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Abstract 

A mathematical model of a layered structure and initiation and growth of interface cracks are presented. A 
numerical approach for solving this problem is described, with the emphasis to the analysis of a shearing-mode 
crack. The model defines a scalar damage variable in the interface and also plastic tangential slip, which 
increases the fracture toughness in the shearing crack mode. An energetic formulation governing the adhesive 
damage until it breaks is proposed. The approach is also tested numerically to demonstrate the behaviour of the 
model and to assess its suitability in a particular physical situation. 
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1 Introduction 

Number of applications of layered structures is increasing in recent years. Therefore, solving 
the problems with such structures and proposing mathematical models for them seems to be 
very important. In many situations the interface between layers, usually represented by a 
relatively thin adhesive layer, can be partially or fully damaged such process is frequently 
referred to as delamination or debonding of material layers. In this work, a numerical 
approach for solving delamination problems is discussed. The approach is, however, more 
general and it can be applied also to other situations where damage appears along an interface. 

The initiation and growth of a crack appearing in an interface depends on the applied load and 
usually is motivated by Griffith theory [1]. The simplified version of the interface rupture 
does not distinguish energetically between the opening mode (Mode I) and shearing mode 
(Mode II). Observations of experimental results, however, prove that considerably more 
energy is usually needed to perform delamination in shearing mode, see [2],[3],[4],[5]. The 
sensitivity of the crack to its mode and its evolution  is in engineering practice usually 
considered as directly dependent on the so-called fracture mode mixity angle as e.g. in [6][7].  
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Another approach, based on the microscopic analysis of interface rupture and its plastic 
response, see [4][5], determines two interface variables. First, a damage parameter of classical 
damage mechanics [8] describes the level of deterioration of the interface adhesive [9]. 
Second, a kind of plastic deformation controls a slip that may occur in the interface tangent 
direction before the adjacent bulk layers debond as discussed in [10],[11]. 

A rigorous mathematical solution is obtained by variational methods [12]. Numerical 
algorithms frequently have to cope with non-convex character of the energy functional 
[9][13][14][15]. Nevertheless, their restrictions to some of the unknown parameters are even 
quadratic [9], so that quadratic programming methods [16] are applicable. 

In the present work the approach based on [10] is used. The analysis is focused on the 
behaviour of the interface adhesive in shearing mode, where both of the aforementioned 
interface parameters are active. The model is described in Section 2: the general case in 
Section 2.1, and a special case in which the effect of bulk domains is neglected in Section 2.2. 
The numerical analysis is focused on this special case and includes algorithms for minimizing 
of energy functional by effective conjugate gradient schemes. Some details of the computer 
implementation are shown in Section 3 and also in Appendix. The special case of the 
proposed approach is tested numerically in Section 4. 

2 A model of interface failure 

Let us consider a body defined by a planar domain 2R⊂Ω  with a bounded Lipschitz 
boundary Γ=Ω∂ . Let n denote the unit outward normal vector defined at the smooth part of 
Γ. A split into two non-overlapping subdomains ΩA and ΩB whose respective boundaries are 
Γη η=A,B, will be considered hereinafter for the sake of simplicity, Figure 1.  
 

 
 

Figure 1: Model for an interface crack between two subdomains. 

 
The common part of Γη  called interface is denoted as Γc. The boundary conditions prescribed 
on a part of the outer boundary represent a hard-device loading, i.e. prescribed displacements 
uη=wη over η

uΓ . The remaining parts of the outer boundaries, denoted as η
tΓ , are traction free, 

i.e. prescribed tractions tη=0. 
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The interface Γc is considered as a very thin adhesive layer represented by a continuous spring 
distribution with normal and tangential elastic stiffnesses kn and kt, respectively. It is 
considered that a crack can appear along the interface Γc, this debonding process being 
considered as rate-independent. During this process, the material of the adhesive layer is 
damaged. This is modelled by a scalar damage variable ζ which varies at each interface point 
between one and zero [8]: values one and zero, respectively, corresponding to undamaged and 
fully damaged adhesive at a particular point. In addition to this variable, a plastic tangential 
slip variable π is considered at the interface. It allows for a difference between crack opening 
mode and shearing mode in view of experimental observations of interface crack growth. The 
observations confirm the energy dissipated in shearing mode to be significantly greater than 
that dissipated in opening mode and also correspondingly the associated plastic zones in the 
adjacent bulk to be larger in shearing mode than in opening mode. Thus some additional 
dissipated energy is considered for interface fracture in mode II as a useful and practical 
approximation of the plastic phenomena appearing in relatively narrow plastic zones in the 
bulk located in the interface vicinity, see [5][4]. 

2.1 Governing relations 

Let us consider the energy stored at time τ in the structure obeying the aforementioned type of 
interface damage and a kinematic-hardening-plasticity model [10], with the plastic slope kH, 
as  
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It is valid for the state variables satisfying the boundary conditions on η
uΓ  and the condition of 

Signorini unilateral contact [ ] 0≥nu  on Γc, where the relative normal displacement 
[ ] ( ) ABA nuuu ⋅−=n  is introduced. Similarly, the relative tangential displacement [ ]tu  is 
defined. Next, the damage variable ζ should satisfy the constraints 0≤ζ≤1. Otherwise, as a 
physically non-achievable state, the energy is assigned infinity. Here also, Cijkl is the fourth-
order tensor of elastic stiffness and εij is small strain tensor pertinent to the bulk displacements 
u. The last boundary term contains the tangential derivative of the damage s∂

∂ζ  (s being a unit 
tangential vector, see Figure 1) and an auxiliary parameter k0. The term is included for 
facilitating the mathematical treatment and for making the damage formulation non-local. It is 
usual in the gradient theory for internal parameters, see [17]. 

The dissipation potential for a rate independent process can be represented by a degree 1 
homogeneous functional of the rates of pertinent variables, in our case the interface damage 

τ
ζζ ∂
∂=&  and the plastic slip τ

ππ ∂
∂=& . The interface dissipation potential is given as follows:  
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The parameter Gd is the (minimum) interface fracture energy required to make a unit interface 
crack following the linear elastic-brittle part of the interface constitutive law. The initiation of 
the plastic slip is triggered when the interface yield shear stress σyield is achieved. 

The solution evolution is governed by the following system of nonlinear variational inclusions  
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where the symbol ∂ refers to partial subdifferential relying on convexity of pertinent 
functionals with respect to each particular variable, see [13]. 

The solution of nonlinear inclusions in engineering practice can be replaced by a form of a 
weak solution called energetic solution which was developed, for example, in [14]. Such a 
form of the solution is easier understandable for engineers, see [10][11], and also provides, 
from mathematical point of view, a concept which enables a generalization of convex 
optimization to the case of non-convex energies which unfortunately occurs in our model. 

The energetic solution to the rate-independent problem (3) is a process (u(τ),ζ(τ),π(τ)), 
τ�[0;T], for which the following three conditions are satisfied:  

• Initial conditions: 

( ) ( ) ( ) .0,0,0 00 ππζζ === uu                                                 (4) 

• Stability inequality: For any appropriate ( )πζ ~,~,~u  it holds 

( ) ( ) ( )( ) ( ) ( ) ( )( ).~~~,~,~,, τππτζζπζττπτζττ −−+≤ ,R,E,E uu                          (5) 

• Energy equality: 
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The stability condition (5) is a derivative free expression for finding the (global) minimum of 
energy functionals. The equation (6) provides an energetic balance of the stored energy, the 
dissipated energy and the work done by the external forces. 

2.2 Model simplification for rupture by shearing slip 

The present formulation can be simplified to test its behaviour in a numerical solution for the 
case of purely tangential loading resulting in a shearing crack. To do this, the influence of 
bulk regions is eliminated by considering the adjacent bulks rigid. The simplification, of 
course, removes the dependence of the crack evolution on the bulk material properties. 
Additionally, the upper body is considered to slip horizontally, with prescribed displacements 
obeying the rules [ ] 0=nu  and [ ] ( )τvt =u  as it is also sketched in Figure 2. The function v(τ) 
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is in fact a function of x1, normally a constant function for the rigid bulk. Nevertheless, it can 
be prescribed by a slightly changing function in order the imperfections to take into account, 
e.g. changing of the adhesive thickness or of the bulk shapes. 

 

 
 

Figure 2: Geometry for the model with shearing slip 

 
The stored energy E from (1) then reduces to  
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The unknowns remain only along the interface.  

3 Notes on the numerical implementation of the model 

A numerical approach to obtain the above defined energetic solution usually considers time 
and spatial discretizations separately. The time discretization provides the solution at time-
steps defined by an increment δ such that τλ=λδ for λ=1,2,…,T/δ. The time-stepping 
procedure starts with the solution for λ=1 calculated from the initial conditions (4). 

The stability condition (5) provides the minimization problem for the solution at the 
successive step λ, once the solution for the time step λ−1 is known, c. f. [10],  

( ) ( ) ( ).,,,,   minimize 11
S

−− −−+= λλλ ππζζπζλδπζ REH                         (8) 

Unfortunately, functional Hλ is not convex. Its non-convexity requires applying a special 
numerical treatment in a minimization algorithm. The alternative minimization algorithm 
(AMA) proposed in [15] has been used to split the minimization to alternation between 
minimization with respect to π and with respect to ζ, each of these being a minimization of a 
convex functional. The scheme of AMA written in MATLAB [18] can be seen in Appendix, 
Table 1. 

The absolute values in R, see (2) and (8), can hopefully be eliminated. The first one with ζ 
does not cause problem as long as it must be non-increasing, thus only ζ≤ζλ-1 is admitted. For 
the second term, a classical trick of removing the absolute values and replacing them by 
additional unknowns with restrictions is used, see e.g. [19]. The solution of the original 
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problem (8) with R(ζ-ζλ-1,π-πλ-1) is then the same as the solution with R(ζ-ζλ-1,ω) and a 
couple of the following additional constraints: 
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The alternation by AMA, however, does not have to lead to global minimization which is the 
characteristic of the energetic solution. Therefore a back-tracking algorithm (BTA) to control 
the process has been utilized, providing that the energy equality (6), in discrete form 
converted to a two-sided inequality is satisfied, see [9]. The two-sided inequality can be 
written in the following form to compare the energies in two subsequent time steps: 
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Although, there is no guarantee that the process converges to the global minimum, the 
practical experience with BTA, however, shows that it provides a solution with lower energy 
than that obtained by mere AMA. The scheme of BTA written in MATLAB can be seen in 
Appendix, Table 2. 

A conjugate gradient based algorithm with constraints, see [16], can be used in the 
minimization procedure with respect to either unknown as the pertinent energies are 
quadratic. A particular implementation of Polyak algorithm is sketched in Appendix, Table 3.  

4 An example  

The simplified case described in Section 2.2 is considered for the numerical simulation. The 
unknowns for each load step λ remain only along the interface (damage ζλ, plastic slip πλ) and 
the displacement v(λδ)=vλ is prescribed as  

 ( ) ( )( ) mm.sin51sinv 1501 0.002⋅+= xx πλπ
λ  (11) 

The length of the glued faces of the bulks is l=1000mm. The adhesive material is epoxy resin, 
with elastic properties E=2.4×103MPa and ν=0.33. Considering the adhesive layer thickness 
h=0.2mm, the corresponding stiffness parameter is kt=4.5×103MPamm−1, the details of the 
parameter statement can be seen e.g. in [20]. 

The parameters that govern the crack growth in the adhesive layer are: the elastic-brittle 
fracture energy Gd=1×10−2mJmm−2, plastic slip yield stress σyield=0.56(2ktGd)-1/2=5.3MPa. 
The hardening slope for plastic slip is  kH=5×102MPamm−1. The energy due to gradient term 
should be small, so the auxiliary parameter k0 is prescribed by a small number, k0=1×10−3mJ. 
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Figure 3: Distribution of the interface variables: (a) prescribed tangential displacement,  
(b) stress, (c) damage, (d) plastic slip. 

 
The solution to the problem is shown in Figure 3. The prescribed displacement is drawn in the 
graph (a). The periodic loading changes both in magnitude and in direction. Naturally, due to 
the rupture of the interface, the periodic response of the structure is not expected. The 
initiation of the interface crack can be observed in all the graphs: the broken interface does 
not transfer stress in the graph (b), damage parameter ζ abruptly changes from one to zero in 
the graph (c) and the plastic deformation remains constant after the initiation of the crack in 
the graph (d). The parts of the interface with undamaged epoxy layer still hold the two rigid 
bulks together, though the layer is deformed plastically as it can be observed in the graph (d). 
It should be noted that the stress, which is not the variable of the solution process, is 
recovered after calculation by the relation t=ζkt(v-π). 

The relations between the imposed displacement and the stress in the epoxy layer for two 
particular points are plotted in Figure 4.  
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Figure 4: Stress-strain relation for two particular nodes. 

 
The first point at x1=280mm belongs to the unbroken part. The hysteresis related to the plastic 
deformation can be observed as the unloading obeys the elastic slope. The first plastic 
deformations appear exactly for yield stress σyield. The second point at x1=460mm belongs to 
the part which breaks at the load step λ=18. This means that after initiation of plastic 
deformations the epoxy layer around this point deforms plastically until it is totally debonded 
from the bulk. Subsequent displacement loading does not have any effect in the relation as the 
layer remains stress free. 
 

 
 

Figure 5: Energies in the process of crack initiation and growth. 

 
Finally, an energetic evolution of the structure is presented in Figure 5. Three curves 
correspond to the energy stored in the epoxy layer (7), dissipated energy due to plastic 
deformation and rupture of the interface (2) and the sum of these two components. In order to 
understand the non-monotone behaviour of the total energy, a schematic drawing of loading 
and unloading process is included – the λ-dependent sin function of (11) is sketched by the 
dotted line. After achieving the maximum displacement, the upper bulk starts moving in the 
opposite direction which leads to consumption of the stored energy, also total energy is 
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decreasing. Nevertheless, the dissipated energy cannot be returned to the structure thus the 
pertinent curve is always non-decreasing. The energy plot also documents appearing of the 
plastic slip – at the point where the total and the stored energies separate – and crack initiation 
– at the point where the stored energy suddenly decreases. 

5 Conclusion 

An energy based model for initiation and growth of an interface crack under rate-independent 
conditions has been considered. The general model provides a kind of sensitivity to the mode 
of crack, i.e. whether the interface is broken in the opening mode, shearing mode or generally 
a combination of both modes. This sensitivity has been achieved by considering two internal 
variables along the interface: damage parameter ζ and plastic slip π.  

The particular numerical analysis has been performed for an abstract example which resulted 
to the crack initiation and growth in shearing mode.  The results confirm the expected 
behaviour of the proposed model and asses its applicability to problems with initiation and 
evolution of interface cracks. 

Appendix: MATLAB routines  

The solution of the example was obtained by a computer code written in MATLAB.  Some 
parts of the codes, mainly concerning the optimization algorithms, are summarize in the 
following tables: the procedure of AMA in tab. Table 1, the procedure of BTA in Table 2 and 
an implementation of Polyak algorithm for bound constrained conjugate gradients in Table 3. 

 

Table 1: Scheme of AMA (MM, M, DM, m, m0 are matrices obtained by discretization of 
integrals in (2) and (7)) 

function [y,z] = fdpmline(v,y0,z0) 
% [y,z] = fdpmline(v,y0,z0) 
% Find minimum of E+R by alternation  for the prescribed v starting from pi0 and zeta0 
% Input:  v  -- given slip 
%         y0 -- initial plastic slip pi0 
%         z0 -- initial damage state zeta0 
% Output: y  -- plastic slip pi after applied displacement 
%         z  -- final damage state zeta 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global kt kh k0 sy Gd MM M m m0 DM; 
znew = z0;  
z = zeros(size(z0)); 
% Alternation 
while( max(z~=znew) == 1 ) 
  z = znew; 
% Minimization with pi 
  Asub = MMmult(MM,[],[],z); 
  A = kh/4*[M -M; -M M] + kt/4*[Asub -Asub; -Asub Asub]; 
  bsub = MMmult(MM,[],v,z); 
  b = kt/2*[-bsub bsub]-sy/2*[m m]; 
  omega = QP(A,b,[-y0 y0], inf,1e-6,size(A,1),[-y0 y0]); 
  y = (-omega(1:end/2)+omega(end/2+1:end))*0.5; 
% Minimization with zeta   
  znew = QP(k0*DM,Gd*m0-kt/2*MMmult(MM,(v-y),(v-y),[]),0,z0,1e-6, size(DM,1),z0); 
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end 
z = znew; 
end 

Table 2: Scheme of BTA (LoadStep calculates prescribed displacement v, fdpline evaluates 
energies from (2) and (7)) 

%Initiation 
i=1; y0 = zeros(size(m)); z0 = ones(size(m0)); 
% Stepping in time 
while(i=<(N+1)) 
  v(i,:)=LoadStep(i); 
% Use alternation 
  [x(i,:),z(i,:)]=fdpmline(v(i,:),x0,z0); 
  if(i>1) 
% Calculate energies 
    [E(i), R(i)] = fdpline(v(i,:),x(i,:),z(i,:),x(i-1,:),z(i-1,:)); 
    Eup(i)=fdpline(v(i,:),x(i-1,:),z(i-1,:),x(i-1,:),z(i-1,:)); 
    Elow(i)=E(i)+E(i-1)-fdpline(v(i-1,:),x(i,:),z(i,:),x(i-1,:),z(i-1,:)); 
    DissR(i)=sum(R(2:i)); 
    T(i)=E(i)+DissR(i);  
    z0 = z(i,:); 
% Check possible back-tracking 
    if((Elow(i)>E(i)+R(i)) || (Eup(i)<E(i)+R(i))) 
      i=i-1; 
    else 
      i=i+1; 
    end 
  else 
    z0 = z(i,:); 
    i=i+1; 
  end 
  x0 = x(i-1,:); 
end 

Table 3: MATLAB implementation of Polyak algorithm (BoxReducedG calculates reduced 
gradient required for the algorithm, see [12]) 

function [x,n,relres] = QP(A,b,low,up,tol,maxit,x0) 
% [x n relres]=QP(A,b,low,up,tol,maxit,x0) 
% Polyak algorithm for minimization of 1/2xAx-bx with the bound up>=x>=low 
% input:  A      - system SPD matrix 
%         b      - system vector 
%         low    - vector of lower bounds 
%         up     - vector of upper bounds 
%         tol    - required tolerance (relative residual) 
%         maxit  - max. number of iterations 
%         x0     - initial estimation 
% output: x      - approximate solution within the given tolerance 
%         n      - number of evaluated iterations 
%         relres - relative residual of the approximate solution and all iterations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
g =  A * x0 - b; 
[gP,phi,beta]=BoxReducedG(g,x0,low,up); 
p = gP; 
n=0; 
normr = norm(gP); 
normr0 = normr; 
relres(1)=1; 
x=x0; 
while ((normr>tol) && (n<=maxit)) 
    if(norm(phi)>tol) 
        Ap = A * p; 
        alphaCG = (g'*p)/(p'*Ap); 
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        y = x0 - alphaCG * p; 
        testalphalow = (x0-low)./p; 
        testalphaup = (x0-up)./p; 
        alphaF = min([testalphalow(p>tol);testalphaup(p<-tol)]); 
        if(numel(alphaF)==0 || alphaCG<=alphaF) 
            x0 = y; 
            g = g - alphaCG * Ap; 
            [gP,phi,beta] = BoxReducedG(g,x0,low,up); 
            bb = (phi'*Ap)/(p'*Ap); 
            p = phi - bb*p; 
        else 
            x0 = x0 - alphaF * p; 
            g = g - alphaF * Ap; 
            [gP,phi,beta] = BoxReducedG(g,x0,low,up); 
            p = phi; 
        end 
    else 
        Abeta = A*beta; 
        alphaCG = (g'*beta)/(beta'*Abeta); 
        y = x0 - alphaCG*beta; 
        testalphalow = (x0-up)./beta; 
        testalphaup = (x0-low)./beta; 
        alphaF = min([testalphalow(beta<-tol); testalphaup(beta>tol)]); 
        if(alphaCG<=alphaF) 
            x0 = y; 
            g = g - alphaCG * Abeta; 
            [gP,phi,beta] = BoxReducedG(g,x0,low,up); 
            p = phi; 
        else 
            x0 = x0 - alphaF * beta; 
            g = g - alphaF * Abeta; 
            [gP,phi,beta] = BoxReducedG(g,x0,low,up); 
            p = phi; 
        end 
    end 
    normr = norm(gP)/normr0; 
    n = n+1; 
    relres(n+1,1)=normr;     
end 
if(n==(maxit+1)) 
    disp('Maximum number of iterations reached!') 
end 
x=x0; 
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