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Abstract 

The aeroelastic assessment of turbulences appearing in boundary layer of flat plates tested in the wind tunnel is 

treated in present paper. The approach suggested takes into account multiple functions in the analysis of flat 

plates subjected to laminar and turbulent wind forcing. Analysis and experimental assessments in the 

aerodynamic tunnel are presented. Some results obtained are discussed.  
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1 Introduction 

The topic of present paper is the assessment of turbulences around the flat plates subjected to 

laminar and turbulent wind forcing (see Fig. 1). The problem was previously dealt with in 

structural and bridge engineering in references [1 - 9].    

 

 
 

Figure 1: Side view of the plate studied in wind tunnel 
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Flat plates are to be designed in accordance with valid standards and their aeroelastic 

assessment is required due to the recommendations of the EUROCODE 1, Loads on 

Structures, Part 1.4, General Loads, Wind Loads ([10]). The primary objective of this work 

was the determination of the coupling, interaction and separation of the effects of various 

modes of air oscillation as they may exist in wind turbulence and may have a bearing on 

ultimate response and noise generation of the flat plates studied. Identified are the wave-type 

solutions of the flow equations corresponding to vortical, entropy and acoustic modes of 

propagation. In scope of the wind action there occur turbulent air flows on edges of the flat 

plates with increase of wind speeds and pressures. Regarding the variability of configurations 

of plates there appear laminar and turbulent air flows measurable only in the wind tunnel. The 

measurement submits the data for the analysis of the problem. 

2 Mechanics of turbulent motion 

All turbulences in the wind forcing are considered as a special family of motions from one 

space region into another one. Their updated configuration is specified by location of the air 

displacements in space and time. The variations of configurations are continuous and during 

deformation there appear no new boundary conditions. Each new configuration is related to a 

reference position stated. When taking into account the Cartesian coordinates x, y, z and 

corresponding displacements u, v, w, the Green strain tensor is given by 

 

Exx = ux/x + [(ux/x)
2
 + (uy/y)

2
 + (uz/z)

2
]/2   ,                             (1) 

Exy = [(uy/x) + (ux/y) + (ux/x)(ux/y) + (uy/x)(uy/y) + (uz/x)(uz/y)]/2   ,   (2) 

 ....    ,   etc.  

 

In order to set up the constitutive equations, the stress tensor with the same reference is 

needed. The second Piola-Kirchhoff stress tensor Sij has the properties required and the 

generalized equation of the air flow is given by 

 

Sij = g(Eij)   ,                                                          (3) 

 

with g as function of the Green strain tensor Eij.  

 

When analyzing the air flow with volume, surface area and density, B, S and o, respectively, 

the volume forces of the mass unit are given by Fo,i and strains by Ti . The flow in equilibrium 

is submitted to a virtual displacement ui being consistent with initial conditions assumed. 

The equilibrium of the virtual work is given by  

 

 Sij Eij dB -  Ti ui dS -  Pi ui dB = 0   ,                                  (4) 

with substitution  

Pi = o Fo,i   .                                                        (5) 

 

Equation (4) specifies the stationary value of the potential energy in all deformations ui. The 

incremental equivalent of corresponding variation principle is given by  
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 Sij
(1)

 Eij
(1)

 dB -  Ti
(1)

 dui
(1)

 dS -  Pi
(1)

 ui
(1)

 dB = 0   ,                       (6) 

 Sij
(2)

 Eij
(2)

 dB -  Ti
(2)

 dui
(2)

 dS -  Pi
(2)

 ui
(2)

 dB = 0   ,                       (7) 

 

with superscripts (1) and (2) for neighboring configurations studied. The strains and volume 

forces have the same reference configuration and there holds 

 

Ti = Ti
(2)

 – Ti
(1)

   ,                                                        (8) 

Pi = Pi
(2)

 – Pi
(1)

   .                                                        (9) 

 

The variations of both deformation fields are the same   

 

ui = ui
(1)

 = ui
(2)

   .                                                     (10) 

 

The incremental virtual work equation is given by Eqs. (6) and (7)  

 

 (Sij
(2)

 Eij
(2)

 – Sij
(1) Eij

(1)
) dB -  Ti ui dS -  Pi ui dB = 0   ,             (11) 

 

when taking into account the virtual variations of both configurations studied. Equation (11) 

specifies the configuration (2) from known configuration (1) and known load increments. 

When the work made by mass and damping forces on virtual displacements ui is added to 

Eq. (4), the principle of virtual works for the problem studied is given by  

 

 Sij Eij dB +   ui ui dB +  Ci ui ui dB -  Ti ui dS -  Pi ui dB = 0   ,      (12) 

 

where  and C are mass and damping terms.  

 

The turbulence in the air flow is described by instantaneous wind speed as a function of space 

and time with mean and fluctuation components given by 

 

u(x, y, z, t) = U(x, y, z) + u´(x, y, z)  ,                                   (13) 

v(x, y, z, t) = V(x, y, z) + v´(x, y, z)  ,                                   (14) 

w(x, y, z, t) = W(x, y, z) + w´(x, y, z)  .                                  (15) 

 

The mean values of projections U, V, W are the result of averaging in a certain interval of time 

the wind speed and the fluctuating components. 

 

The turbulence scales of the instantaneous wind speed are the measure of representative 

dimensions of vortices induced by turbulences inside air flow. They describe the turbulences 

which „wrap“ the flat plate in a certain time.  

 

The assessment of turbulence motion starts with specification of correlation functions of 

fluctuating components which may be longitudinal, transversal and vertical. In general, the 

characteristics of the air flow are well defined if the correlation functions are specified for the 

mean streamwise components longitudinally and transversally. The correlation in time is 

specified by formulae 
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ρu(i)u(j)(τ) = Ru(i)u(j)(τ)/[(√(u´)
2
(t)).(√(u´)

2
(t+τ))]  ,                        (16) 

Ru(i)u(j)(τ) = ui(t).uj(t+τ) = limT→∞ 1/T ∫[ui(t).uj(t+τ)]dt  .                  (17) 

 

Eq. (17) represents the covariance function of the process u(t) being determined by measuring 

in two different points in space at the difference of time τ (see Refs. [13], [14] and [15]).  

 

According to Taylor´s hypothesis ([13] the inter-correlation between any of the fluctuating 

parts, discarding the wind instantaneous speed measured in two points being separated by 

distance Δx in direction of the wind flow, is equal with the auto-covariance determined for the 

period studied. The inter-correlation functions give information concerning the dimensions of 

the turbulences in direction of the wind action. The existence of the mean values of the wind 

speed inside of turbulent flow is given by the reality that in a certain point i the turbulence has 

a certain periodicity in time. After a certain period the phenomenon repeats itself in space. 

These two idioms specify the turbulence scales in time and space. The turbulence scales 

define the frequency of gusts in the wind action. The integral length scales correspond to 

spatial nature of the wind action specifying the longitudinal, lateral and vertical scales given 

by 

Lx = ∫ρu´(i)u´(j)(Δx,0,0) d(Δx)  ,                                       (18) 

Ly = ∫ρu´(i)u´(j)(0,Δy,0) d(Δy)  ,                                       (19) 

Lz = ∫ρu´(i)u´(j)(0,0,Δz) d(Δz)  ,                                       (20) 

 

with integration from 0 until ∞. The most important of these three is the longitudinal scale, 

the other two being practically its derivatives. The integral time scale of the turbulence is 

defined by 

 

ΛT = ∫ρu´(i)u´(j)(τ) dτ  .                                            (21) 

 

According to above Taylor´s hypothesis, the longitudinal scale of turbulence may be specified 

by the integral time scale and by the mean wind speed value V in the streamwise direction by 

 

Lx = V.ΛT  ,                                                  (22) 

 

The studies for determination of the turbulence scale, both at natural scale and in laboratory, 

have produced the empirical Davenport´s formula 

 

ΛT = 0.084 L/V  ,                                              (23) 

 

given in sec, where L is the longitudinal scale of the in-wind speed and V is the mean wind 

speed.  

 

In EN 1991-1-4 the integral length scales in wind direction depend on the mean wind velocity  

and height z, in accordance with Ref. [15]. 

  

The incorporation of above forcing into the behavior of the flat plate is specified by wave 

propagation with corresponding interactions of laminar and turbulent air flows. The waves 
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initiated are specified by the spectral evolution describing the occurrence of wind turbulences. 

The spectral evolution is based on following definitions: 

 

1.  Each stationary function x(t) is given in integral form 

 

x(t) =  eit
 dA()   ,                                                    (24) 

 

with symbol A() for orthogonal complex process studied.  

 

2.  Linear transformation y(t) of the function x(t) in Eq. (24) is given by  

 

y(t) =  H(i) e
it

 dA()   ,                                               (25) 

 

with H() as corresponding admittance function. 

 

3.  Spectral densities of functions x(t) and y(t) are connected by 

 

Sy()/Sx() = H(i) 2   .                                                 (26) 

 

Turbulent air flow is defined by a wave number ri(), with longitudinal and shear waves. 

Stationary waves are emitted with complex amplitude F(,zo), e.g., z=zo. The wave 

superposition is given by 

wi(t,z) =  e-it
 e

ir (z) 
dF(,zo)   .                                           (27) 

 

For wave interactions in the turbulences the forcing spectrum is given by S(ω,0) as function 

of the response H(ω,0) to the wind action.  

3 Flat plate response 

The analysis of ultimate behavior of flat plates subjected to above forcing is based on the 

adoption of the Lagrange formulation of motion. The reference state of the plate is 

incrementally updated during deformation process. The new reference configuration is 

established at each degree of updated deformation curve in ultimate response of the plate. 

Incremental form of the equation of motion is given by the analysis of aeroelastic equilibrium 

of two configurations at time step t apart. The increments of laminar and turbulent forcing 

balance the aeroelastic equilibrium in time t + t by  

 

Mt at + Ct vt + Kt ut = Rt+t – (Vt
I
 + Vt

D
 + Vt

S
)   ,                         (28) 

 

with inertia forces Vt
I
=Mt at , damping forces Vt

D
=Ct vt , stiffness forces Vt

S
=Kt ut and with  

accelerations, velocities and displacements at, vt, ut , respectively. The vectors of accelerations 

and velocities are given by time derivatives of deformation vector ut . The mass, damping and 

stiffness matrices Mt, Ct and Kt , respectively, are constructed of element matrices of the plate 

model studied. The subscript t denotes the actual time and R is the vector of laminar and 

turbulent forcing. If the plate is in equilibrium in time t, then right side of Eq. (28) is identical 
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with the increments of forcing in time step t. The increments in displacements, velocities 

and accelerations are given by increments of forcing and by the matrices of physical 

properties of the plate studied. If such matrices are variable in time then the validity of Eq. 

(28) is satisfied only approximately. The approximation error is given by  

 

Vt+t = Rt+t – (V
I
t+t + V

D
t+t + Vt+t)   ,                              (29) 

 

as a measure of solution accuracy when adopting Eq. (28). Governing incremental equation of 

motion is then given by modification of Eq. (28) as 

 

Mt at + Ct vt + Pt ut = Rt   ,                                   (30) 

 

where Pt ut is the vector of nonlinear forces. The pseudo-force method ([7]) adopted is given 

by 

Pt ut = Kt ut + Nt ut - Vt+t   ,                                  (31) 

 

where Nt ut is the vector of aerodynamic nonlinear forces (pseudo-forces) and Vt+t is 

above approximation error. When adopting the pseudo-force technique, the member Pt ut is 

located on the right side of Eq. (30) and the vector of nonlinear forces is applied as the vector 

of pseudo-forces. In each time step the approximation Nt ut is calculated and the iterations 

run until the term Vt+t is comparable with tolerance norm adopted. The approximation Nt 

ut in first iteration step is given by 

 

Nt ut = (1 + β) Nt-t ut-t - β Nt-2t ut-2t   ,                            (32) 

 

with β as extrapolation parameter in scope from 0 until 1.  

4 Experiment 

The testing was made with the model set-up of flat plate in scale 1:10, developed on the basis 

of the model similarity with actual structure ([16]). The aerodynamic testing was made in the 

wind tunnel of the Institute of Construction and Architecture of Slovak Academy of Sciences 

in Bratislava, Slovakia. Assumed was the type of atmospheric boundary layer suitable for 

terrain of category II. For testing was used the section with cross-sectional dimensions 1200 x 

1200 mm and length 6000 mm. Maximal wind velocity obtained was 51 m/sec. The details of 

experiment, the model similarity with atmospheric boundary layer simulated in the wind 

tunnel, the model scale of the model and of the wind speed considering the wind direction and 

intensity of turbulences, etc., are summed up in Ref. [16]. The model of flat plate was made 

with dimensions 1000 x 300 mm and width 4 mm. The plate was supported by steel supports 

Jäckl 20/20/2 and anchored into the floor of the tunnel. The view of experimental set-up in the 

tunnel is in Fig. 1. In case of the wind forcing there appear the turbulences on upper and lower 

edges of the plate accompanied by wind gusts and local changes of the wind velocity.  

Required was therefore the specification of actual wind velocities appearing on all edges of 

the plate at various wind speeds in aerodynamic tunnel. The speed variations in the wind flow 

were given by aerodynamic coefficient α  
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Figure 2: Fourier spectra of accelerations A1, A2, A3 (upper, lower and side edges of plate) 

at angle +90 (wind speed 38 m/sec) 

 

α = vloc/vave    ,                                                    (33) 
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with vloc as local velocity of turbulent wind flow measured on the edge of the plate and with 

vave as averaged velocity of laminar wind flow in aerodynamic tunnel. The value vave 

corresponds to the standard wind velocity in given territory and was used for the design of all 

structural elements of the flat plate studied. The coefficient α specifies the increase of the 

wind velocity on the edges of the plate. One of the goals of experimental testing was therefore 

the specification of the aerodynamic coefficient α on all edges of the plate.  

 

The values of coefficient α were adopted for specification of resulting stress and deformation 

states in the plate.  

 

The testing was made for: 

 

a) model in horizontal attitude (0) and located perpendicularly to the direction of wind 

flow – the assessment of the shear wind along the plate (Fig. 1), 

b) model in horizontal attitude and turned -180 compared with wind flow – the 

assessment of the air sucking on the plate. 

c) model in horizontal attitude and turned +90 compared with wind flow - the 

assessment of wind pressure on the plate.  

 

In Fig. 2 are typical Fourier spectra of accelerations A1, A2, A3 (upper, lower and side edges 

of plate) at angle +90 and by the wind speed 38 m/sec.    

 

In accordance with the measurements made in critical points and with results summed up in 

Table 1 was stated, that response of the plate is dominated by deformations with turbulent 

components of pressure and sucking of wind which are irregularly distributed along the 

surface of the plate. Turbulent wind flows initiate the ultimate response of the plate. Some 

obtained values of aerodynamic coefficient α are summed up in Table 1.  

 

The Table 1 contains the wind speeds on the edges of plate, specified in scope of 

measurements at various wind speeds. There are summed up automatically established wind 

speeds 10 - 50 m/sec in aerodynamic tunnel, averaged actual wind speeds vave in the tunnel as 

well as local wind speeds vloc on all edges of the plate.  

 

In Table 1 are also given the aerodynamic coefficients α=vloc/vave on all edges of the plate. 

Presented is also the comparison of measured and calculated values α.  

 

Average increase of speeds and pressures of wind flows on the upper, lower and side edges of 

the plate are given by aerodynamic coefficients α = 1.4255, 1.6532 and 1.4080, respectively.   

 

Average increase of the wind pressure on the plate due to change of the wind direction and 

due to turbulences appearing is given for wind sucking by coefficient –1.65 and for the wind 

pressure by coefficient 1.43 of standard values valid for the face action of the wind on the 

model.  

 

Due to appearance of the wind gusts was initiated the ultimate response of the model. There 

appeared combined axial and shear amplitudes of vibration parallel with the plane of the plate.  

66



                                                                         SSP - JOURNAL OF CIVIL ENGINEERING Vol. 9, Issue 1, 2014   

 

 

 

Table 1: Some results of measurements and comparison with calculated vales α (in brackets) 

 
Wind  

speed  

[m/sec] 

Measu-

rement 

Nr. 7 

vloc 

[m/sec] 

 

Measu-

rement 

Nr. 7 

vave 

[m/sec] 

Measu- 

rement 

Nr. 7 

α=vloc/vave 

Measu-

rement 

Nr. 8 

vloc 

[m/sec] 

Measu-

rement 

Nr. 8 

vave 

[m/sec] 

Measu- 

rement 

Nr. 8 

α=vloc/vave 

Measu-

rement 

Nr. 9 

vloc 

[m/sec] 

Measu-

rement 

Nr. 9 

vave 

[m/sec] 

Measu-

rement 

Nr. 9 

α=vloc/vave 

10  13.7 10.1 1.3564 

(1.3762) 

17.8 10.1 1.7623 

(1.8142) 

14.3 10.1 1.4158 

(1.4833) 

20 26.8 20.2 1.3267 

(1.3341) 

36.6 20.2 1.8119 

(1.8231) 

28.7 20.2 1.4208 

(1.4471) 

30 38.9 30.1 1.2923 

(1.3026) 

49.9 30.1 1.6578 

(1.8452) 

40.4 30.1 1.3422 

(1.3610) 

40 52.4 40.1 1.3067 

(1.3161) 

60.7 40.1 1.5137 

(1.5338) 

52.6 40.1 1.3117 

(1.3275) 

50 66.2 50.2 1.3187 

(1.3228) 

76.8 50.2 1.5299 

(1.5730) 

67.7 50.2 1.3488 

(1.3722) 

5 Conclusion 

On the basis of the evaluation of the results obtained has been found, that ultimate 

displacements and stress states appear in boundary regions of the plate, where the wind flows 

have distinctly turbulent character.   
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