Soil grain size analysis by the dynamometer method – a comparison to the pipette and hydrometer method

Open access


The aim of the presented work was to compare the results of grain size distribution measurement by an innovative dynamometer method, developed by the authors, with results obtained by the pipette and hydrometer methods. Repeatability of results obtained in the dynamometer method was also determined. The content of three fractions with equivalent diameters <0.002 mm, 0.002–0.063 mm and 0.063–2.0 mm was measured. The results were compared using ordinary linear regression and additionally in the repeatability analysis by RMA (reduced major axis regression). It was found that the proposed dynamometer method is characterized by good result repeatability with no systematic errors when compared with the pipette method. The RMSE (root mean square error) value when referring to the pipette method calculated for the three fractions considered in total was 4.9096 and was lower than the analogous for the hydrometer method, which amounted to 5.4577. Values of determination coefficients in the comparison of dynamometer method and pipette method are within the range of 0.9681–0.9951 for the different fractions. It was found that slightly larger differences in relation to the pipette method occurred for the fractions <0.002 mm and 0.002–0.063 mm, and smaller for the fraction 0.063–2.0 mm. Similarly, greater differences between repetitions in the dynamometer method were observed for the fraction <0.002 mm, and smaller for the 0.063–2.0 mm fraction. Possible sources of errors in the dynamometer method were discussed, as were proposals for their reduction.

Ahrens J.P., 2000. The fall-velocity equation. Journal of Waterway, Port, Coastal, and Ocean Engineering 126(2): 99–102.

Allen T., 1997. Particle size measurement. Vol. 1., Chapman and Hall, London, UK.

Baba J., Komar P.D., 1981. Settling velocity of irregular grains at low Reynolds numbers. Journal of Sedimentary Petrology 51(1): 121–128.

Batchelor G.K., 1982. Sedimentation in a Dilute Polydisperse System of Interacting Spheres. Part 1. General Theory. Journal of Fluid Mechanics 119: 379–408.

Batchelor G.K., Wen C.S., 1982. Sedimentation in a Dilute Polydisperse System of Interacting Spheres. Part 2. Numerical Results. Journal of Fluid Mechanics 124: 495–582.

Blake G.R., Hartge K.H., 1986. Bulk density. [In:] Methods of Soil Analysis, Part 1–Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9 (Klute A., Editor). Soil Science Society of America, Madison: 363–382.

Bouyoucos G.J., 1927. The hydrometer as a new method for the mechanical composition of soils. Soil Science 23: 343–354.

Brogowski Z., Kwasowski W., 2015. An attempt of using soil grain size in calculating the capacity of water unavailable to plants. Soil Science Annual 66(1): 21–28.

Buchan G.D., Grewal K.S., Robson A.B., 1993a. Improved models of particle-size distribution: an illustration of model comparison techniques. Soil Science Society of America Journal 57: 901–908.

Buchan G.D., Grewal K.S., Claydon J.J., McPherson R.J., 1993b. A comparison of Sedigraph and pipette methods for soil particle-size analysis. Australian Journal of Soil Research 31(4): 407–417.

Buchan G.D., 1989. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Science 147: 155–161.

Casagrande A., 1934. Die Aräometer Methode zur Bestimmung der Kornverteilung von Böden, Springer, Berlin: 56 pp.

Cheng N.S., 1997. A simplified settling velocity formula for sediment particle. Journal of Hydraulic Engineering 123(2): 149–152.

Dietrich W., 1982. Settling velocity of natural particles. Water Resources Research 18(6): 1615–1626.

Durner W., Iden S.C., Unold G., 2017. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Resources Research 53: 33–48.

Esmaeelnejad L., Siavashi F., Seyedmohammadi J., Shabanpour M., 2016. The best mathematical models describing particle size distribution of soils. Modelling Earth Systems and Environment 2: 166.

Gee G.W., Or D., 2002. Particle-size analysis. [In:] Methods of Soil Analysis. Part 4. Physical and Mineralogical Methods. 4th Edition (Dane J.H. and Topp G.C., Editors). Soil Science Society of America, Madison: 255–293.

Gee G.W., Bauder J.W., 1986. Particle-size analysis. [In:] Methods of Soil Analysis: Part 1. Physical and Mineralogical Methods, 2nd edition (Klute A., Editor). Soil Science Society of America, Madison: 383–411.

Gibbs R.J., Matthews M.D., Link D.A., 1971. The relationship between sphere size and settling velocity. Journal of Sedimentary Research 41(1): 7–18.

Gimenez D., Rawls W.J., Pachepsky Y., Watt J.P.C., 2001. Prediction of a pore distribution factor from soil textural and mechanical parameters. Soil Science 166: 79–88.

Goossens D., 2008. Techniques to measure grain-size distributions of loamy sediments: a comparative study of ten instruments for wet analysis. Sedimentology 55(1): 65–96.

Ham J.M., Homsy G.M., 1988. Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions. International Journal of Multiphase Flow 14: 533–546

Harper W.V., 2014. Reduced major axis regression: teaching alternatives to least squares. 9th International Conference on Teaching Statistics, Contributed Paper.

Indorante S.J., Follmer L.R., Hammer R.D., Koenig P.G., 1990. Particle-size analysis by a modified pipette procedure. Soil Science Society of America Journal 54(2): 560–563.

Janke N.C., 1966. Effect of shape upon the settling velocity of regular convex geometric particles. Journal of Sedimentary Research 36(2): 370–376.

Jimenez J.A., Madsen O.S., 2003. A Simple Formula to Estimate Settling Velocity of Natural Sediments. Journal of Waterway, Port, Coastal, and Ocean Engineering 129(2): 70–78.

Kaszubkiewicz J., Wilczewski W., Nowak T.J., Woźniczka P., Faliński K., Belowski J., Kawałko D., 2017. Determination of soil grain size composition by measuring apparent weight of float submerged in suspension. International Agrophysics 31(1): 61–72.

Köhn M., 1928. Beitrage zur Theorie und Praxis der mechanischen Bodenanalyse. Landwirtschaft Jahrbuch 67: 485–546.

Komornicki T., Jakubiec J., 1978. Remarks on the areometric method for soil mechanical analysis as modified by M. Prószyński. Part 5: A comparison of several granulometric methods. Acta Agraria et Silvestria. Series Agraria 1: 83–95.

Kovács B., Czinkota I., Tolner L., Czinkota G., 2004. The determination of particle size distribution (PSD) of clayey and silty formations using the hydrostatic method. Acta mineralogicapetrographica 45: 29–34.

Lamorski K., Bieganowski A., Ryżak M., Sochan A., Sławiński C., Stelmach W., 2014. Assessment of the usefulness of particle size distribution measured by laser diffraction for soil water retention modelling. Journal of Plant Nutrition and Soil Science 177(5): 803–813.

Mocek A., Owczarzak W., Tabaczyński R., 2009. Uziarnienie oraz skład mineralogiczny frakcji ilastej czarnych ziem Gniewskich. Roczniki Gleboznawcze – Soil Science Annual 60(3): 123–132.

Nguyen N-Q., Ladd A.J.C., 2005. Sedimentation of hard-sphere suspensions at low Reynolds number. Journal of Fluid Mechanics 525: 73–104.

Orzechowski M., Smólczyński S., Długosz J., Poźniak P., 2014. Measurements of texture of soils formed from glaciolimnic sediments by areometric method, pipette method and laser diffraction method. Soil Science Annual 65(2): 72–79.

Particle size distribution and textural classes of soils and mineral materials – classification of Polish Society of Soil Sciences 2008. Roczniki Gleboznawcze – Soil Science Annual 60(2): 5–16.

PN-ISO 11277:2005 Jakość gleby–Oznaczanie składu granulometrycznego w mineralnym materiale glebowym – Metoda sitowa i sedymentacyjna.

Polakowski C., Sochan A., Bieganowski A., Ryżak M., Földényi R., Tóth J., 2014. Influence of the sand particle shape on particle size distribution measured by laser diffraction method. International Agrophysics 28: 195–200.

Richardson J.F., Zaki W.N., 1954. Sedimentation and fluidisation. Part 1. Transactions of the Institution of Chemical Engineers, 32: 35–53.

Ryżak M., Bartmiński P., Bieganowski A., 2009. Metody wyznaczania rozkładu granulometrycznego gleb mineralnych. Acta Agrophysica 175: 84 pp.

Rząsa S., Owczarzak W., 2013. Methods for the granulometric analysis of soil for science and practice. Polish Journal of Soil Science 46(1): 1–50.

Silva R., Garcia F., Faia P., Rasteiro M., 2015. Settling Suspension Flow Modeling: A review. KONA Powder and Particle Journal 32: 41–56.

Smith R.J., 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140(3): 476–86.

Stokes G.G., 1850. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9: 8–106.

Syvitski J.P.M., 1991. Principles methods and application of particle size analysis. Cambridge University Press, Cambridge: 388 pp.

Trzecki S., 1976. Possibility of determination of the moisture of permanent wilting of plants on the basis of maximal higroscopicity and content of clayey particles in mineral soils. Roczniki Gleboznawcze – Soil Science Annual 27(4): 11–18.

Trzecki S., 1974. Determination of water capacity of soils on the basis of their mechanical composition. Roczniki Gleboznawcze – Soil Science Annual 25(suppl.): 33–44.

Walczak R.T., Moreno F., Sławiński C., Fernandez E., Arrue J.L., 2006. Modeling of soil water retention curve using soil solid phase parameters. Journal of Hydrology 329(3–4): 527–533.

Warzyński H., Sosnowska A., Harasimiuk A., 2018. Wpływ zróżnicowanej zawartości materii organicznej i węglanów na wyniki oznaczania składu granulometrycznego metodą areometryczną Casagrande’a w modyfikacji Prószyńskiego. Soil Science Annuals (in Press).

van Rijn L.C., 1989. Handbook: Sediment transport by currents and waves. Report H461, Delft Hydraulics, Netherlands: 480 pp.

Zhang Z., Tumay M.T., 1995. Granulometric evaluation of particle size using suspension pressure during sedimentation. Geotechnical Testing Journal 18(1): 121–129.

Soil Science Annual

formerly Roczniki Gleboznawcze

Journal Information

Index Copernicus Value- 93.69 pkt

CiteScore 2018: 1.08

SCImago Journal Rank (SJR) 2018: 0.427
Source Normalized Impact per Paper (SNIP) 2018: 0.586


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 396 359 28
PDF Downloads 305 267 22