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Abstract 

In the differential equation of variable flow rate fluid flow a component which takes into account outer 

hydrodynamic pressure is introduced. The variables of the equation are expressed in terms of full operating head 

and in terms of independent distance along the axis of the stream, i. e. this equation is reduced to a single-

variable equation. 
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1 Introduction 

Pressure distributive pipelines (DP) with discrete dispensation of fluid along the path are 

widely used in irrigation (systems of drip, subsurface, and sprinkling irrigation , furrow 

watering), ventilation (tide systems), water supply and water draining (distributive pipe 

systems of purification works, dispersed discharges of treated waste water), water transport 

(distributive  filling systems of navigation locks and high clearance dry docks), metallurgical 

industry (cooling systems), in apparatus of oil-processing, oil-chemical, chemical, and food 

industries and in other branches of engineering. There are different methods of calculation for 

pressure distributive pipelines. However, their exact hydraulic calculation can be made only 

by means of the theory of variable mass hydraulics [1, page 4].  

The creator of the theory of variable mass body motion is I. V. Mescherskiy. He stated the 

problem, deduced main equations, and showed branches of their application. The prof. 

I. V. Mescherskiy’s works “Dynamics of a point of variable mass” (variable mass point) 

(1987) and “Equation of motion of a variable mass point in general case” (1904) have laid 

foundation of a new branch of theoretical mechanics. Basing on this branch, rocket 

engineering and hydraulics of variable mass fluid have started their successful development. 
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On the basis of the equations obtained by prof. I. V. Mescherskiy for a variable mass point, 

prof. I. V. Makaveev in 1928 for the first time deduced a general equation of variable flow 

rate fluid flow (DEVFRFF), and he applied it for solving the problem of hydraulic jump. In 

1937, prof. Ya. T. Nen’ko obtained DEVFRFF for the whole stream, and he applied it for 

solving problems of calculation of perforated DP with continuous fluid dispensation along, 

the path. He also established the criteria of DP classification with respect to their length. The 

same year, prof. I. M. Konovalov obtained the DEVFRFF on the basis of the law of 

conservation of momentum, and he applied it for solving problems of fluid flow in pipelines 

and canals. Variable flow rate fluid flow is also studied by other investigators [2, page 3-4]. 

2 Analysis of DEVERFF 

According to prof. G. A. Petrov’s statements, the general DEVERFF which describes 

simultaneous collection and dispensation of fluid by a pipeline with holes in its walls is of the 

form [2, page 17]:  
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where the sixth term describes the adding of mass, and the seventh term describes its loss; 1Q  

is the flow rate of the fluid which is being added to the stream in the pipe; 2Q  is that which is 

leaving the stream in the pipe; dxsindz    is the geometric elevation of the axis of 

perforated pipeline in its interval of dx  length;   - is the angle of the inclination of the 

pipeline axis to horizontal; xf dhdxi   is the head loss for friction along the pipeline;   and   

are angles between the vector V


 of the velocity of the main stream inside the perforated 

pipeline and vectors v  of jets which flow in and out respectively. 

Prof. G. A. Petrov holds that it will be no considerable error if we take   as a constant [2, 

page 17]. Then the fifth term d
g

V 2

 in Equation (1) becomes zero. Thus, in the case of only 

loss of fluid, i.e. for DP, the equation (1) takes the form:  
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For cylindrical DP, when const , VQ  , dVdQ  , Equation (2) is simplified to the 

following form:  
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In practice, there occurs operation of DP which is situated in a stream of fluid which washes it 

from outside. According to such scheme, a mixer-pipeline consisting of two coaxial pipes 

operates: the inner pipe of it is filled with one fluid, the outer pipe with another fluid. Through 

the holes in the wall, the fluid from the inner pipe flows into the space between the pipes 
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where it mixes with the other fluid [3]. According to the principle of submerged DP, 

dispersed discharge of treated waste water into a river is conducted (Fig. 1) [4, 5]. 

However in Equations (1)-(3) the pressure of outer fluid stream is not taken into account. 

Incomplete taking into account constructional parameters of a distributive pipeline and that of 

hydrodynamic peculiarities of variable flow rate stream leads to considerable miscalculations 

during designing DP; such miscalculations cause reduction in effectiveness of its operation [6, 

page 3]. 

 

 

 

Figure1: Water discharge plant with distributive pipeline in water stream: 1, 2 – pipelines; 3 - 

water outlets, 4 – river, 5 – adjusting well 

 

The aim of this work is to introduce a term describing hydrodynamic pressure of outer fluid 

stream into DEVFRFF in order to improve the exactness of calculation of pressure DP. 

3  Generalization of DEVFRFF 

Professor G. A. Petrov holds that, in the places of branching, the fluid flow is a rather 

complicated phenomenon, and it is impossible to take into account all its elements [2, page 

55]. Moreover, to solve this problem by means of exact methods of hydromechanics is 

impossible yet [2, pages 44-45]. Under to-day’s state of art in hydraulics, to previously 

determine the law of change of the coefficient 0  is also impossible [2, page 17]. Besides, a 

correction of 0  which takes into account the non-uniformity of distribution of velocities in a 

free cross-sectional area of an outflowing jet can, in general case, differ from the correction of 

0  for the main stream. Moreover, in the interval of branching, there acts the wall reaction wR , 

which is opposite to the outlet hole. The reaction wR  is perpendicular to this wall, and its 

projection on the main stream axis can be considered to equal zero [2, page 47]. G. A. Petrov 

also introduces a force S which is to be substituted for the action of imaginarily removed part 

of the outflowing jet [2, pages 47-52]. He expresses it in terms of the pressure 1p  in the 

reference section of the imaginarily removed part of the jet: 1pS  . Let us assume that 

out1 pp  , where outp  is the hydrostatic pressure of the outer fluid flow. Then  
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v

dQ
pdS out , (4) 

where v/dQ  is the cross-sectional area of the outflowing jet.  

Let us draw a schematic diagram of a converging DP (which is tapering) (Fig. 2). For an 

infinitely short segment dx  of the stream in DP with taking into account the force dS  (4) 

which takes the place of the imaginarily removed in the section 3-3 part of the outflowing jet; 

let us write hydraulic equation of the change in momentum according to the algorithm which 

is suggested by prof. Yu. M. Konstantinov for collecting pipelines in [7, pages 122-124]: 
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Here in Equation (5), projections of the following quantities on the axis x  of DP are 

presented: 

QV0  - the momentum of fluid stream in the reference cross-section 1-1 ( Fig. 2 ); 

  dVVdQQ0   - ditto in the cross-section 2-2; where V  and Q  are the average velocity 

and flow rate of the stream respectively in the cross-section 1-1; V  and Q  are ditto of the 

outflowing jet (Fig. 2); 

 cosdQv0  - the momentum of the out-flowing jet;   is the angle between the average 

velocity V


 of the main stream in DP and that of the out-flowing jet;  

  - the momentum of the force of hydraulic pressure in the section 1-1; 

   ddpp   - ditto in the section 2-2; dp  is the change of pressure in the interval between 

the sections 1-1 and 2-2; d  is the change of free cross-sectional area of the fluid stream in 

this interval. 

  d2/dpp   - the longitude component of the momentum caused by the reaction force R of 

the walls of the converging pipe in the stream interval between the cross-sections 1-1 and 2-2, 
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dQ
pout  - the momentum caused by the force which acts as equivalent of the imaginarily 

removed part of the jet; outp  is the hydrodynamic pressure of the outer fluid flow in the cross-

section 3-3;   is the angle between the directions of movement of the main fluid flow inside 

DP and the force S  which acts as equivalent of the imaginarily removed part of the outflow 

jet (Fig. 2, Fig. 3); 

dxsin
2
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  - the momentum caused by the own weight of the stream segment of 

dx -length; the minus sign before this term in Equation (5) automatically agrees the direction 

of momentum projection caused by the force G with the direction of the axis x  of the stream 
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when the angle   changes within  360...0 ; 

xdh
2

d
g 











  – the momentum of the friction force T ; 








 dx

2

d
T


  


















 dx

dx

dh

2

d

2

dR
Rg x

 xdh
2

d
g 











  where o  is the mean friction stress at the DP 

wall, 
dx

dh
gR x

o    [7, pages 76]; 

R  is the hydraulic radius; R/   is the wetter perimeter of the stream. The angles  ,   , 

and  are taken counter-clockwise (see Fig. 2, Fig. 3), their values are within 0 … 360 . 

From Equation (5), a corrected DEVFRFF is obtained. For cylindrical pipes when const  

and dVdQ   it takes the following form:  
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Figure 2: Schematic diagram of enforced stream with mass loss 

 

In Equation (6), the force S is represented by the term 


cos
v

dV

g

pout . In previous works of the 

author which were published before 2009, for example [8], the force S  is determined as a 
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force of pressure of out-flowing jet upon a flat wall, the velocity v  of the jet being 

perpendicular to the wall: vdQS  . 

4 Reduction of DEVFRFF to a single-variable equation  

The main stream inside DP is formed under the influence of separate out-flowing jets. Let us 

express variables V , dV , v , dp , outp , xdh , dx  in Equation (6) in terms of the full head )x(H  

under the action of which the jets flow out and, as well as in terms of the independent variable 

x . Let us assume that constVvm xxx  )()()( /cos ; 
  3600  ; 

  3600  ; 

  3600  . In different quadrants, the functions sin  and cos , cos , cos  are of 

different signs. In the differential equation, these signs are taken into account automatically. 

Thus, the average velocity of a jets flow through a hole in the DP wall  

    
2/1

xx)x( aHgH2v  , (7) 

where  

 constg2a  , sm 5,0
; (8) 

  is the coefficient of speed; )x(H  is the full head under the action of which the jets flow out, 

it is equal to the difference of the full heads of fluid streams inside and outside the DP: 
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The full pressure of internal stream of fluid at the end of the reference dx-long interval of DP: 
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The full pressure of external fluid stream:  
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where   is the density of fluid inside DP; out  is ditto outside the DP; )0(Z  is the depth of 

submergence of the DP axis at the beginning of the reference interval at 0dx  (see Fig. 2); 

outop  is the piezometric fluid pressure outside the DP;   is the angle between the velocities 

)(xv  of the out-flowing jet (in outer section of outlet) and outV  of the outer stream (Fig. 3); 

)x(V  is the stream velocity inside DP. 

For operation of DP, the flowing condition must be satisfied: 

 
)( xinp >

)( xoutp . (12) 
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Let us express the difference between the internal and external fluid pressures in terms of the 

head of the column of the fluid which the DP is filled of 
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Figure 3: Schematic diagram of DP: (a) heads acting upon DP ; (b) angles between vectors of 

fluid velocities : 1 - DP; 2 - level of the fluid which washes DP from outside ; 3- piezometric 

line of stream inside DP; 4 - ditto of full head ; 5 - outlet nozzle; l  – axis of DP; v ,  V ,  outV  

velocities of outflow jet, internal, and external streams respectively. 

 

Let us assume that )x(fVout  ; )x(fp
outo  . From (13), we find the differential of piezometric 

head of fluid flow inside DP  
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where the multiplier cos  takes into account the dynamic head of the stream inside DP onto 

free cross-section of the jet at the intake of the outlet hole. The essence of the multiplier cos  

is clear from Fig. 4. 

The differential of the flow rate of the dispensed from DP along the pass  

 dxbHdxgH2ndQ 21
)x()x(distrib hole)x(

  , (15) 

where n  is the number of outlet holes per unit length of DP, 1m
;  hole is the area of the 

hole;   is the coefficient of flow rate of this hole 

b) a) 
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 constg2nb hole   ,    sm 5.1
. (16) 

The differential of the flow rate of the main fluid stream inside DP 
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where  0Q  is the flow rate at the input of DP, in general case, for a DP of the length L it can 

be written as dxHbQQ

L

0

21
)x(tr)0(  , where trQ is the transitional flow rate of fluid at the output 

of DP. 
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Figure 4: Schematic diagram of action of dynamic head of main stream inside DP upon 

Surface of free cross-sectional area of stream at input of outlet hole under different values of 

angle  : 0  – (а);   90...0  – (b);  180  – (c);   270...180  – (d) 

 

The differential of average speed of the fluid stream inside DP is determined from (18) 
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where   is the cross-section area of DP stream inside DP. 

The average spied of fluid stream inside DP 
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The differential of the head loss xdh  in the infinitely short dx  - long interval of cylindrical DP 

situated between neighboring outlet holes in the DP can be with sufficient exactness 

determined in the same way as it is for uniform motion i.e. according to Darci-Weisbach 

formula [7, page 124]  
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where D  is the diameter of DP.  

The dependences (7), (11), (14), (19), (20), (21) are to be substituted into Equation (6). The 

non-linear integro-differential equation of enforced fluid flow with discrete loss in its flow 

rate along the path for an inclined to horizontal cylindrical DP is obtained by means of this 

substitution. It is an equation in one unknown function )x(H  with taking into account the 

hydrodynamic pressure of the external fluid flow:  
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where )H(f )x()x(  , depending on situated in sequence intervals of hydraulic resistance in 

DP, provided that the flow rate decreases along the main stream. In Equation (22) the 

hydrodynamic pressure of the external fluid flow is taken into account by means of the  

following expressions: dxcos
g2
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. 

By means of the method suggested in the article [8], the equation (22) is solved for laminar 

flow as well as for all the three intervals of hydraulic resistance of turbulent flow [9]. The 

obtained calculation dependences have been checked by experiments. Unlike in the known 

techniques of DP calculating, in the obtained relations, the hydrodynamic pressure of the 

external fluid flow is taken into account. This improves exactness during designing. 
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5 Conclusion 

In order to improve the exactness of calculation of distributive pipelines, the hydrodynamic 

pressure of the fluid flow which washes the DP from outside is taken into account in the 

differential equation of variable flow rate fluid flow for pressure distributive pipelines. The 

variables of the obtained equation are expressed in terms of full operating head and in terms 

of independent distance along the axis of the stream. This equation is reduced to a single-

variable equation. 

References 

[1] Navoyan, Kh. A. (1975). Examples of calculation for water-passing structures. Kiev. 

[2] Petrov, G. A. (1964). Hydraulics of variable mass (variable flow rate fluid flow along the path). 

Kharkiv: Kh SU.  

[3] Danilov, Yu. M. (2004). Investigation of turbulent mixing of two-component mixture in a pipe 

of periodically variable cross-section. Bulletin of Kazan Technological University. №1, pp. 172-

179. 

[4] Levitsky, B. F., Cherniuk, V. V. (1992). Waste Water Discharge Plant . Author’s certificate 

1756483 USSR International Classification of Inventions 03F 1/00, 5/12, № 4806326/29, 

Bulletin № 31.  

[5] Cherniuk, V. (1995). Water discharge of periodic operation. In Problemy budownictwa i 

inżynierii środowiska. Cz. II. Inżynieria Środowiska: praci IV naukowej konferencji, 1995 (pp. 

9-14). Rzeszów: Politechnika Rzeszowska.  

[6] Egorov, A. I. (1984). Hydraulics of pressure pipe system in water supply purifying structure. 

Moskow: Stroyizdat.  

[7] Konstantinov, Yu. M. (1988). Hydraulics: text-book . Kiev: Vyscha Shkola.  

[8] Cherniuk, V. V. (2008). Method of calculation for pressure distributive pipelines. Applied 

hydromechanics .Volume 10 (82), №3, pp. 65-76. Kiev: Institute of Hydrodynamics of 

Ukrainian National Academy of Sciences. 

[9] Cherniuk, V. V. (2010). Regulation of integral parameters of enforced fluid flows by means of 

hydrodynamic active additives. Manuscript. Thesis for a scientific degree of doctor of technical 

sciences by speciality 05.23.16 Hydrodynamics and engineering hydrology, National University 

of Civil Building and Architecture, Kiev. 

22


