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Abstract 

Results of the linear closed form solution of an active or adaptive tensegrity unit, as well as its numerical 
analysis using finite element method are presented in the paper. The shape of the unit is an octahedral cell with a 
square base and it is formed by thirteen members (four bottom and four top cables, four edge struts and one 
central strut). The central strut is designed as an actuator that allows for an adjustment of the shape of the unit 
which leads to changes of tensile forces in the cables. Due to the diagonal symmetry of the 3D tensegrity unit the 
closed-form analysis is based on the 2D solution of the equivalent planar biconvex cable system with one central 
strut under a vertical point load. 
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1 Introduction 

In general, a structural response to external loads (internal forces, stresses, deflection) can be 
solved analytically or numerically. Analytical methods provide linear or non-linear closed-
form solutions and they are particularly suitable for the simple structures with explicitly 
defined geometry and simple boundary conditions. For more complicated structures or load 
cases the results obtained by analytical solutions are less accurate and they are suitable only 
for preliminary design [1]. 

The paper presents a linear analytical close-form solution of an active or adaptive tensegrity 
unit and its numerical analysis using finite element method (FEM). 

Active systems equipped with sensors and actuators provide the potential to control their 
shape and adapt to changing load and environmental conditions [2]. 

The active tensegrity unit presented, as well as the whole test facility was developed at the 
Institute of Structural Engineering of the Faculty of Civil Engineering in Košice. Its 
production was performed in cooperation with INOVA Praha Ltd. This active tensegrity unit 
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was developed and manufactured in order to test the possibility of active control of tensegrity 
systems through an activator or action member [3]. 

The whole test facility consists of the following parts: 
        - self-supporting frame, 
        - tensegrity unit with an action member, 
        - hydraulic load cylinder and hydraulic power unit, 
        - control electronics and control software. 

2 Prototype of active tensegrity structure 

The chosen tensegrity unit consists of a strut that is centered in the rectangular base and 
stiffened by crossed cables. This unit is also known as a tensegric unit cell of type I [4], or 
like a crystal pyramid [5] and it is suitable for the generation of line structures or plate 
structures with a straight or curved central line. 

The theoretical dimensions of the square base of the active tensegrity unit are 2.000 x 2.000 
mm and its theoretical height is 800 mm. The unit consists of thirteen members (four 
circumferential compressed members,  four bottom and four top cables and one central strut) 
as is introduced in Table 1. The unit is also equipped with six strain gauges SG1 - SG6 and 
four load cells FT1 - FT4 (Figure 1, 2 and 3). 

 

 

Figure 1: Active tensegrity unit suspended on the self-supporting frame (inactive state) 

 

       

Figure 2: Detailed view of the central strut - action member (left), hydraulic power unit 
and control electronics (middle) and hydraulic load cylinder (right) 
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Figure 3: Isometric diagram of the unit and diagonal A-A section 
 

Table 1: Members of the active tensegrity unit and their properties 

Member Cross-section A (mm2) Material E (GPa) 

Compressed  members 
Bottom cables 
Upper cables 
Central or active member 

CHS 51 / 3.2 mm 
∅ 6 mm 
∅ 6 mm 

- 

As = 475.9 
Ac = 15.14 
Ac = 15.14 

- 

steel S 235 
steel cable 7x7 * 
steel cable 7x7 * 

steel S 235 

Es = 210 
Ec = 120 
Ec = 120 
Es = 210 

 * 7 strends with 7 wires per strand 
 
The central strut is designed as an actuator or active member that allows to adjust the shape of 
the unit which leads to changes of tensile forces in the cables at required level. All members 
are mutually connected in nodes by hinge joints. 

3 Linear analytical solution 

The above tensegrity unit can be simply solved as planar biconvex cable system with one 
central strut. This system is symmetrical along longitudinal x-axis (if we neglect the 
asymmetry caused by the own weight of the members), therefore d = db = dt and its geometry 
is given by Figure 4. Another assumption is that the cables are perfectly flexible, working 
only in tension and have zero stiffness in compression and bending. 
 ( )x/Ldz 21 =   for 20;L/x∈ , (1a) 

 ( )x/LLdz −= 22   for ;LL/x 2∈ . (1b) 

 

Figure 4: Geometry of the simplified biconvex cable system 
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Following Irvine [6], vertical equilibrium equations at a cross section of the planar biconvex 
cable system are in the forms 

 ( )
2

2 1
tb

1 P
dx
dzHH

dx
dwH =Δ+Δ+   for 20 /L;x∈ , (2a) 

 ( )
2

2 2
tb

2 P
dx
dzHH

dx
dwH −=Δ+Δ+   for L;/Lx 2∈ . (2b) 

Movement of the action member (central strut) to value ΔAM,i ≥ 0 causes a change of its 
height, then 
 22 iAM,AM,0tb //Lddd Δ+=== . (3) 

The tensile forces in the top and bottom cables then increase to value (4) and horizontal 
component of these forces can be solved as (5) 
 it,ib,i,c, NNN == , (4) 

 ic,ic,i,c, αcosNH = , (5) 

where αc,i is deflection of the cables from the horizontal plane formed by the peripheral struts.  

If the system is loaded with a nodal vertical load Pj = PLC,j / 2, applied in the middle of the 
span, change of the horizontal component of tension forces in the top and bottom cables is 
calculated from the following equation 

L
d

AE
LH

dP
HHH 2

cc

eic,
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1

+
=Δ=Δ=Δ ,                                      (6) 

where Le = Leb = Let = L + 6 d2 / L. Vertical deflection in the middle of the span (for x = L/2) is 
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Assume that the tensegrity unit system is in a prestressed state i (total length of the central 
strut is LAM,i > LAM,0), then it is loaded with a nodal vertical load Pj. That results to the 
increase of the tensile forces in the bottom cables and  to the decrease of the tensile forces in 
the top cables. Their horizontal components are 
 jc,i,c,ijb,i, HHH Δ+= , (8a) 

 jc,i,c,ijt,i, HHH Δ−= . (8b) 

The resulting values of the tensile forces in the bottom and top cables are given by 
 jb,i,jb,i,jb,i, αcos/HN = , (9a) 

 jt,i,jt,i,jt,i, αcos/HN = , (9b) 
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where the final rotation of the bottom and top cables are 

2
j1,i,

jb,i, /L
wd

arctan
+

=α ,                                                (10a) 

2
j1,i,

jt,i, /L
wd

arctan
−

=α .                                               (10b) 

4 Results of analytical and numerical solution 

4.1 Linear closed-form solution 

If the prestressed active tensegrity unit is not loaded by a nodal vertical load Pj a movement of 
the action member with a value of ΔAM,i ≥ 0 causes a change of its geometry and a change of 
the lengths of cable members. The initial lengths of cables Lc,0 are changed into Lc,i and 
corresponding strain is calculated from the equation (11). From a known initial geometry 
(assuming that nodes 3 and 2 are unmoved and Hooke's law is valid) the change of the tensile 
force in the cable can by determined from the simplified expression (12b). 

1
c,0

c,i
c,i −=

L
L

ε ,                                                          (11) 

ic,ccic, εAEN = ,                                                      (12a) 
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ccc,i )cos(ΔLΔ,L
L
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The linear closed-form solution, as well as finite element analysis was carried out for various 
values of the initial prestressing forces in the top and bottom cables (Table 2). 
 

Table 2: Movement of the action member and the initial prestressing forces 

ΔAM,i (mm) LAM,i (mm) db = dc (mm) Nc,i (N) εc,i (N) 

17.65 
34.96 
51.95 

817.65 
834.96 
851.95 

408.83 
417.48 
425.98 

3 000 
6 000 
9 000 

0,001651 
0,003303 
0,004954 

4.2 FEM analysis 

To verify results obtained by linear closed-form solution, the finite element analysis 
(geometrically nonlinear and physically linear) of the active tensegrity unit in ANSYS 12 
Classic software was performed. The following types of finite elements were used [7]: 
 - LINK10 compression-only spar for the compressed members (e1), 
 - LINK10 tension-only spar for the top cables (e2) and bottom cables (e3), 
 - LINK11 linear actuator for the active member (e4). 
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LINK 10 and LINK 11 are two-node rectilinear spatial elements with three degrees of 
freedom at each node (displacements in the nodal x, y and z directions). 

LINK 10 is a 3D spar element having the unique feature of a bilinear stiffness matrix resulting 
in a uniaxial tension-only or compression-only element. Stress stiffening and large deflection 
capabilities are available for this element. 

LINK11 may be used to model hydraulic cylinders and other applications. 

The finite element model was supported at the nodes 1, 2, 3 a 4 as is shown in Figure 5. The 
real constants and material properties of the members are shown in Table 1. In the finite 
element analysis the self-weight of the members, as well as the weight of the action member 
(16 kg) were considered. 

 

 
 

Figure 5: Finite element model of the active tensegrity unit. 

4.3 Comparison of the results 

Comparison of the analytically (linear closed-form solution) and numerically (finite element 
method analysis) obtained values of the change of the tensile forces in the top cables and in 
the bottom cables and vertical deflection of the node 5 for various values of the nodal loads 
and initial prestressing forces are shown in Figure 6, Figure 7 and Figure 8.  
 

 
 

Figure 6: Comparison of the analytically and numerically obtained values of 
the change of the tensile forces in the top cables for various values of the 

nodal loads and initial prestressing forces 
 

76



                                                                         SSP - JOURNAL OF CIVIL ENGINEERING Vol. 7, Issue 2, 2012   

 
 

 
 

Figure 7: Comparison of the analytically and numerically obtained values of 
the change of the tensile forces in the bottom cables for various values of 

the nodal loads and initial prestressing forces 

 
 

 
 

Figure 8:  Comparison of the analytically and numerically obtained values 
of the vertical deflection of the node 5 for various values of the nodal loads 

and initial prestressing forces 

5 Conclusion 

In this paper the linear close-form solution of the active or adaptive tensegrity unit has been 
presented. This method offers a relatively simple and effective tool to analyze nodal loaded 
structural systems in the shape of a crystal pyramid with simple boundary conditions. 

In Figure 6, Figure 7 and Figure 8 are shown that the results (tensile forces in the top and 
bottom cables and vertical deflection in the mid-span of the simplified planar biconvex cable 
system) obtained by the presented linear closed-form solution are in a very good agreement 
with those obtained by the geometrically nonlinear and physically linear finite element 
analysis when ANSYS 12 Classic software was used. 
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The obtained results confirmed the correctness of the applied theoretical approach and a 
physical and mathematical relevance of the derived equations (at the given geometry and the 
load range). 
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