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Abstract 

The article is devoted to the air distribution in a room by swirl and laying air jets. Dynamic parameters of air 
flow that is created due to swirl and laying air jets at their leakage in a room has been determined. The 
mathematical model of air supply with swirl and laying air jets in the industrial rooms is improved. Simulation 
of air flow is performed due to CFD FLUENT (Ansys FLUENT). Solution of the equation by using k-ε model of 
turbulence is presented. Dynamic parameters of air flow that is created due to swirl and laying air jets at their 
leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of 
experimental investigations of air supply into the room by air distribution device which creates swirl air jets for 
creation more intensive turbulence air flow in the room are presented. The results of theoretical researches of 
influence of dynamic microclimate to the human organism are presented. 
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1 Introduction 

For maintenance of the normalized parameters of air environment in a working area of rooms 
[1, 2] it is necessary that distribution of incoming air would be effective [3], as a result the 
ways and air distribution devices essentially influence on technical and economic parameters 
of a microclimate maintenance system as a whole. 

There are a number of air distribution devices, where the effect of air jet swirling or air jet 
laying is used [4, 5]. 

2 Aim of work 

Determining of air flow characteristics, that is created both swirl and spread air jets and 
obtaining of the analytic equations for determination of the necessary parameters of air jets 
and air distribution devices at the rated demands.  
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3 The analysis of existing research 

One of the most rational ways of air distribution is submission of coming air directly into a 
room serviced area [6]. For this purpose, air distribution devices with high intensity of falling 
of parameters (velocity V and temperature t) of incoming air are used. As characteristic 
property of such incoming air jet there is its higher turbulence in comparison with common 
air jets [7, 8, 9]. Both swirl and laying air jets using is an effective way of increasing its 
turbulence [10, 11]. 

In this work opportunity of achievement of falling high intensity of parameters is considered 
at distribution of air supply by air distribution device with creation both swirl and spread air 
jets. The question has been solved due to using of air distribution device with creation both 
swirl and laying air jets, that leakage from the nozzle at the same conditions [12, 13, 14, 15]. 
 

4 Analytical studies 

Simulation of air flow is carried out due to CFD FLUENT program (Ansys FLUENT) [7]. At 
this simulation some conditions and simplifications have been adopted: 
- internal air is non pressed and air flow is constant; 
- air jets are isothermal; 
- initial air velocities in nozzle were: V = 5 – 15 m/s; 
- air flow rates were: L = 200 – 500 m3/h; 
- incoming air supplied by air device with creation of swirl and spread air jets; 
- air distribution device was situated on height 3 m. 

Let us consider ε−k  model of turbulence. Equation of inseparability: text. 
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Relationship between stresses by Reynolds and parameters of averaged air flow due to 
different turbulence models has been determined. 

In Ansys FLUENT equations of ε−k  model are accordingly: 
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In this equations kG  is turbulent kinetic energy [J], that is created from average gradients of 

velocity. On base of Bussinesc’s hypothesis:  
2

SG tk ⋅= µ       (7) 

where: 
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 bG  - kinetic energy of pushing force, (J): 
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where: 

tPr  - turbulent Prandtl’s constant for energy, (-); 

ig  - component of gravity vector in  і- direction, (m/s2); 

β  - coefficient of temperature widening, (1/K):  
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 where: 
T  - temperature, (K); 

ε3С  - constant (-), that determines influence degree of pushing force on ε :  

u

v
С

′
′

= tanh3ε       (11) 

where: 

v′ ,u′ - components of air velocity, (m/s), that accordingly are parallel and normal to gravity 
velocity; 
YM - contribution of variable widening at press turbulence into common velocity of 
dissipation:  

22 tM MY ρε=       (12) 

where: 

tM  - Makh’s number for turbulent liquid, 
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where: 

a  - speed of the sound, (m/s),   RTa γ= . 

Constants else:   44,11 =εС ,  9,12 =С ,  0,1=kσ ,  2,1=εσ . 

Calculating of equations has been carried out due to Ansys FLUENT program: 
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where: 

vG  - turbulent viscosity, (m2/s); 

vY  - destroying of turbulent viscosity, (m2/s); 

v~σ ,  2bC  - constants, 

v  - molecular kinetic viscosity. 

Turbulent viscosity is determined: 

        1
~

vt fvρµ =      (15) 

3

1

3

3

1

v

v
С

f
+

=
χ

χ
      (16) 

where:     
v

v~≡χ  

vSСG bv
~~

1 ⋅= ρ      (17) 

where:      222

~~
vf

dk

v
SS +≡  ,           

1

2
1

1
v

v
f

f
⋅+

−=
χ
χ

 , 

but: 

1bC ,  k  - constants. 

S  - invariant of deformations tensor:    
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As we see from fig.1, incoming swirl air jet at the angle of swirling plates 90˚ is similar to 
direct-flowed air jet by its characteristics. The laying air jet is flows independently from swirl 

air jet. At relative distance 2,0=X  from air device 75,0=v ,  but at  4,0=X  - 5,0=v . 

 

 
 

Figure 1: Velocity epure of incoming air flow in nozzle section at air supply by swirl 
and laying air jets and angle of swirling plates 90˚ 

 

 
 

Figure 2: Lines of flow at air supply by swirl and laying air jets and angle of swirling 
plates 90˚ 
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Figure 3: Velocity epure of incoming air flow in nozzle section at air supply by swirl 
and laying air jets and angle of swirling plates 60˚ 

 
As we see from fig.3, at angle of swirling plates 60˚ incoming laying air jet also flows 

independently from swirl air jet. At relatively distance 11,0=X  value 7,0=v , at 2,0=X  - 

5,0=v , but at 4,0=X  - 3,0=v . At angle 30˚ interaction between both air jets take place. 

Intensive velocity falling for incoming air flow takes place in section 2,0=X . 

 

 
 

Figure 4: Lines of flow at air supply by swirl and laying air jets and angle 60˚ 
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Figure 5: Velocity epure of incoming air flow in nozzle section at air supply by swirl 
and laying air jets and angle of swirling plates 300. 

 

5 Conclusion 

On base obtained results we assert: 
- geometric and flow rate characteristics of air distribution device with creation of swirl and 

spread air jets have been determined and optimized;  
- there is determined, that it will be effective to increase an angle of swirling plates and to 

use an effect of jet spreading;  
- using of air distribution devices with creation of swirl and spread air jets will allow to 

increase ADPI (Air Distribution Performance Index) index at air supply into a room.  
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