index (monthly indicator) Numerical 

Consconfidx Consumer confidence index (monthly indicator)   Numerical 

euribor3m Euribor 3-month rate (daily indicator) Numerical 

Nremployed Number of employees (quarterly indicator) Numerical 

y (target) 
Indicates whether the customer has completed a term 

deposit 

Binary 

(yes/no) 

Source: https://archive.ics.uci.edu/ml/datasets/Bank+Marketing and own processing 

 

Our modeling experiment starts with estimating a linear discriminant model (LDA) 

for the binary variable y. For the estimation of a linear discriminant classification 

model (McLachlan (2014)), the statistical software R provides the lda()function 

that produces a categorial output (a non-numeric object). This function also 

requires a variable prior = (0.7,0.3) indicating the relative weight of the 

binary classes (number of clients with decision y=“no” against the number of 

clients with decision y=”yes”). For example, in a binary classification problem 

where we distinguish two labels, i.e. naming events or classes, these may be 

unevenly represented or the cost a misclassification may differ widely between the 

classes. A prior for the LDA has the effect of translating the separating hyperplate 

between the two classes across the connecting line between the two class centers 

(barycenters). 

In our data we have 26257 observations for training (the remainder is reserved for 

the test) and there are 23250 observations with y = 0 (named frequent events 

hereafter) and 3007 observations with y = 1 (rare events) resulting in a prior of 

(0.88, 0.12). After determining the optimal separating hyperplane, we test the 

model prediction on the test set with 8752 test observations. 

Figure 10 shows the predictions on this test set sorted by the size and the type of 

their errors. 
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Fig. 10 Two types of classification errors for the LDA model on the test set 

  

For an LDA on our data classification problem, the forecast can only be 0 or 1. The 

resulting error may occur for a frequent or rare case. By convention, we assign the 

error that is produced for a frequent case by +1, and those produced for a rare case 

by -1. The long middle line in Fig.10 at zero are the cases for which the model 

forecast is correct. The perdiction quality (hit-rate) surpasses 90% overall, but there 

is a very large error rate in the case on rare events. If the incorrect prediction of a 

rare event is very expensive, this will obviously overshadow the overall good-

looking result.  

 

A neural network for binary data classification 

Following a similar goal as in the previous section, namely to move from a linear 

model to a more flexible nonlinear one, in our first attempt of running a neural 

network on the same set of 26257 training cases (observations), we confronted a 

substantial computational problem. After choosing an objective function 

appropriate to binary classification models, namely cross-entropy, we notice that a 

relatively simple neural network with the connection structure 20:5:1 already 
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consumes an unacceptable calculation time (over 15 hours terminated by manual 

interruption). 

Consequently, we decided to use a sample of 500 randomly selected observations 

that reproduced approximately the relative frequencies between frequent and rare 

events. For this very small training set, a neural network with performance 

comparable to the LDA was obtained. However,   it also contains more features, 

owing to the continuous outputs in the range [0,1] generated by this type of model 

as proxies for the categorical discrete outputs {0,1}. 

Figure 11 contains two insets which illustrate the representativeness of the reduced 

training set for the two input variable age and job (see also Tab. 1). The curve 

with sorted values shows the whole training set while the dots depict the 500 

individuals chosen at random for the reduced (effectively used) training set. The 

selected points cover the entire value distributions to a reasonable extend.           

  
Fig. 11  The age and the job variables from the input data 

 

The classification performance of the resulting neural network is finally measured 

on the test set comprising the 8752 test observations. In this way, the out-of-sample 

prediction results of the neural network can be compared directly with that of the 

LDA model. First, we make an image with an empirical progression as it would be 

in a real application.  

Figure 12  illustrates that most of the forecasts for frequent events are correct and 

the forecast of rare events is of a very low quality. An output less than 0.5 results in 

a "0" and otherwise "1" prognosis. For instance, it is noted that the forecast for the 

behavior of client no. 30 is incorrect.  
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Fig. 12 A randomly selected series of 60 forecasts (red lines) confronted with the true value of 

the target variable (green bulbs) 

 

The following figure (Fig.13) further illustrates the forecasting quality of the neural 

network described above on the different sets of errors.  In analogy with the LDA 

case, the neural network output on the 500-observations training set, produces 

accurate classification and distribution with a focus on frequent events. The 

difference lies in the fact that the neural network produces a continuous output that 

can calculate different prediction performances for a variable cut-off, as will be 

explained next.  In figure 13 we depict in the lhs image the prediction performance 

on the whole training set with cut-off (which varies in this case between -0.5 and 

+0.5) followed in the same vain by the prediction performance on the set of rare 

events depending on cut-off (middle image) and finally, the prdiction performance 

on the set of frequent events (rhs image). From these images, one observes that the 

prediction performance on one set may increase to the detriment of performance on 

the opposite set. The cut-off value to be chosen for a final prediction model 

depends on the relative cost of a misclassification of a set with a given label (or 

class). 

These possibilities may be expressed handily by calculating the ROC (Reciever 

Operating Characteristic) curve that indicates that the utility of the cut-off variation 

is quite limited for an LDA model.  As seen in figure 14 (lhs inset) the purely 

discrete nature of the output of the LDA model precludes the use of a cut-off 

variation as neural classification models (rhs inset).      
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Fig. 13  Prediction performances on different sets with 95% confidence intervall 

 

  
Fig. 14  The ROC curve for the LDA model (lhs) and for the neural network (rhs).   

 

The area under the ROC curve (referred to as the AUC in the literature) indicates 

prognostic performance over the variation of the cut-off parameter. Consequently, 

according to the AUC criterion, the area generate by the neuronal network is 

bigger, hence the neural model may be considered superior to the LDA model. The 

diagonal is the behavior of what purely random classifications would generate, 

which also has the lowest possible AUC. 

Although, according to the basic criteria for measuring the predictive performance 

of the classification models (hit rate, etc.), the two models do not appear to be 

significantly different, considering a more complex but empirically relevant 
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criterion like AUC leads to a clear conclusion that more flexible models like that of 

neuronal type are worthwile considering.  

 

Towards deep neural networks with marketing applications 
As argued before in marketing application we still do not have the kind of data 

(numerical plus multimedia) which could eventually make use of the full potential 

of DNN (view e.g. Goodfellow et al (2016), Ioffe et al. (2015)). In our present 

context we propose to use certain aspects of DNN in order to cross-chek the 

prediction performace obtained by the classification models on the bigger data set. 

Our conventional neural model could not be trained on the full data set. DNNs 

however, are by no means limited by this data size.   First, we set up an equivalent 

20-input neural network with certain features of a DNN. We use two hidden layers 

with the tanh() activation functions and with 64 neurons in each layer and a two 

dimensional "softmax" output with values between [0,1] as proxies for the two 

dummy-encoded outputs (0,1) for y=“yes” and (1,0) for y=“no” and minimize a 

cross-entropy objective function.  

The code snippet from Fig. 15 shows our setup of a high performance DNN using 

the modeling  language Keras  called from within a Phyton environment. Note that 

this DNN has at least 5632   free parameters and is probably oversized.    
 
data_dim = x_ train.shape [1] 
nb_classes = 2 

np.random .seed (1047) 

model = Sequential ( ) 

model.add ( Dense (64, input_dim = data_dim, kernel_initializer = 
'uniform')) 

model.add ( Activation ('tanh')) 

model.add ( Dropout (0.5)) 

model.add ( Dense (64, kernel_initializer = 'uniform')) 

model.add ( Activation ('tanh')) 

model.add ( Dropout (0.5)) 

model.add ( Dense (nb_classes, kernel_initializer = 'uniform')) 

model.add ( Activation ('softmax')) 

model.compile (loss = 'categorical_crossentropy', 
Optimizer = 'SGD' 
metrics = [ "accuracy"]) 

 

Fig. 15 DNN setup with Keras with 64 neurons per hidden layer and a Dropout of 0.5. 

 

Parameter 0   Dropout   1 is essential for training a potentially oversized DNN. In 

theory, it provides for a suitably truncated and optimized data model (Srivastava et 
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al. (2014)), and it helps to avoid overfitting (a highly deceptive effect with 

devastating consequences on real applications if it is not remedied). 

We trained this DNN model on the full dataset on multiple platforms (Linux, 

Windows) and by using multiple combination of high performance tools, i.e. Keras 

with Theano backend, and Keras with Tensorflow backend, respectively. The 

results obtained are very similar to those obtained by the neural network trained on 

the 500-observations subsample as described in the prvious section. For the time 

being this result is encouraging, in that a grossly overspecified DNN successfully 

auto-regularizes to find a data model well adapted to a given prediction task. 

    

3. Conclusions and outlook 
For our data modeling experiments, we used two sets of empirical data: one of 

urban socio-economic context and the other from a financial banking application. 

As modeling cathegory proxies, they stand for aggregate market forecasts and for 

individual client behavior forecasts, respectively. From a technical viewpoint they 

cover both regression and classification. They represent a broad spectrum of 

modeling approaches from classical linear models to one of the latest machine 

learning tools, namely deep neural networks.  

We start the analysis with a classical linear regression model for the first data set 

and then gradually go on to more demanding modeling. In this case there is a 

suspicion that the linear model is sub-trained, therefore it cannot express many of 

the dependencies existing in these data. 

We then switch to the first nonlinear model, namely a 13:5:2:1 neural network that 

leads to significantly better results on the first dataset, both on the training set and 

even on the reserved test examples. This confirms that neural networks have a 

major role to play in those economic applications, for which we have a sufficiently 

large number of observations but and also a large number of features (or inputs). 

The second dataset is referring to a client behavior forecasting problem from 

financial services marketing uses quite a large number of observations (41.188 

cases) and has 20 input variables. The modeling goal is to predict the buying 

decisions of clients and it is hence cast as a binary classification problem.  In the 

case of financial marketing data, we found that the original training set is too large 

for a classic neural network and we therefore use a random sample of only 500 

training observations, while the test set remains the same as for the previously used 

linear classification model. The trained neural network has a simple 20:5:1 

architecture (a single layer hidden with 5 nonlinear neurons). This simple 

classification model uses the cross-entropy objective function which in this case 

can be trained within seconds. 
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In contradistinction to the modeling of the first data set we now we find that the 

linear and the neural model do not produce major differences with regard to 

forecasting performance measured as basic overall hit rates (i.e. listing the correct 

forecasts for all observations from the test set). However, continuing with a more 

specific analysis focused on classification models that highlights the relationship 

between different types of forecast errors produced by these models reveals some 

significant differences. Treating errors that are related to the class or category to be 

predicted (false negatives, false positives) differently can be very important in 

practice since they may relate to vastly different misclassification costs: it may be 

more expensive to incorrectly predict a rare decision. 

From this analysis it follows that by varying the cutoff value, the performance of 

the neural network predictions can be maded to favor a particular type of event 

(decision) than would be the case in the classification linear model. This much 

greater flexibility of a neural classification network is highlighted by the ROC 

curve and the AUC that indicates a clear superiority of the neural network.  

In order to finally demonstrate the usefulness of the most recent addition to data 

modeling namely that of deep neural networks, we did a series of extensive 

experiments on the second data set using efficient new implementations for these 

advanced modeling methods.  

We start by training a batch of “big enough” deep neural networks on the entire 

training data set.   Hence, we expect them to be over specified (in terms of number 

of parameters, neurons, layers, etc.). In case of standard neural networks this would 

lead to prohibitively long training durations and to grossly over trained models 

(usually without any beneficial effects on out-of-sample prediction performance). 

In our case of deep neural networks, this effect cannot be observed. The basic 

prediction performance of every deep neural network is very similar to that of the 

linear and the conventional neural model. This feature implies the comfort of 

starting from an over-specified model, and then automatically finding a properly 

functionally truncated neuronal neural model with acceptable training duration thus 

automatically avoiding overtraining. It is also confirming that, at least in terms of 

basic classification performance, it is unlikely to find a significantly better model 

than the linear one. Such a conclusion may or may not be valid for other data. 

Hence a modeling cycle like ours is very important for many electronic marketing 

applications where public and private data become accessible in large quantities. 

However, broad data availability is also associated with (1) no well-motivated 

hypotheses for possible dependencies in the data and (2) uncertainty about whether 

there really is any “value” in the huge data collections or if - instead - a much 

smaller data sample would suffice. 
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We hence expect methods and procedures that are inspired by large data sets, and 

which make use of machine learning, especially of deep neural networks to be used 

more frequently in future marketing related services. The full potential of deep 

neural networks may be realized as soon as modeling starts to include highly fused 

input data, containing a numerical data, images and further relevant multi-media 

content. 
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